首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The topographically explicit distributed hydrology–soil–vegetation model (DHSVM) is used to simulate hydrological effects of changes in land cover for four catchments, ranging from 27 to 1033 km2, within the Columbia River basin. Surface fluxes (stream flow and evapotranspiration) and state variables (soil moisture and snow water equivalent) corresponding to historical (1900) and current (1990) vegetation are compared. In addition a sensitivity analysis, where the catchments are covered entirely by conifers at different maturity stages, was conducted. In general, lower leaf‐area index (LAI) resulted in higher snow water equivalent, more stream flow and less evapotranspiration. Comparisons with the macroscale variable infiltration capacity (VIC) model, which parameterizes, rather than explicitly represents, topographic effects, show that runoff predicted by DHSVM is more sensitive to land‐cover changes than is runoff predicted by VIC. This is explained by model differences in soil parameters and evapotranspiration calculations, and by the more explicit representation of saturation excess in DHSVM and its higher sensitivity to LAI changes in the calculation of evapotranspiration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Saltmarsh vegetation significantly influences tidal currents and sediment deposition by decelerating the water velocity in the canopy. In order to complement previous field results, detailed profiles of velocity and turbulence were measured in a laboratory flume. Natural Spartina anglica plants were installed in a 3 m length test section in a straight, recirculating flume. Different vegetation densities, water depths and surface velocities were investigated. The logarithmic velocity profile, which existed in front of the vegetation, was altered gradually to a skimming-flow profile, typical for submerged saltmarsh vegetation. The flow reduction in the denser part of the canopy also induced an upward flow (the current was partially deflected by the canopy). The skimming flow was accompanied by a zone of high turbulence co-located with the strongest velocity gradient. This gradient moved upward and the turbulence increased with distance from the edge of the vegetation. Below the skimming flow, the velocity and the turbulence were low. The structure of the flow in the canopy was relatively stable 2 m into the vegetation. The roughness length (z0) of the vegetation depends only on the vegetation characteristics, and is not sensitive to the current velocity or the water depth. Both the reduced turbulence in the dense canopy and the high turbulence at the top of the canopy should increase sediment deposition. On the other hand, the high turbulence zone just beyond the vegetation edge and the oblique upward flow may produce reduced sedimentation; a phenomenon that was observed near the vegetation edge in the field.  相似文献   

3.
Anderson WP  Evans DG 《Ground water》2007,45(4):499-505
Ground water recharge is often estimated through the calibration of ground water flow models. We examine the nature of calibration errors by considering some simple mathematical and numerical calculations. From these calculations, we conclude that calibrating a steady-state ground water flow model to water level extremes yields estimates of recharge that have the same value as the time-varying recharge at the time the water levels are measured. These recharge values, however, are a subdued version of the actual transient recharge signal. In addition, calibrating a steady-state ground water flow model to data collected during periods of rising water levels will produce recharge values that underestimate the actual transient recharge. Similarly, calibrating during periods of falling water levels will overestimate the actual transient recharge. We also demonstrate that average water levels can be used to estimate the actual average recharge rate provided that water level data have been collected for a sufficient amount of time.  相似文献   

4.
In arid northwestern China, as many inland areas around the world with arid or semi-arid climate, inland river flow recharges groundwater; vegetation pattern depends on the water table, which characterizes the landscapes of oasis, transition zone and desert, within different distances from an inland river. The water table conditions play an important role in water and land management—a high water table causes salinization within the oasis while a low water table causes desertification around the oasis. This study applies a theoretical-empirical method to calculating critical groundwater depths including the depth of critical groundwater level causing salinization (DCGS) and the depth of critical groundwater level causing desertification (DCGD); the calculations are validated with field observations in the Luocheng Irrigation District located in the middle reach of the Heihe River, an inland river of the northwestern China. Specifically, the calculated DCGS is 1.29 m for the case study area and the range of water table depth at the locations with saline soil is 0.5-1.2 m. The calculated DCGD for three vegetation communities, Nitraria tangutorum + Glycyrrhiza uralensis Fisch community, Tamarix chinensis + Phragmites australis community, and Alhagi sparsifolia + Phragmites communis, are 8.26, 11.26, and 13.26 m, respectively, basically within an observed range of 6.0-13.0 m in the study area. The critical depths can be used to design an engineering approach to control water tables and mitigate salinization and desertification problem for ecosystem restoration in the study region.  相似文献   

