共查询到13条相似文献,搜索用时 7 毫秒
1.
In fold-and-thrust belts rocks undergo deformation as fold geometries evolve. Deformation may be accommodated by brittle fracturing, which can vary depending on structural position. We use 2D forward modelling and 3D restorations to determine strain distributions throughout folds of the Achnashellach Culmination, Moine Thrust Belt, NW Scotland. Fracture data is taken from the Torridon Group; a thick, coarse grained fluviatile sandstone deposited during the Proterozoic. Modelling infers a correlation between strain and simple curvature; we use simple curvature to infer how structural position and strain control fracture attribute variations in a fold and thrust belt.In high curvature regions, such as forelimbs, fracture intensities are high and fractures are short and oriented parallel to fold hinges. In low curvature regions fractures have variable intensities and are longer. Fracture orientations in these regions are scattered and vary over short distances. These variations do not relate to strain; data suggests lithology may influence fracturing. The strain history of fold structures also influences fracturing; structures with longer deformation histories exhibit consistent fracture attributes due to moderate-high strain during folding, despite present day low curvature. This is in contrast to younger folds with similar curvatures but shorter deformation histories. We suggest in high strain regions fracturing is influenced by structural controls, whereas in low strain regions lithology becomes more important in influencing fracturing. 相似文献
2.
A field example of strain partitioning has been analysed along the Nurra–Asinara transect of the NW Sardinian Variscan chain (Italy). The section in the Nurra–Asinara area is in a continuous sequence of tectono-metamorphic complexes made of low- to high-grade metamorphic rocks affected by a polyphase tectonic history. The principal fabric of the area is controlled by a D2 progressive deformation phase in which the strain is partitioned into folds and shear zone domains. The D2 stretching lineation and shear sense show a clear change from south to north. The principal meso- and micro-structures, vorticity gauges and a quantitative kinematic analysis of local strain suggest that the D2 kinematic history could be envisaged as an oblique heterogeneous deformation similar to the transpressive systems described in ancient and modern settings elsewhere. Using a simple kinematic model we also propose that both a transpressive system followed by “thrusting” or a partitioned transpressive system could be responsible for the fabric distribution and strain accumulation described in the study transect. 相似文献
3.
Transpressional deformation has played an important role in the late Paleozoic evolution of the western Central Asian Orogenic Belt (CAOB), and understanding the structural evolution of such transpressional zones is crucial for tectonic reconstructions. Here we focus on the transpressional Irtysh Shear Zone with an aim at understanding amalgamation processes between the Chinese Altai and the West/East Junggar. We mapped macroscopic fold structures in the southern Chinese Altai and analyzed their relationships with the development of the adjacent Irtysh Shear Zone. Structural observations from these macroscopic folds show evidence for four generations of folding and associated fabrics. The earlier fabric (S 1), is locally recognized in low strain areas, and is commonly isoclinally folded by F 2 folds that have an axial plane orientation parallel to the dominant fabric (S 2). S 2 is associated with a shallowly plunging stretching lineation (L 2), and defines ∼NW-SE tight-close upright macroscopic folds (F 3) with the doubly plunging geometry. F 3 folds are superimposed by ∼NNW-SSE gentle F 4 folds. The F 3 and F 4 folds are kinematically compatible with sinistral transpressional deformation along the Irtysh Shear Zone and may represent strain partitioning during deformation. The sub-parallelism of F 3 fold axis with the Irtysh Shear Zone may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation (F 3) in fold zones. The strain partitioning may have become less efficient in the later stage of transpressional deformation, so that a fraction of transcurrent components was partitioned into F 4 folds. 相似文献
4.
The Tokai district in central Japan is located close to the convergent boundary between the Philippine Sea and Eurasian plates, and has experienced not only repeated large interplate earthquakes but also intense aseismic movement. In this paper, the spatial and temporal tectonic evolution of the Tokai district, particularly around the Omaezaki area, is discussed to assess whether the district has been and will be active or inactive. According to a geological survey, the horizontal crustal shortening strain can imply the hypothetical tectonic model that the area has been getting less active and the strain rate since the Neogene can be calculated as 12% and 2×10 −6%/year, respectively. The present interseismic horizontal crustal strain and strain rate around the Omaezaki area are approximately 4×10 −7% and 4×10 −9%/year. By comparing these rates, the decrease since Neogene can imply the hypothetical tectonic model that the area has been getting less active influenced by the strain partitioning between the Suruga Trough and the Zenisu Thrust. 相似文献
5.
