首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We derive analytic merger rates for dark matter haloes within the framework of the extended Press–Schechter (EPS) formalism. These rates become self-consistent within EPS once we realize that the typical merger in the limit of a small time-step involves more than two progenitors, contrary to the assumption of binary mergers adopted in earlier studies. We present a general method for computing merger rates that span the range of solutions permitted by the EPS conditional mass function, and focus on a specific solution that attempts to match the merger rates in N -body simulations. The corrected EPS merger rates are more accurate than the earlier estimates of Lacey & Cole by ∼20 per cent for major mergers and by up to a factor of ∼3 for minor mergers of mass ratio 1:104. Based on the revised merger rates, we provide a new algorithm for constructing Monte Carlo EPS merger trees, which could be useful in semi-analytic modelling. We provide analytic expressions and plot numerical results for several quantities that are very useful in studies of galaxy formation. This includes (i) the rate of mergers of a given mass ratio per given final halo, (ii) the fraction of mass added by mergers to a halo and (iii) the rate of mergers per given main progenitor. The creation and destruction rates of haloes serve for a self-consistency check. Our method for computing merger rates can be applied to conditional mass functions beyond EPS, such as those obtained by the ellipsoidal collapse model or extracted from N -body simulations.  相似文献   

2.
We study the merging history of dark matter haloes in N -body simulations and semi-analytical 'merger trees' based on the extended Press–Schechter (EPS) formalism. The main focus of our study is the joint distribution of progenitor number and mass as a function of redshift and parent halo mass. We begin by investigating the mean quantities predicted directly by the Press–Schechter (PS) and EPS formalism, such as the halo mass and conditional mass functions, and compare these predictions with the results of the simulations. The higher moments of this distribution are not predicted by the EPS formalism alone and must be obtained from the merger trees. We find that the Press–Schechter model deviates from the simulations at the level of 30–50 per cent on certain mass scales, and that the sense of the discrepancy changes as a function of redshift. We show that this discrepancy is reflected in the higher moments of the distribution of progenitor mass and number. We investigate some related statistics such as the accretion rate and the mass ratio of the largest two progenitors. For galaxy sized haloes ( M ∼1012 M), we find that the merging history of haloes, as represented by these statistics, is well reproduced in the merger trees compared with the simulations. The agreement deteriorates for larger mass haloes. We conclude that merger trees based on the extended Press–Schechter formalism provide a reasonably reliable framework for semi-analytical models of galaxy formation.  相似文献   

3.
Galaxies are believed to be in one-to-one correspondence with simulated dark matter subhaloes. We use high-resolution N -body simulations of cosmological volumes to calculate the statistical properties of subhalo (galaxy) major mergers at high redshift ( z = 0.6–5). We measure the evolution of the galaxy merger rate, finding that it is much shallower than the merger rate of dark matter host haloes at   z > 2.5  , but roughly parallels that of haloes at   z < 1.6  . We also track the detailed merger histories of individual galaxies and measure the likelihood of multiple mergers per halo or subhalo. We examine satellite merger statistics in detail: 15–35 per cent of all recently merged galaxies are satellites, and satellites are twice as likely as centrals to have had a recent major merger. Finally, we show how the differing evolution of the merger rates of haloes and galaxies leads to the evolution of the average satellite occupation per halo, noting that for a fixed halo mass, the satellite halo occupation peaks at   z ∼ 2.5  .  相似文献   

4.
We consider the sensitivity of the circular-orbit adiabatic contraction approximation to the baryon condensation rate and the orbital structure of dark matter haloes in the Λ cold dark matter (ΛCDM) paradigm. Using one-dimensional hydrodynamic simulations including the dark matter halo mass accretion history and gas cooling, we demonstrate that the adiabatic approximation is approximately valid even though haloes and discs may assemble simultaneously. We further demonstrate the validity of the simple approximation for ΛCDM haloes with isotropic velocity distributions using three-dimensional N -body simulations. This result is easily understood: an isotropic velocity distribution in a cuspy halo requires more circular orbits than radial orbits. Conversely, the approximation is poor in the extreme case of a radial orbit halo. It overestimates the response of a core dark matter halo, where radial orbit fraction is larger. Because no astronomically relevant models are dominated by low angular momentum orbits in the vicinity of the disc and the growth time-scale is never shorter than a dynamical time, we conclude that the adiabatic contraction approximation is useful in modelling the response of dark matter haloes to the growth of a disc.  相似文献   

