首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
东海主要水道的流量估算   总被引:20,自引:6,他引:20  
赵保仁  方国洪 《海洋学报》1991,13(2):169-170
本文以1977—1984年KER调查资料讨论了大隅—吐噶喇海峡中黑潮的流速结构和流量变化,得出经过这两个海峡流出东海的地转流量平均为24.5×106m3/s。大隅海峡中的流量仅占其中的1/12。在吐噶喇海峡黑潮主干两侧均有逆流存在。计算表明,多年平均的表层地转流速系统偏低于GEK观测流速,约8—20cm/s。本文还以实测流速资料估算了经台湾海峡北上的流量,冬、夏季分别为1.05×106m3/s和3.16×106m3/s。据朱祖佑[1]资料,从台湾以东流入东海的黑潮流量平均为29.3×106m3/s。依Miita等人[2]的资料经对马海峡流出东海的平均流量为3.6×106m3/s。如此经东海四个主要水道流入流出的流量接近平衡,流入大于流出3.3×106m3/s。本文还讨论了引起这种差异的可能原因。  相似文献   

2.
1993和1994年东海黑潮的变异   总被引:4,自引:0,他引:4  
基于“长风丸”1993~1994年共8个航次的水文调查资料,采用改进逆方法计算了东海黑潮的流速、流量和热通量.计算结果表明:(1)PN断面黑潮流速在秋季时均呈双核结构;而在其他季节,有时为单核,有时为双核;黑潮主核心皆位于坡折处.黑潮以东及黑潮以下都存在南向逆流.(2)TK断面较复杂,可出现单、双或三核结构.在吐噶喇海峡中部、北部出现流核的机率较高.海峡南端及海峡深处都存在西向逆流,而且海峡南端的逆流在秋季较强.(3)在A断面,对马暖流核心位于陆坡上,但有时偏西或偏东.Vmax值的变动范围为26~46cm/s.黄海暖流位于其西侧,流速则相对减小.(4)东海黑潮流量在这两年中,在春季均出现最小值,在夏季出现最大或较大值.黑潮流量,以PN断面为例,每年四季平均流量值1994年与1993年几乎相同,但略小于1992年的平均流量值.8个航次中通过PN、TK断面的平均净流量分别为27.1×106和25.0×106m3/s.(5)8个航次中,通过PN、TK断面的热通量的平均值分别为1.99×1015和1.78×1015W.(6)在计算海域秋季和冬季均是由海洋向大气放热;夏季则均从大气吸热;春季则不确定.海面上热交换率在冬季最大,而春、夏季较小.  相似文献   

3.
基于日本“长风丸”调查船在2000年5个航次水文资料及同时期QuikSCAT风场资料,采用改进逆方法计算了东海黑潮的流速与流量等,获得了这5个航次期间的主要结果:(1)在东海海区风速1~2月比其他月份时大,风海流也最强.只在7月表层风海流为北向,加强了黑潮流速.(2)表层最低盐度值夏季时最小,1~2月时最大.这再次表明,夏季时长江冲淡水向东北方向扩散,冬季时基本上向南,其他季节在上述两者之间.(3)PN断面流速结构及其变化:黑潮流核在1~2,10和11月时有两个,在4和7月皆只有1个.黑潮主流核在1月位于计算点9,在4,7,10与11月都位于计算点8,即向陆架方向移动.(4)黑潮在TK断面出现多流核结构特性.11月主流核出现在TK断面中部,存在于水深大于1 200 m区域,其余月份主流核皆出现在TK断面北部,存在于深度400m以浅水层.(5)通过PN断面的净东北向流量在11月最大,为28.1×106m3/s,7月时其次,10月时最小,为24.6×106m3/s.通过PN断面的净东北向流量年平均值为26.4×106m3/s.(6)1~2,4,7与10月在PN断面以东都出现暖的、反气旋式涡,10月份时,反气旋式涡最强.只在11月时出现弱的、气旋式涡.黑潮以东反气旋涡加强时,黑潮流量似乎减小(例如10月);相反,当黑潮以东反气旋涡减弱(例如7月)或者代之出现气旋涡时(例如11月),黑潮流量似乎增大.10和11月在PN断面附近流态的比较,揭示了环流变化较大,这进一步表明,黑潮和其附近中尺度涡的相互作用是重要的.(7)通过TK断面的净东向流量,11月最大,7月其次,10与1~2月最小.通过TK断面净东向流量年平均值为21.9×106m3/s.(8)通过A断面的北向流量在1~2与4月较大,分别为3.5×106与3.1×106m3/s,7月最小.通过A断面的年平均北向流量约为2.7×106m3/s,这表明,在2000年1~2与4月通过对马暖流的流量最大,7月时最小.  相似文献   