Detailed 3‐D analysis of inclusion trails in garnet porphyroblasts and matrix foliations preserved around a hand‐sample scale, tight, upright fold has revealed a complex deformation history. The fold, dominated by interlayered quartz–mica schist and quartz‐rich veins, preserves a crenulation cleavage that has a synthetic bulk shear sense to that of the macroscopic fold and transects the axis in mica‐rich layers. Garnet porphyroblasts with asymmetric inclusion trails occur on both limbs of the fold and display two stages of growth shown by textural discontinuities. Garnet porphyroblast cores and rims pre‐date the macroscopic fold and preserve successive foliation inflection/intersection axes (FIAs), which have the same trend but opposing plunges on each limb of the fold, and trend NNE–SSW and NE–SW, respectively. The FIAs are oblique to the main fold, which plunges gently to the WSW. Inclusion trail surfaces in the cores of idioblastic porphyroblasts within mica‐rich layers define an apparent fold with an axis oblique to the macroscopic fold axis by 32°, whereas equivalent surfaces in tabular garnet adjacent to quartz‐rich layers define a tighter apparent fold with an axis oblique to the main fold axis by 17°. This potentially could be explained by garnet porphyroblasts that grew over a pre‐existing gentle fold and did not rotate during fold formation, but is more easily explained by rotation of the porphyroblasts during folding. Tabular porphyroblasts adjacent to quartz‐rich layers rotated more relative to the fold axis than those within mica‐rich layers due to less effective deformation partitioning around the porphyroblasts and through quartz‐rich layers. This work highlights the importance of 3‐D geometry and relative timing relationships in studies of inclusion trails in porphyroblasts and microstructures in the matrix. 相似文献
6.
A paleomagnetic study has been conducted on a formation dated as Autunian in the Nekheila area (31.4°N, 1.5°W) in the Mezarif basin. ChRM was thermally isolated in 117 samples from seven sites. This ChRM ( D = 131.8°, I = 15.7°, k = 196, α95 = 3.8° after dip correction; corresponding pole 29.3°S, 56.4°E) is very similar to that obtained in the neighboring Abadla basin from a formation of the same age. Fold tests associated with progressive unfolding applied to the full merged data from the dated formations of these two basins clearly indicate that the magnetization acquisition predates the deformation, which is attributed to the last phase of the late-Hercynian. The magnetization in these basins is therefore primary or acquired just after deposition. For the African Apparent Polar Wander Path, the age of the paleomagnetic poles of the Autunian part is now confirmed by paleomagnetic test. 相似文献
7.
The Malpica–Tui complex (NW Iberian Massif) consists of a Lower Continental Unit of variably deformed and recrystallized granitoids, metasediments and sparse metabasites, overridden by an upper unit with rocks of oceanic affinities. Metamorphic minerals dated by the 40Ar/ 39Ar method record a coherent temporal history of progressive deformation during Variscan metamorphism and exhumation. The earliest stages of deformation (D1) under high-pressure conditions are recorded in phengitic white micas from eclogite-facies rocks at 365–370 Ma. Following this eclogite-facies peak-metamorphism, the continental slab became attached to the overriding plate at deep-crustal levels at ca. 340–350 Ma (D2). Exhumation was accompanied by pervasive deformation (D3) within the continental slab at ca. 330 Ma and major deformation (D4) in the underlying para-autochthon at 315–325 Ma. Final tectonothermal evolution included late folding, localized shearing and granitic intrusions at 280–310 Ma. Dating of high-pressure rocks by the 40Ar/39Ar method yields ages that are synchronous with published Rb–Sr and Sm–Nd ages obtained for both the Malpica–Tui complex and its correlative, the Champtoceaux complex in the French Armorican Massif. The results indicate that phengitic white mica retains its radiogenic argon despite been subjected to relatively high temperatures (500–600 °C) for a period of 20–30 My corresponding to the time-span from the static, eclogite-facies M1 peak-metamorphism through D1-M2 eclogite-facies deformation to amphibolite-facies D2-M3. Our study provides additional evidence that under certain geological conditions (i.e., strain partitioning, fluid deficiency) argon isotope mobility is limited at high temperatures, and that 40Ar/39Ar geochronology can be a reliable method for dating high pressure metamorphism. 相似文献
8.