5.
We use the extended Press–Schechter formalism to investigate the rate at which cold dark matter haloes accrete mass. We discuss the shortcomings of previous methods that have been used to compute the mass accretion histories of dark matter haloes, and present an improved method based on the N -branch merger tree algorithm of Somerville & Kolatt. We show that this method no longer suffers from inconsistencies in halo formation times, and compare its predictions with high-resolution N -body simulations. Although the overall agreement is reasonable, there are slight inconsistencies which are most easily interpreted as a reflection of ellipsoidal collapse (as opposed to spherical collapse assumed in the Press–Schechter formalism). We show that the average mass accretion histories follow a simple, universal profile, and we present a simple recipe for computing the two scale-parameters which is applicable to a wide range of halo masses and cosmologies. Together with the universal profiles for the density and angular momentum distributions of cold dark matter haloes, these universal mass accretion histories provide a simple but accurate framework for modelling the structure and formation of dark matter haloes. In particular, they can be used as a backbone for modelling various aspects of galaxy formation where one is not interested in the detailed effects of merging. As an example we use the universal mass accretion history to compute the rate at which dark matter haloes accrete mass, which we compare with the cosmic star formation history of the Universe.  相似文献   

6.
High-resolution simulations of cosmological structure formation indicate that dark matter substructure in dense environments, such as groups and clusters, may survive for a long time. These dark matter subhaloes are the likely hosts of galaxies. We examine the small-scale spatial clustering of subhalo major mergers at high redshift using high-resolution N -body simulations of cosmological volumes. Recently merged, massive subhaloes exhibit enhanced clustering on scales  ∼100–300  h −1 kpc  , relative to all subhaloes of the same infall mass, for a short time after a major merger (<500 Myr). The small-scale clustering enhancement is smaller for lower mass subhaloes, which also show a deficit on scales just beyond the excess. Haloes hosting recent subhalo mergers tend to have more subhaloes; for massive subhaloes, the excess is stronger and it tends to increase for the most massive host haloes. The subhalo merger fraction is independent of halo mass for the scales we probe. In terms of satellite and central subhaloes, the merger increase in small-scale clustering for massive subhaloes arises from recently merged massive central subhaloes having an enhanced satellite population. Our mergers are defined via their parent infall mass ratios. Subhaloes experiencing major mass gains also exhibit a small-scale clustering enhancement, but these correspond to two-body interactions leading to two final subhaloes, rather than subhalo coalescence.  相似文献   

7.
N -body simulations predict that cold dark matter (CDM) halo-assembly occurs in two phases: (i) a fast-accretion phase with a rapidly deepening potential well; and (ii) a slow-accretion phase characterized by a gentle addition of mass to the outer halo with little change in the inner potential well. We demonstrate, using one-dimensional simulations, that this two-phase accretion leads to CDM haloes of the Navarro, Frenk & White (NFW) form and provides physical insight into the properties of the mass-accretion history that influence the final profile. Assuming that the velocities of CDM particles are effectively isotropized by fluctuations in the gravitational potential during the fast-accretion phase, we show that gravitational collapse in this phase leads to an inner profile  ρ( r ) ∝ r −1  . Slow accretion on to an established potential well leads to an outer profile with  ρ( r ) ∝ r −3  . The concentration of a halo is determined by the fraction of mass that is accreted during the fast-accretion phase. Using an ensemble of realistic mass-accretion histories, we show that the model predictions of the dependence of halo concentration on halo formation time and, hence, the dependence of halo concentration on halo mass, and the distribution of halo concentrations all match those found in cosmological N -body simulations. Using a simple analytic model that captures much of the important physics, we show that the inner   r −1  profile of CDM haloes is a natural result of hierarchical mass assembly with an initial phase of rapid accretion.  相似文献   