4.
利用1977-1991年日本“KuroshioExploitationandUtilizationResearch”(KER)资料和日本气象厅海洋观测资料计算吐噶喇海峡的黑潮流速和流量。结果表明,海峡处黑潮主轴的平均核心流速为92.0cm/s,平均流量为周.1×106m3/s;揭示了吐噶喇海峡黑潮流速的多核结构和多股流动的突出特征。探讨了海峡中流量分布状况和季节变化。  相似文献   

5.
2002年春季吕宋海峡海流:观测与改进逆模式计算   总被引:10,自引:1,他引:9  
基于2002年春季航次在吕宋海峡海域锚碇测流站(20°49'57"N,120°48'12"E)200,500与800m处锚碇测流以及CTD观测,采用改进逆方法对调查海域进行海流计算.(1)主要观测的结果:1)在200m处,观测期间海流平均速度为(47.4cm/s,346°).在500m处,海流观测期间平均速度为(20.3cm/s,350°).这些都表明黑潮在吕宋海峡锚碇测流站200和500m处向西北方向入侵南海.2)在800m处,海流观测期间平均速度为(1.2cm/s,35°),它的方向为东北向.比较每层实测流结果,表明800m层海流状况与200和500m层流况不同.3)在观测期间,200,500和800m处,日平均流速在4月皆比3月时要强.4)在调查海区西部的中间区域存在一个高密、冷水中心(HDCW),其中心位置位于断面A的水文站3附近.5)在调查海区东南区域存在一个低密、暖水(LDWW)中心,其中心位置位于断面B的水文站8附近.(2)主要计算结果:1)通过断面B的偏北方向与偏南方向的流量分别为32.48×106m3/s(包括反气旋涡的流量)与3.34×106m3/s.因此通过断面B的净北向流量为29.14×106m3/s.2)通过断面A的东向与西向的流量分别为16.71×106m3/s与8.57×106m3/s(包括气旋涡的流量).因此,通过断面A的净东向流量为8.14×106m3/s.3)通过断面M北向的净流量为24.68×106m3/s.4)黑潮通过断面M后分为主流和一个支流,其主流,流量为16.54×106m3/s,流向断面C的东部分.主流通过断面C的东部分后,最后流向台湾以东海域.而其一个分支,净流量为8.14×106m3/s,在一个高密、冷水中心(HDCW)的区域以东作气旋式弯曲,然后向西北方向通过断面C的西部.因此,黑潮在断面C有两个流核.5)比较计算得到的在锚碇测流站M附近流方向与在200与500m处观测流方向为西北向,它们甚为一致.6)在断面B西侧位于550m以深水层南海水可能缓慢地从西北流向东南,通过断面B的南向流量大约为3.34×106m3/s.  相似文献   

6.
关于东海黑潮流量某些特征的分析   总被引:7,自引:1,他引:7  
基于1955-1990年G-PN断面资料,详细分析东海黑潮流量的分布特征及其变异,以进一步研究东海黑潮流量的变化规律。主要结果表明,(1)东海黑潮流量的多年平均值为22.7×106m3/s,春、夏和冬3季,流量的多年平均值相差甚小。(2)G-PN断面两段不同观测期间内,多年平均流量及其季节变化皆有一定差别。(3)东海黑潮流量的分有存在一定的区域性差异,与通过G-PN断面的流量相比,台湾东侧海域的黑潮流量较大,而吐噶喇海峡的流量略小些。  相似文献   