The formation of Ca-rich myrmekites is described in syntectonic syenites crystallized and progressively deformed under granulite facies conditions. The syenites are found in high- and low-strain zones where microstructure and mineral composition are compared. Heterogeneously distributed water-rich, late-magmatic liquids were responsible for strain partitioning into dry and wet high-strain zones at outcrop scale, where contrasting deformation mechanisms are reported. In dry high-strain zones K-feldspar and clinopyroxene are recrystallized under high-T conditions. In wet high-strain zones, the de-stabilization of clinopyroxene and pervasive replacement of relatively undeformed K-feldspar porphyroclasts by myrmekite and subordinate micrographic intergrowths indicate dissolution-replacement creep as the main deformation mechanism. The reworking of these intergrowths is observed and is considered to contribute significantly to the development of the mylonitic foliation and banding. A model is proposed for strain partitioning relating a positive feedback between myrmekite-forming reaction, continuous inflow of late-magmatic liquids and dissolution-replacement creep in the wet zone at the expenses of original mineralogy preserved in the dry zones. Melt-assisted dissolution-replacement creep in syntectonic environments under granulite-facies conditions may extend the field of operation of dissolution-replacement creep, changing significantly the rheology of the lower continental crust. 相似文献
9.
Upper crustal strike-slip duplexes provide an excellent opportunity to address the fundamental question of fault zone development and strain partitioning in an evolving system. Detailed field mapping of the Mesozoic Atacama fault system in the Coastal Cordillera of Northern Chile documents the progressive development of second- and third-order faults forming a duplex at a dilational jog between two overstepping master faults: the sinistral strike-slip, NNW-striking, Jorgillo and Bolfin faults. These are constituted by a meter-wide core of foliated S-C ultracataclasite and cataclasite, flanked by a damage zone of protocataclasite, splay faults and veins. Lateral separation of markers along master faults is on the order of a few kilometers. Second-order, NW-striking, oblique-slip subsidiary fault zones do not show foliated ultracataclasite; lateral sinistral separations are in the range of 10 to 200 m with a relatively minor normal dip-slip component. In turn, third-order, east–west striking normal faults exhibit centimetric displacement. Oblique-slip (sinistral–normal) fault zones located at the southern termination of the Bolfin fault form a well-developed imbricate fan structure. They exhibit a relatively simple architecture of extensional and extensional-shear fractures bound by low displacement shear fractures. Kinematic analysis of fault slip data from mesoscopic faults within the duplex area, document that the NW-striking and the EW-striking faults accommodate transtension and extension, respectively. Examination of master and subsidiary faults of the duplex indicates a strong correlation between total displacement and internal fault structure. Faults started from arrays of en echelon extensional/extensional-shear fractures that then coalesced into throughgoing strike-slip faults. Further displacement leads to the formation of discrete bands of cataclasite and ultracataclasite that take up a significant part of the total displacement. We interpret that the duplex formed by progressive linkage of horsetail-like structures at the southern tip of the Bolfin fault that joined splay faults coming from the Jorgillo and Coloso faults. The geometry and kinematics of faults is compared with that observed in analog models to gain an insight into the kinematic processes leading to complex strike-slip fault zones in the upper crust. 相似文献
10.
Deformed conglomerates and ooidal/oncoidal packstones are commonly used to evaluate finite strain in deformed sedimentary successions. In order to obtain a correct estimate of finite strain, it is necessary to consider not only the different behaviour of matrix and objects, but also object concentration. The analysis of two-component rocks characterised by high values of packing commonly results in a substantial underestimate of bulk strain and of viscosity contrast between objects and matrix. In this study, the effects of the volumetric fraction of competent inclusions on both object and bulk measured finite strain, as well as on apparent viscosity contrast, have been investigated in naturally deformed packstones characterised by variable object concentration on the scale of the hand specimen (and hence for homogenous viscosity contrast). Object finite strain has been obtained by Rf/ analysis, whereas the Fry method provides a measure of whole-rock strain that is also a function of inclusion concentration. Therefore, the finite strain measured by the Fry method is better termed effective bulk strain. In order to investigate the role of object concentration, this parameter has been plotted against object and effective bulk strain, and also against viscosity contrast. These diagrams show that: (i) for high values of packing, measured object and effective bulk strain show values that are significantly lower with respect to the calculated maximum value (that would result in the ideal case of no particle interaction and represents therefore the real bulk strain of the samples); (ii) the viscosity contrast shows lower values with respect to the calculated maximum one (that is equal for the three principal sections of the finite strain ellipsoid), and as packing reaches the maximum value, the viscosity contrast approaches a unit value. Empirical equations have also been found that link object concentration with both object and effective bulk finite strain. 相似文献
11.