8.
We carry out numerical simulations of dissipationless major mergers of elliptical galaxies using initial galaxy models that consist of a dark matter haloes and a stellar bulge with properties consistent with the observed fundamental plane. By varying the density profile of the dark matter haloes [standard Navarro, Frenk & White (NFW) profile versus adiabatically contracted NFW profile], the global stellar to dark matter mass ratio and the orbit of the merging galaxies, we are able to assess the impact of each of these factors on the structure of the merger remnant. Our results indicate that the properties of the remnant bulge depend primarily on the angular momentum and energy of the orbit; for a cosmologically motivated orbit, the effective radius and velocity dispersion of the remnant bulge remain approximately on the fundamental plane. This indicates that the observed properties of elliptical galaxies are consistent with significant growth via late dissipationless mergers. We also find that the dark matter fraction within the effective radius of our remnants increases after the merger, consistent with the hypothesis that the tilt of the fundamental plane from the virial theorem is due to a varying dark matter fraction as a function of galaxy mass.  相似文献   

9.
A modified version of the extended Press–Schechter model for the growth of dark-matter haloes was introduced in two previous papers, with the aim of explaining the mass–density relation shown by haloes in high-resolution cosmological simulations. In this model, major mergers are well separated from accretion, thereby allowing a natural definition of halo formation and destruction. This makes it possible to derive analytic expressions for halo formation and destruction rates, the mass accretion rate and the probability distribution functions of halo formation times and progenitor masses. The stochastic merger histories of haloes can be readily derived and easily incorporated into semi-analytical models of galaxy formation, thus avoiding the usual problems encountered in the construction of Monte Carlo merger trees from the original extended Press–Schechter formalism. Here we show that the predictions of the modified Press–Schechter model are in good agreement with the results of N -body simulations for several scale-free cosmologies.  相似文献   

10.
We study the formation of galaxies in a Λ cold dark matter (ΛCDM) universe using high-resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight isolated haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at   z = 0  , none of our galaxies contains a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The   z = 0  spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at   z = 0  nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at   z ≳ 2  , regardless of their   z = 0  morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic ΛCDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.  相似文献   

11.
We present the results of an Eulerian adaptive mesh refinement (AMR) hydrodynamical and N -body simulation in a Λ cold dark matter (ΛCDM) cosmology. The simulation incorporates common cooling and heating processes for a primordial gas. A specific halo finder has been designed and applied in order to extract a sample of galaxy clusters directly obtained from the simulation without considering any resimulating scheme. We have studied the evolutionary history of the cluster haloes, and classified them into three categories depending on the merger events they have undergone: major mergers, minor mergers and relaxed clusters. The main properties of each one of these classes and the differences among them are discussed. The collisions among galaxy clusters are produced naturally by the non-linear evolution in the simulated cosmological volume; no controlled collisions have been considered. We pay special attention to discuss the role of merger events as a source of feedback and reheating, and their effects on the existence of cool cores in galaxy clusters, as well as in the scaling relations.  相似文献   

12.
We model the acquisition of spin by dark-matter haloes in semi-analytic merger trees. We explore two different algorithms: one in which halo spin is acquired from the orbital angular momentum of merging satellites, and another in which halo spin is gained via tidal torquing on shells of material while still in the linear regime. We find that both scenarios produce the characteristic spin distribution of haloes found in N -body simulations, namely, a log-normal distribution with mean ≈ 0.04 and standard deviation ≈ 0.5 in the log. A perfect match requires fine-tuning of two free parameters. Both algorithms also reproduce the general insensitivity of the spin distribution to halo mass, redshift and cosmology seen in N -body simulations. The spin distribution can be made strictly constant by physically motivated scalings of the free parameters. In addition, both schemes predict that haloes that have had recent major mergers have systematically larger spin values. These algorithms can be implemented within semi-analytic models of galaxy formation based on merger trees. They yield detailed predictions of galaxy properties that strongly depend on angular momentum (such as size and surface brightness) as a function of merger history and environment.  相似文献   