7.
东海与邻近海域水、热、盐通量的季节变化研究   总被引:1,自引:0,他引:1  
本文基于高分辨率的区域海洋数值模式对东海及邻近海域进行温、盐、流的数值模拟,模拟结果与实测结果拟合较好。结果表明:东海与邻近海域的水交换过程具有显著的季节变化特征。从流量的角度看,台湾海峡、台湾-西表岛之间水道和西表岛-冲绳岛之间水道是外海水流入东海的3个主要水道,而冲绳岛-奄美大岛、吐噶喇海峡、大隅海峡、济州岛东部和黄东海断面是海水流出东海的水道;其年平均体积输运值分别为1.06×106 m3/s、20.49×106 m3/s、3.20×106 m3/s、-0.92×106 m3/s、-20.59×106 m3/s、-0.30×106 m3/s、-2.37×106 m3/s和-0.37×106 m3/s(向内为正)。对比发现,东海与邻近海域之间各水道的体积、热量和盐量输运均具有相似的季节变化趋势,其最大值往往出现在夏季(7月或8月),最小值往往出现在冬季(1月或2月)。从7月到11月整个东海是流量净流出的过程,而从12月到翌年6月是流量净流入的过程,全年流量基本上保持平衡状态。东海终年存在向黄海的净输入,其体积、热量和盐量的年平均输运值分别为0.37×106 m3/s,0.027×1015 W和12.7×106 kg/s。  相似文献   

8.
1997年夏季西北太平洋环流模拟   总被引:5,自引:1,他引:5  
采用1997年7月中日副热带环流合作调查资料,即“向阳红14”号、“东方红”两调查船CTD观测资料、日本TK和IK断面资料以及GTSPP同步资料,应用开边界情形的MOM2模式计算了西北太平洋21.875°~35.125°N,120.875°~137.125°E范围的环流,主要结果如下:在此期间,(1)黑潮在台湾以东并不存在东分支流向琉球群岛以东海域;(2)东海黑潮的流量约为30×106m3/s,日本以南黑潮流量最大约为70×106m3/s;(3)在21.875°~25°N之间大约有15×106m3/s的流量向西流去.速度分布与流函数分布均表明这一支向西的海流大约在冲绳岛西南分为3支,主要分支转向东北沿冲绳岛以东海域向东北流去;(4)琉球海流主要来自上述西向海流.  相似文献   

9.
琉球群岛以东的西边界流与东海黑潮流量时空特征的研究   总被引:1,自引:1,他引:0  
通过最新的高分辨率再分析海洋数据资料,对于东海黑潮以及琉球群岛以东海域的海流进行了研究。结果表明琉球群岛以东西边界流最大流速出现在600~1200 m深度的地形坡度最大处,大小约为0.2 m/s。由于冲绳岛以南庆良间水道的水交换对于东海黑潮流量有重要的影响,东海黑潮的平均流量从南向北逐渐递增,平均流量为28×106~35×106m3/s;琉球群岛以东的西边界流流量则比东海黑潮小一个量级,平均值小于其变化的方差;由于受庆良间水道海流的影响,冲绳岛东侧的流量要远小于奄美大岛东侧的流量。同一纬度大洋中西传的Rossby波对琉球群岛以东的西边界流有较大影响,因此琉球群岛以东西边界流的流量有大约100 d的显著变化周期。庆良间水道以南的东海黑潮由于主要受台湾以东黑潮流量的控制,也有大约100 d的显著变化周期,庆良间水道以北的东海黑潮则没有该特征。  相似文献   