5.
On the basis of experiments carried out in flume with a wavy bed with vegetation cover, flow velocity, turbulence intensities and Reynolds stress distributions are investigated. The wavy bed was similar to dune in this study. The fixed artificial dunes were constructed over the bed and artificial vegetation put over them in a laboratory flume. An Acoustic Doppler Velocimeter and spatially-averaged method were applied to determine turbulent flow components and shear velocity. Results were compared with a gravel bedform. It was observed that vegetation cover influences considerably the flow structure and displays clearly the flow separation and reattachment point. The law of the wall was not valid within the vegetation cover, but it was fitted well to the zone above the vegetation cover within the inner layer. For a wavy bed having the same dimensions, shear velocity and friction factor over vegetation cover are 1.7 and 2.6 times of those for the gravel bedform, respectively. The results of laboratory study were compared with those of river study.  相似文献   

6.
Understanding the effectiveness of environmental flow deliveries along rivers requires monitoring vegetation. Monitoring data are often collected at multiple spatial scales. For riparian vegetation, optical remote sensing methods can estimate growth responses at the riparian corridor scale, and field-based measures can quantify species composition; however, the extent to which these different measures are duplicative or complementary is important to understand when planning monitoring programmes with limited resources. In this study, we analysed riparian vegetation growth in the delta of the Colorado River in response to an experimental pulse flow. Our goal was to compare ground-based measurements of vegetation structure and composition with satellite-based Landsat radiometric variables, such as the normalized difference vegetation index (NDVI). We made this comparison in 21 transects following the delivery of 131.8 million cubic meters (mcm) of water in the stream channel during the spring of 2014 as a pulse flow and 38.4 mcm as base flows. Vegetation cover increased 14% and NDVI increased 0.02 (15%) by October 2015, and both variables returned to pre-pulse flow values in October 2016. Observed changes in vegetation structure and composition did not persist after the second year. The highest increase in vegetation cover in October 2014 and October 2015 resulted from species that could respond rapidly to additional water such as reeds (Arundo donax and Phragmites australis), cattail (Typha domingensis), and herbaceous plants. Dominant shrubs, saltcedar (Tamarix spp.) and arrowweed (Pluchea sericea), both indicative of nonrestored habitats showed variable increases in cover, and native trees (Salicaceae family) presented low increases (1%). The strong NDVI–vegetation cover relationship indicates that NDVI is appropriate to detect changes at the riparian corridor scale but needs to be complemented with ground data to determine the contributions by different species to the observed trends.  相似文献   

7.
The objectives of diagnostic calculations using mathematical models of reservoirs are formulated. The structure of a box hydrological model GMV-MGU is described, and the results of calculation of daily water balance, internal heat exchange structure, and heat balance of individual areas in the Mozhaisk and Rybinsk reservoirs are given. First results of calculation of variations in mean daily phytoplankton biomass in the near-dam pool of a weakly eutrophic water body in period of spring (diatoms) and summer (blue-green) blooming are presented.  相似文献   

8.
This study is aimed at investigating the vertical velocity profile of flow passing over a vegetal area by an analytical approach. The soil ground is considered as pervious and thus non-zero velocity at the ground surface can be estimated. The soil and vegetation layers are regarded as homogeneous and isotropic porous media. Therefore the solution of the flow can be obtained by applying the theory of turbulent flow and Biot’s theory of poroelasticity after dividing the flow field into three layers: homogenous water, vegetation and pervious soil. The velocity distribution is compared with the experimental data of [Rowiński PM, Kubrak J. A mixing-length model for predicting vertical velocity distribution on flows through emergent vegetation. J Hydrol Sci 2002;47(6):893–904] to show its validity. In addition, five dimensionless parameters denoting the variation of slope, permeability of soil, Reynolds stress, density of vegetation, and relative height of vegetation are proposed to reveal their effects on the surface water flow. The analytical solutions of flow velocity can also be simplified into simpler expressions to describe the flow passing over a non-vegetated area.  相似文献   

9.
The need to develop information-analytical systems (IAS) for water resources quality management is substantiated. The structure and principles of IAS organization, developed by the authors, are specified. A mathematical model that serves as a basis for the simulation block of proposed IAS is discussed and the results of model calculations are given.  相似文献   