The inference of fault geometry from suprajacent fold shape relies on consistent and verified forward models of fault-cored folds, e.g. suites of models with differing fault boundary conditions demonstrate the range of possible folding. Results of kinematic (fault-parallel flow) and mechanical (boundary element method) models are compared to ascertain differences in the way the two methods simulate flexure associated with slip along flat-ramp-flat geometry. These differences are assessed by systematically altering fault parameters in each model and observing subsequent changes in the suprajacent fold shapes. Differences between the kinematic and mechanical fault-fold relationships highlight the differences between the methods. Additionally, a laboratory fold is simulated to determine which method might best predict fault parameters from fold shape. Although kinematic folds do not fully capture the three-dimensional nature of geologic folds, mechanical models have non-unique fold-fault relationships. Predicting fault geometry from fold shape is best accomplished by a combination of the two methods. 相似文献
12.
This is the first of a series of papers on the theme of automated pollen analysis. The automation of pollen analysis could result in numerous advantages for the reconstruction of past environments, with larger data sets made practical, objectivity and fine resolution sampling. There are also applications in apiculture and medicine. Previous work on the classification of pollen using texture measures has been successful with small numbers of pollen taxa. However, as the number of pollen taxa to be identified increases, more features may be required to achieve a successful classification. This paper describes the use of simple geometric measures to augment the texture measures. The feasibility of this new approach is tested using scanning electron microscope (SEM) images of 12 taxa of fresh pollen taken from reference material collected on Henderson Island, Polynesia. Pollen images were captured directly from a SEM connected to a PC. A threshold grey‐level was set and binary images were then generated. Pollen edges were then located and the boundaries were traced using a chain coding system. A number of simple geometric variables were calculated directly from the chain code of the pollen and a variable selection procedure was used to choose the optimal subset to be used for classification. The efficiency of these variables was tested using a leave‐one‐out classification procedure. The system successfully split the original 12 taxa sample into five sub‐samples containing no more than six pollen taxa each. The further subdivision of echinate pollen types was then attempted with a subset of four pollen taxa. A set of difference codes was constructed for a range of displacements along the chain code. From these difference codes probability variables were calculated. A variable selection procedure was again used to choose the optimal subset of probabilities that may be used for classification. The efficiency of these variables was again tested using a leave‐one‐out classification procedure. The proportion of correctly classified pollen ranged from 81% to 100% depending on the subset of variables used. The best set of variables had an overall classification rate averaging at about 95%. This is comparable with the classification rates from the earlier texture analysis work for other types of pollen. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
13.
Preservation bias may significantly impact the application of detrital zircon geochronology in reconstructing Earth surface processes.Here we compare detrital zircons from the actively eroding Murchison River channel in Western Australia with Ordovician fluvial sediments that have drained similar source rocks along the western margin of the West Australian Craton.In addition to standard analysis of detrital zircon age spectra we apply multivariate statistics to test the relation between 3-D grain shape,U-content and U-Pb ages,with the objective to quantify differences between both sample groups and track preservation along the transport pathway of the Murchison River.Our results show that zircon grains in modern river sands display an upstream trend toward larger surface areas,volume equivalent diameters and grain widths,as well as toward higher U-contents and lower apparent grain densities.3-D grain shape,size and age spectra of Murchison River zircons evolve consistently downstream,but even at the river outlet remain distinct from the Ordovician samples,as a less mature representation of source.We interpret Ordovician river zircons to represent a significantly depleted subset from which up to 22% of the zircon population may have been lost compared to the actively transported detrital load.This discrepancy between the characteristics of detrital zircons in modern active rivers and ancient fluvial Ordovician sandstones demonstrates a bias that could be relevant for other source-sink detrital transport systems throughout Earth history. 相似文献
|