10.
张瑞冰  侯一筠  刘亚豪 《海洋科学》2017,41(12):117-126
利用高分辨率ROMS(regional ocean modeling system)数值模式模拟东海地区的多年平均流态。数值模拟结果在黑潮的流速、路径、流量等方面与近年来对黑潮的认识相一致。利用模式结果,计算东海及邻近海域主要水道的水通量。结果表明:台湾海峡、中国台湾-西表岛之间水道是海水进入东海的主要通道,对马海峡、吐噶喇海峡、大隅海峡与西表岛-宫古岛-冲绳岛-庵美大岛之间水道是海水流出东海的主要通道。分析PN断面的流量的变化特征,结果表明黑潮流量在春季与夏季较大,秋季与冬季较小,年平均流量为24.16 Sv,与前人研究结果一致。计算跨越200 m等深线的年平均净向岸体积输送为0.99 Sv,在台湾东北与九州西南地区表现为黑潮入侵陆架地区,年平均入侵流量分别为1.907 Sv与0.065 Sv,在黑潮中段地区,跨越200 m等深线流量呈现交错状分布,年平均净通量为0.982 Sv,表现为由东海陆架地区流向黑潮。上述结果对黑潮与东海之间物质与能量交换研究有一定参考价值。  相似文献   

11.
Using hydrographic data and moored current meter records and the ADCP observed current data during May–June 1996, a modified inverse method is applied to calculate the Kuroshio east of Taiwan and in the East China Sea and the currents east of Ryukyu Islands. There are three branches of the Kuroshio east of Taiwan. The Kuroshio in the East China Sea comes from the main (first) and second branches of the Kuroshio east of Taiwan. The easternmost (third) branch of the Kuroshio flows northeastward to the region east of Ryukyu Islands. The net northward volume transports of the Kuroshio through Section K2 southeast of Taiwan and Section PN in the East China Sea are 44.4×106 and 27.2×106 m3s−1, respectively. The western boundary current east of Ryukyu Islands comes from the easternmost branch of the Kuroshio east of Taiwan and an anticyclonic recirculating gyre more east, making volume transports of 10 to 15×106 m3s−1. At about 21°N, 127°E southeast of Taiwan, there is a cold eddy which causes branching of the Kuroshio there.  相似文献   

12.
On the basis of hydrographic data obtained during two October cruises of 1995, a modified inverse method is used to compute the Kuroshio east of Taiwan and the currents east of the Ryukyu-gunto.The net northward volume transport(VT) of the Kuroshio through Section TK2-K2 southeast of Taiwan is about 57.8×106 m3/s.There are four current cores of the Kuroshio at Section TK2-K2.Its main core is near the south of Taiwan, and its maximum speed is about 257 cm/s at the surface.After the Kuroshio flows through Section TK2-K2, there are three branches of the Kuroshio.The main branch of the Kuroshio flows northward into Section TKa east of Su''ao.The second branch of the Kuroshio flows northward through Section TKa and then enters the East China Sea through the region between Yonakunijima and Iriomote-shima.The net northward VT of the Kuroshio through Section TK4 is about 21.6×106 m3/s.The eastern branch of the Kuroshio flows northeastward through the region between a stronger cyclonic eddy and a recirculating anticyclonic gyre, and then flows continuously northeastward to the region east of the Ryūkyū-guntō and becomes a part of the origin of the western boundary current east of the Ryūkyū-guntō.Another part of the origin of the western boundary current east of the Ryūkyū-guntō comes from a recirculating anticyclonic gyre.From the above, in the regions east of Taiwan end east of the Ryūkyū-guntō the pattern of circulation during October of 1995 differs from the pattern of circulation during early summer of 1985.There are several eddies of different scales in this computational region.For example, there is a meso-scale stronger cyclonic eddy whose center is located at about 23°N, 124°20''E.  相似文献   

13.
In this study, the inverse method is used to compute the Kuroshio in the East China Sea and southeast of Kyushu and the currents east of the Ryukyu Islands, on the basis of hydrographic data obtained during September-October, 1987 by R/V Chofu Maru. The results show that: (1)A part of the Taiwan Warm Current has a tendency to converge to the shelf break; (2) the Kuroshio flows across the section C3 (PN) with a reduced current width, and the velocity of the Kuroshio at the section C3 increases and its maximum current speed is about 158 cm/s, and its volume transport here is about 26×106m3/s; (3) the Kuroshio has two current cores at the sections C3 (PN) and B2 (at the Tokara Strait); (4) the currents east of the Ryukyu Islands are found to flow northward over the Ryukyu Trench during September-October, 1987. The velocities of the currents are not strong throughout the depths. At the section C2 east of the Ryukyu Islands, the maximum current speed is at the 699 m levei and its magnitude is 25 cm/s, and i  相似文献   