13.
We explain in simple terms how the build-up of dark haloes by merging compact satellites, as in the cold dark matter (CDM) cosmology, inevitably leads to an inner cusp of density profile  ρ∝ r −α  with  α≳ 1  , as seen in cosmological N -body simulations. A flatter halo core with  α < 1  exerts on the satellites tidal compression in all directions, which prevents the deposit of stripped satellite material in the core region. This makes the satellite orbits decay from the radius where  α∼ 1  to the halo centre with no local tidal mass transfer, and thus causes a rapid steepening of the inner profile to  α > 1  . These tidal effects, the resultant steepening of the profile to a cusp, and the stability of this cusp to tandem mergers with compact satellites are demonstrated using N -body simulations. The transition at  α∼ 1  is then addressed using toy models in the limiting cases of impulse and adiabatic approximations and using tidal radii for satellites on radial and circular orbits. In an associated paper, we address the subsequent slow convergence from either side to an asymptotic stable cusp with  α≳ 1  . Our analysis thus implies that an inner cusp is enforced when small haloes are typically more compact than larger haloes, as in the CDM scenario, such that enough satellite material makes it intact into the inner halo and is deposited there. We conclude that a necessary condition for maintaining a flat core, as indicated by observations, is that the inner regions of the CDM satellite haloes be puffed up by about 50 per cent such that when they merge into a larger halo they would be disrupted outside the halo core. This puffing up could be due to baryonic feedback processes in small haloes, which may be stimulated by the tidal compression in the halo cores.  相似文献   

14.
We study the formation of tidal tails in pairs of merging disc galaxies with structural properties motivated by current theories of cold dark matter (CDM) cosmologies. In a recent study, Dubinski, Mihos & Hernquist showed that the formation of prominent tidal tails can be strongly suppressed by massive and extended dark haloes. For the large halo-to-disc mass ratio expected in CDM cosmologies their sequence of models failed to produce strong tails like those observed in many well-known pairs of interacting galaxies. In order to test whether this effect can constrain the viability of CDM cosmologies, we construct N ‐body models of disc galaxies with structural properties derived in analogy to the recent analytical work of Mo, Mao & White. With a series of self-consistent collisionless simulations of galaxy–galaxy mergers we demonstrate that even the discs of very massive dark haloes have no problems developing long tidal tails, provided the halo spin parameter is large enough. For our class of models, the halo-to-disc mass ratio is not a good indicator of the ability to produce tails. Instead, the relative size of disc and halo or, alternatively, the ratio of circular velocity to local escape speed at the half mass radius of the disc is a more useful criterion. This result holds in all CDM models. While tidal tails can provide useful information on the structure of galaxies, it thus appears unlikely that they are able to constrain the values of the cosmological parameters within these models.  相似文献   

15.
16.
The time-scale for galaxies within merging dark matter haloes to merge with each other is an important ingredient in galaxy formation models. Accurate estimates of merging time-scales are required for predictions of astrophysical quantities such as black hole binary merger rates, the build-up of stellar mass in central galaxies and the statistical properties of satellite galaxies within dark matter haloes. In this paper, we study the merging time-scales of extended dark matter haloes using N -body simulations. We compare these results to standard estimates based on the Chandrasekhar theory of dynamical friction. We find that these standard predictions for merging time-scales, which are often used in semi-analytic galaxy formation models, are systematically shorter than those found in simulations. The discrepancy is approximately a factor of 1.7 for M sat/ M host≈ 0.1 and becomes larger for more disparate satellite-to-host mass ratios, reaching a factor of ∼3.3 for M sat/ M host≈ 0.01. Based on our simulations, we propose a new, easily implementable fitting formula that accurately predicts the time-scale for an extended satellite to sink from the virial radius of a host halo down to the halo's centre for a wide range of M sat/ M host and orbits. Including a central bulge in each galaxy changes the merging time-scale by ≲10 per cent. To highlight one concrete application of our results, we show that merging time-scales often used in the literature overestimate the growth of stellar mass by satellite accretion by ≈40 per cent, with the extra mass gained in low mass ratio mergers.  相似文献   