10.
Hydrological processes in karst basins are controlled by permeable multimedia, consisting of soil pores, epikarst fractures, and underground conduits. Distributed modelling of hydrological dynamics in such heterogeneous hydrogeological conditions is a challenging task. Basing on the multilayer structure of the distributed hydrology‐soil‐vegetation model (DHSVM), a distributed hydrological model for a karst basin was developed by integrating mathematical routings of porous Darcy flow, fissure flow and underground channel flow. Specifically, infiltration and saturated flow movement within epikarst fractures are expressed by the ‘cubic law’ equation which is associated with fractural width, direction, and spacing. A small karst basin located in Guizhou province of southwest China was selected for this hydrological simulation. The model parameters were determined on the basis of field measurement and calibrated against the observed soil moisture contents, vegetation interception, surface runoff, and underground flow discharges from the basin outlet. The results show that due to high permeability of the epikarst zone, a significant amount of surface runoff is only generated after heavy rainfall events during the wet season. Rock exposure and the epikarst zone significantly increase flood discharge and decrease evapotranspiration (ET) loss; the peak flood discharge is directly proportional to the size of the aperture. Distribution of soil moisture content (SMC) primarily depends on topographic variations just after a heavy rainfall, while SMC and actual ET are dominated by land cover after a period of consecutive non‐rainfall days. The new model was able to capture the sharp increase and decrease of the underground streamflow hydrograph, and as such can be used to investigate hydrological effects in such rock features and land covers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Lateral redistribution of surface water in patchy arid ecosystems has been hypothesized to contribute to the maintenance of vegetation patches through the provision of a water subsidy from bare sites to vegetated sites. Such runon-runoff processes occur during Hortonian runoff events on topographically sloping ground. Surface flow redistribution may also occur on topographically flat ground if the presence of the vegetation patch creates a contrast in infiltration rate, leading to a free-surface gradient in ponded water. The precise dynamics and the eco-hydrologic role of this process has resisted complete theoretical treatment to date. Here the overland flow equations are modified to account for the presence of vegetation situated over a flat surface. The resulting model is solved numerically to determine whether this mechanism could influence the spatial partitioning of water in patchy arid ecosystems. Assumptions made about infiltration processes and overland flow in existing eco-hydrologic models of patchy and patterned arid ecosystems are evaluated in comparison to the solution of the ‘full’ coupled Saint-Venant equations with various infiltration models. The results indicate that the optimization of vegetation spatial patch scales with respect to water redistribution may be determined by the size of the infiltration redistribution length L over which the presence of an infiltration contrast perturbs baseline infiltration behavior.  相似文献   

12.
The role of hand calculations in ground water flow modeling   总被引:1,自引:0,他引:1  
Haitjema H 《Ground water》2006,44(6):786-791
Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.  相似文献   