14.
1995与1996年夏季琉球群岛两侧海流   总被引:7,自引:3,他引:4  
基于1995,1996年夏季日本调查船的观测资料,采用P矢量方法对琉球群岛两侧的海流进行了计算.结果表明:黑潮为琉球群岛以西海域的一支东北向强流,1996年夏季的流速比1995年夏季的强,在深层出现南向逆流.黑潮东、西两侧分别存在一个反气旋式暖涡和一个弱的气旋式冷涡.1995年夏季,琉球群岛以东,从表层至以下层都存在一支沿岸北上的海流,即琉球海流.该海流来自黑潮分支,为本海区的一个主要物理特征.琉球海流以下出现弱的南向流.冲绳岛以东海域,在25°~25°30'N,128°30'~129°10'E附近从表层至700m水深存在一个中尺度的反气旋式暖涡.在温、盐水平分布图上,对应的出现一个较高温、低密水块.1996年夏季,冲绳岛西南海域存在一个中尺度的反气旋式暖涡和一个气旋式冷涡,形成一个偶极子,中间为较强的南向流,该现象为本海区的一个重要物理特征,属首次报道.冲绳岛以东表层主要被南向流控制,琉球海流不明显.200m以深在近岸出现北向流,这表明琉球海流的核心位于次表层.琉球海流的下面出现南向流.计算海区东北部从表层到700m水深出现一个中尺度的反气旋式暖涡,与1995年夏季时比较,其位置向北移动.此外在1996年夏季从近表层到深层,垂直方向和水平方向上的等温线、等盐线波动很大,例如在C断面上冷、暖涡相间出现,且暖  相似文献   

15.
采用1977年1月至2006年12月高分辨率全球大洋环流模型OFES输出结果对琉球群岛附近海域的中尺度涡进行了研究分析。结果表明:(1)尺度较大的涡旋的分布密集区主要有台湾以东海域、琉球海沟上层海域和四国以南海域。(2)琉球海流流经海域的反气旋涡旋占优势,有利于琉球海流的发展。(3)琉球海流受中尺度涡的影响十分显著,纬度越低,其受中尺度涡的影响越明显,而黑潮相对比较稳定,受中尺度涡的影响并不显著。(4)四国以南海域暖涡从黑潮脱落之后向西南移动,该涡旋的移动对琉球海流和黑潮产生特别显著的影响。文章的最后还讨论了中尺度涡与黑潮弯曲以及琉球海流可能存在的联系。  相似文献   

16.
Wind data from NCEP and hydrographic data obtained from August 28 to September 10, 1994 have been used to compute circulation in the northern South China Sea and near Luzon Strait using three-dimensional diagnostic models with a modified inverse method. The numerical results are as follows: the main Kuroshio is located above 400 m levels near Taiwan’s eastern coast and above 800 m levels away from it. Near Luzon Strait above 400 m levels a branch of the Kuroshio joins with a part of the northward current, which comes from an area west of Luzon’s western coast and intrudes northwestward, then it branchs into western and eastern parts near 20°30′ N. The eastern part flows northward into an area east of Taiwan, while its western part continues to intrude northwestward, flowing through an area southwest of Taiwan. Net westward intruded volume transport through longitude Section AB at 121°00′ E from 19°00′ N to 21° 43′ N is about 3.5 × 106 m3s−1 in a layer above 400 m levels. The anticyclonic eddies W1 and W3 exist above 700 m levels east of Dongsha Islands and below 200 m levels in the eastern part of the region, respectively. The circulation in the middle region is dominated mainly by a basin-scale cyclonic gyre, and consists of three cyclonic eddies. Strong upwelling occurs in the middle region. The joint effect of baroclinity and relief and interaction between wind stress and relief both are important for real forcing of flow across contours of fH −1 in effecting the circulation pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号