17.
We present a comparison of the statistical properties of dark matter halo merger trees extracted from the Millennium Simulation with Extended Press–Schechter (EPS) formalism and the related galform Monte Carlo method for generating ensembles of merger trees. The volume, mass resolution and output frequency make the Millennium Simulation a unique resource for the study of the hierarchical growth of structure. We construct the merger trees of present-day friends-of-friends groups and calculate a variety of statistics that quantify the masses of their progenitors as a function of redshift, accretion rates, and the redshift distribution of their most recent major merger. We also look in the forward direction and quantify the present-day mass distribution of haloes into which high-redshift progenitors of a specific mass become incorporated. We find that the EPS formalism and its Monte Carlo extension capture the qualitative behaviour of all these statistics, but as redshift increases they systematically underestimate the masses of the most massive progenitors. This shortcoming is worst for the Monte Carlo algorithm. We present a fitting function to a scaled version of the progenitor mass distribution and show how it can be used to make more accurate predictions of both progenitor and final halo mass distributions.  相似文献   

18.
We develop a method to measure the probability, P ( N;   M ), of finding N galaxies in a dark matter halo of mass M from the theoretically determined clustering properties of dark matter haloes and the observationally measured clustering properties of galaxies. Knowledge of this function and the distribution of the dark matter completely specifies all clustering properties of galaxies on scales larger than the size of dark matter haloes. Furthermore, P ( N;   M ) provides strong constraints on models of galaxy formation, since it depends upon the merger history of dark matter haloes and the galaxy–galaxy merger rate within haloes. We show that measurements from a combination of the Two Micron All Sky Survey and Sloan Digital Sky Survey or Two-degree Field Galaxy Redshift Survey data sets will allow P ( N;   M ) averaged over haloes occupied by bright galaxies to be accurately measured for N =0–2 .  相似文献   

19.
We present the Millennium-II Simulation (MS-II), a very large N -body simulation of dark matter evolution in the concordance Λ cold dark matter (ΛCDM) cosmology. The MS-II assumes the same cosmological parameters and uses the same particle number and output data structure as the original Millennium Simulation (MS), but was carried out in a periodic cube one-fifth the size  (100  h −1 Mpc)  with five times better spatial resolution (a Plummer equivalent softening of  1.0  h −1 kpc  ) and with 125 times better mass resolution (a particle mass of  6.9 × 106  h −1 M  ). By comparing results at MS and MS-II resolution, we demonstrate excellent convergence in dark matter statistics such as the halo mass function, the subhalo abundance distribution, the mass dependence of halo formation times, the linear and non-linear autocorrelations and power spectra, and halo assembly bias. Together, the two simulations provide precise results for such statistics over an unprecedented range of scales, from haloes similar to those hosting Local Group dwarf spheroidal galaxies to haloes corresponding to the richest galaxy clusters. The 'Milky Way' haloes of the Aquarius Project were selected from a lower resolution version of the MS-II and were then resimulated at much higher resolution. As a result, they are present in the MS-II along with thousands of other similar mass haloes. A comparison of their assembly histories in the MS-II and in resimulations of 1000 times better resolution shows detailed agreement over a factor of 100 in mass growth. We publicly release halo catalogues and assembly trees for the MS-II in the same format within the same archive as those already released for the MS.  相似文献   

20.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号