13.
Vegetation plays a critical role in modifying inundation and flow patterns in salt marshes. In this study, the effects of vegetation are derived and implemented in a high‐resolution, subgrid model recently developed for simulating salt marsh hydrodynamics. Vegetation‐induced drag forces are taken into account as momentum sink terms. The model is then applied to simulate the flooding and draining processes in a meso‐tidal salt marsh, both with and without vegetation effects. Marsh inundation and flow patterns are significantly changed with the presence of vegetation. A smaller area of inundation occurs when vegetation is considered. Tides propagate both on the platform and through the channels when vegetation is absent, whereas flows concentrate mainly in channels when vegetation is present. Local inundation on vegetated platforms is caused mainly by water flux spilled from nearby channels, with a flow direction perpendicular to the channel edges, whereas inundation on bare platforms has contributions from both local spilled‐over water flux and remote advection from adjacent platforms. The flooding characteristics predicted by the model showed a significant difference between higher marsh and lower marsh, which is consistent with the wetlands classification by the National Wetlands Inventory (NWI). The flooding characteristics and spatial distribution of hydroperiod are also highly correlated with the vegetation zonation patterns observed in Google Earth imagery. Regarding the strong interaction between flow, vegetation and geomorphology, the conclusion highlights the importance of including vegetation in the modeling of salt marsh dynamics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical model has been developed to simulate the spatiotemporal patterning of the ridge and slough landscape in wetlands, characterized by crests (ridges) and valleys (sloughs) that are elongated parallel to the direction of water flow. The model formulation consists of governing equations for integrated surface water and groundwater flow, sediment transport, and soil accretion, as well as litter production by vegetation growth. The model simulations show how the spatial pattern self-organizes over time with the generation of ridges and sloughs through sediment deposition and erosion driven by the water flow field. The spatial and temporal distributions of the water depth, flow rates and sediment transport processes are caused by differential flow due to vegetation and topography heterogeneities. The model was parameterized with values that are representative of the Everglades wetland in the southern portion of the Florida peninsula in the USA. Model simulation sensitivity was tested with respect to numerical grid size, lateral vegetation growth and the rate of litter production. The characteristic wavelengths of the pattern in the directions along and perpendicular to flow that are simulated with this model develop over time into ridge and slough shapes that resemble field observations. Also, the simulated elevation differences between the ridges and sloughs are of the same order of those typically found in the field. The width of ridges and sloughs was found to be controlled by a lateral vegetation growth distance parameter in a simplified formulation of vegetation growth, which complements earlier modeling results in which a differential peat accretion mechanism alone did not reproduce observations of ridge and slough lateral wavelengths. The results of this work suggest that ridge and slough patterning occurs as a result of vegetation's ability to grow laterally, enhancing sediment deposition in ridge areas, balanced by increased sediment erosion in slough areas to satisfy flow continuity. The interplay between sediment transport, water flow and vegetation and soil dynamic processes needs to be explored further through detailed field experiments, using a model formulation such as the one developed in this work to guide data collection and interpretation. This should be one of the focus areas of future investigations of pattern formation and stability in ridge and slough areas.  相似文献   

15.
A mathematical model of fresh groundwater flow from a semi-infinite confined aquifer into a sea (pool, trench, and the like) filled with salt water and having a freshwater layer above its horizon. To study this problem a mixed boundary-value problem of the theory of analytical functions is formulated and solved with the use of the Polubarinova-Kochina method. The obtained exact analytical relationships and numerical calculations are used to perform a detailed hydrodynamic analysis of the effect of the freshwater layer and other physical parameters of the model on the character and the extent of displacement.  相似文献   

16.
The impact of wastewater flow on the channel bed morphology was evaluated in four ephemeral streams in Israel and the Palestinian Territories: Nahal Og, Nahal Kidron, Nahal Qeult and Nahal Hebron. Channel changes before, during and after the halting of wastewater flow were monitored. The wastewater flow causes a shift from a dry ephemeral channel with intermittent floods to a continuous flow pattern similar to that of humid areas. Within a few months, nutrient‐rich wastewater flow leads to rapid development of vegetation along channel and bars. The colonization of part of the active channel by vegetation increases flow resistance as well as bank and bed stability, and limits sediment availability from bars and other sediment stores along the channels. In some cases the established vegetation covers the entire channel width and halts the transport of bed material along the channel. During low and medium size flood events, bars remain stable and the vegetation intact. Extreme events destroy the vegetation and activate the bars. The wastewater flow results in the development of new small bars, which are usually destroyed by flood flows. Due to the vegetation establishment, the active channel width decreases by up to 700 per cent. The deposition of fine sediment and organic material changed the sediment texture within the stable bar surface and the whole bed surface texture in Nahal Hebron. The recovery of Nahal Og after the halting of the wastewater flow was relatively fast; within two flood seasons the channel almost returned to pre‐wastewater characteristics. The results of the study could be used to indicate what would happen if wastewater flows were introduced along natural desert streams. Also, the results could be used to predict the consequences of vegetation removal as a result of human intervention within the active channel of humid streams. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Mangrove forests and saltmarshes are recognized for their roles in wave and current attenuation, although a comparison of in situ observations between woody and herbaceous plants is needed in order to understand the different mechanisms of bio‐physical interaction within coastal wetlands. The aim of our study was to compare the mechanisms of flow reduction and energy dissipation by mangrove trees and saltmarsh grass in a subtropical area where tidal currents dominate. Fieldwork was conducted to measure the hydrodynamic processes occurring at the boundaries between a bare mudflat and vegetated tidal flat, as the flow transitions from a bare mudflat to either mangrove or saltmarsh. Synchronous acoustic Doppler velocimetry (ADV) measurements at three sites revealed that the mangrove was more effective than the saltmarsh grass at flow reduction. In addition, a considerable rotation in flow direction was observed as the flow entered the mangrove trees, while rotation was considerably less pronounced within the saltmarsh edge. The mechanism for this difference was explained through a combination of changes in drag force and eddy viscosity over the two vegetation types. Although overall the mangrove was observed to dissipate energy more effectively than the saltmarsh, the relative efficiency of the vegetation at dissipating turbulent energy was found to vary with the maximum water level of tidal cycle. When the maximum water level remained below the mangrove canopy bottom (‘bio‐line’), the energy dissipation ability of the mangrove was relatively low, as a result of the presence of rigid, sparse trunks rather than denser saltmarsh grass found near the bed; when the maximum water level was sufficiently high to reach the mangrove canopy, the ability of the mangrove to dissipate energy was significantly increased, becoming more effective than the saltmarsh grass. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The mechanism of energy balance in an open-channel flow with submerged vegetation was investigated. The energy borrowed from the local flow, energy spending caused by vegetation drag and flow resistance, and energy transition along the water depth were calculated on the basis of the computational results of velocity and Reynolds stress. Further analysis showed that the energy spending in a cross-section was a maximum around the top of the vegetation, and its value decreased progressively until reaching zero at the flume bed or water surface. The energy borrowed from the local flow in the vegetated region could not provide for spending; therefore, surplus borrowed energy in the non-vegetated region was transmitted to the vegetated region. In addition, the total energy transition in the cross-section was zero; therefore, the total energy borrowed from the flow balanced the energy loss in the whole cross-section. At the same time, we found that there were three effects of vegetation on the flow: turbulence restriction due to vegetation, turbulence source due to vegetation and energy transference due to vegetation, where the second effect was the strongest one.  相似文献   

19.
Connectivity has recently emerged as a key concept for understanding hydrological response to vegetation change in semi‐arid environments, providing an explanatory link between abiotic and biotic, structure and function. Reduced vegetation cover following woody encroachment, generally promotes longer, more connected overland flow pathways, which has the potential to result in an accentuated rainfall‐runoff response and fluxes of both soil erosion and carbon. This paper investigates changing hydrological connectivity as an emergent property of changing ecosystem structure over two contrasting semi‐arid grass to woody vegetation transitions in New Mexico, USA. Vegetation structure is quantified to evaluate if it can be used to explain observed variations in water, sediment and carbon fluxes. Hydrological connectivity is quantified using a flow length metric, combining topographic and vegetation cover data. Results demonstrate that the two woody‐dominated sites have significantly longer mean flowpath lengths (4 · 3 m), than the grass‐dominated sites (2 · 4 m). Mean flowpath lengths illustrate a significant positive relationship with the functional response. The woody‐dominated sites lost more water, soil and carbon than their grassland counterparts. Woody sites erode more, with mean event‐based sediment yields of 1203 g, compared to 295 g from grasslands. In addition, the woody sites lost more organic carbon, with mean event yields of 39 g compared to 5 g from grassland sites. Finally, hydrological connectivity (expressed as mean flowpath length) is discussed as a meaningful measure of the interaction between structure and function and how this manifests under the extreme rainfall that occurs in semi‐arid deserts. In combination with rainfall characteristics, connectivity emerges as a useful tool to explain the impact of vegetation change on water, soil and carbon losses across semi‐arid environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Here we develop mathematical results to describe the location of linear instability of a parallel mean flow within the framework of the shallow water equations; growth estimates of near neutral modes (for disturbances subcritical with respect to gravity wave speed) in the cases of non-rotating and rotating shallow water. The bottom topography is taken to be one-dimensional and the isobaths are parallel to the mean flow. In the case of a rotating fluid, the isobaths and the mean flow are assumed to be zonal. The flow is front-like: there is a monotonic increase of mean flow velocity. Our results show that for barotropic flows the location of instabilities will be a semi-ellipse region in the complex wave velocity plane, that is based on the wave-number, Froude number, and depth of the fluid layer. We also explore the instability region for the case of spatially unbounded mean velocity profiles for non-rotating shallow water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号