首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of rovibrational H2 emission in the central galaxies of cooling flow clusters is poorly understood. Here we address this issue using data from our near-infrared spectroscopic survey of 32 of the most line-luminous such systems, presented in the companion paper by Edge et al.
We consider excitation by X-rays from the surrounding intracluster medium (ICM), ultra-violet (UV) radiation from young stars, and shocks. The   v = 1–0  K -band lines with upper levels within  104 K  of the ground state appear to be mostly thermalized (implying gas densities  ≳105 cm−3  ), with the excitation temperature typically exceeding 2000 K, as found earlier by Jaffe, Bremer & van der Werf. Together with the lack of strong   v = 2–0  lines in the H -band, this rules out UV radiative fluorescence.
Using the cloudy photoionization code, we deduce that the H2 lines can originate in a population of dense clouds, exposed to the same hot  ( T ∼ 50 000 K)  stellar continuum as the lower density gas which produces the bulk of the forbidden optical line emission in the Hα-luminous systems. This dense gas may be in the form of self-gravitating clouds deposited directly by the cooling flow, or may instead be produced in the high-pressure zones behind strong shocks. Furthermore, the shocked gas is likely to be gravitationally unstable, so collisions between the larger clouds may lead to the formation of globular clusters.  相似文献   

2.
We present an X-ray study of the galaxy group or poor cluster MKW 4. Working with XMM–Newton data we examine the distribution and properties of the hot gas which makes up the group halo. The inner halo shows some signs of structure, with circular or elliptical beta models providing a poor fit to the surface brightness profile. This may be evidence of large-scale motion in the inner halo, but we do not find evidence of sharp fronts or edges in the emission. The temperature of the halo declines in the core, with deprojected spectral fits showing a central temperature of ∼1.3 keV compared to ∼3 keV at 100 kpc. In the central ∼30 kpc of the group, multitemperature spectral models are required to fit the data, but they indicate a lack of gas at low temperatures. Steady-state cooling flow models provide poor fits to the inner regions of the group and the estimated cooling time of the gas is long except within the central dominant galaxy, NGC 4073. Abundance profiles show a sharp increase in the core of the group, with mean abundance rising by a factor of 2 in the centre of NGC 4073. Fitting individual elements shows the same trend, with high values of Fe, Si and S in the core. We estimate that ∼50 per cent of the Fe in the central 40 kpc was injected by Type Ia supernovae, in agreement with previous ASCA studies. Using our best-fitting surface brightness and temperature models, we calculate the mass, gas fraction, entropy and mass-to-light ratio of the group. At 100 kpc (∼0.1 virial radius) the total mass and gas entropy of the system (  ∼2 × 1013 M  and ∼300 keV cm2) are quite comparable to those of other systems of similar temperature, but the gas fraction is rather low (∼1 per cent). We conclude that MKW 4 is a fairly relaxed group, which has developed a strong central temperature gradient but not a large-scale cooling flow.  相似文献   

3.
We solve for the structure of a hot accretion disc with unsaturated thermal Comptonization of soft photons and with advection, generalizing the classical model of Shapiro et al. The upper limit on the accretion rate due to advection constrains the luminosity to ≲ 0.15 y3/5 α7/5 of the Eddington limit, where y and α are the Compton and viscosity parameters, respectively. The characteristic electron temperature and Thomson optical depth of the inner flow at accretion rates within an order of magnitude of that upper limit are ∼ 109 K and ∼ 1, respectively. The resulting spectra are then in close agreement with the X-ray and soft γ-ray spectra from black hole binaries in the hard state and Seyferts. At low accretion rates, bremsstrahlung becomes the dominant radiative process.  相似文献   

4.
We present J , H and K -band spectroscopy of Cygnus A, spanning 1.0–2.4 μm in the rest-frame and hence several rovibrational H2, H recombination and [Fe  ii ] emission lines. The lines are spatially extended by up to 6 kpc from the nucleus, but their distinct kinematics indicate that the three groups (H, H2 and [Fe  ii ]) are not wholly produced in the same gas. The broadest line, [Fe  ii ] λ 1.644, exhibits a non-Gaussian profile with a broad base (FWHM≃1040 km s−1), perhaps because of the interaction with the radio source. Extinctions to the line-emitting regions substantially exceed earlier measurements based on optical H recombination lines.
Hard X-rays from the quasar nucleus are likely to dominate the excitation of the H2 emission. The results of Maloney, Hollenbach & Tielens are thus used to infer the total mass of gas in H2 v=1–0 S(1)-emitting clouds as a function of radius, for gas densities of 103 and 105 cm−3, and stopping column densities N H=1022–1024 cm−2. Assuming azimuthal symmetry, at least 2.3×108 M of such material is present within 5 kpc of the nucleus, if the line-emitting clouds see an unobscured quasar spectrum. Alternatively, if the bulk of the X-ray absorption to the nucleus inferred by Ueno et al. actually arises in a circumnuclear torus, the implied gas mass rises to ∼1010 M. The latter plausibly accounts for 109 yr of mass deposition from the cluster cooling flow, for which within this radius.  相似文献   

5.
We examine the optical emission-line properties of brightest cluster galaxies (BCGs) selected from two large, homogeneous data sets. The first is the X-ray selected National Optical Astronomy Observatory Fundamental Plane Survey (NFPS), and the second is the C4 catalogue of optically selected clusters built from the Sloan Digital Sky Survey Data Release 3 (SDSS DR3). Our goal is to better understand the optical line emission in BCGs with respect to properties of the galaxy and the host cluster. Throughout the analysis we compare the line emission of the BCGs to that of a control sample made of the other bright galaxies near the cluster centre. Overall, both the NFPS and SDSS show a modest fraction of BCGs with emission lines (∼15 per cent). No trend in the fraction of emitting BCGs as a function of galaxy mass or cluster velocity dispersion is found. However, we find that, for those BCGs found in cooling flow clusters,  71+9−14  have optical emission. Furthermore, if we consider only BCGs within 50 kpc of the X-ray centre of a cooling flow cluster, the emission-line fraction rises further to  100+0−15  per cent. Excluding the cooling flow clusters, only ∼10 per cent of BCGs are line emitting, comparable to the control sample of galaxies. We show that the physical origin of the emission-line activity varies: in some cases it has LINER-like line ratios, whereas in others it is a composite of star-formation and LINER-like activity. We conclude that the presence of emission lines in BCGs is directly related to the cooling of X-ray gas at the cluster centre.  相似文献   

6.
The gas temperature in the cores of many clusters of galaxies drops inward by about a factor of 3 or more within the central 100-kpc radius. The radiative cooling time drops over the same region from 5 or more Gyr down to below a few 108 yr. Although this indicates that cooling flows are taking place, XMM-Newton spectra show no evidence for strong mass cooling rates of gas below  1–2 keV  . The soft X-ray luminosity expected from steady cooling flows is missing. Here we outline and test the energetics of a cold mixing model in which gas below  1–2 keV  falls from the flow and is rapidly cooled by mixing with cold gas. The missing X-ray luminosity can emerge in the ultraviolet, optical and infrared bands, where strong emission nebulosities are commonly seen. We explore further the requirements for any heat sources that balance the radiative cooling in cluster cores.  相似文献   

7.
A double-double radio galaxy (DDRG) is defined as consisting of a pair of double radio sources with a common centre. In this paper we present an analytical model in which the peculiar radio structure of DDRGs is caused by an interruption of the jet flow in the central AGN. The new jets emerging from the restarted AGN give rise to an inner source structure within the region of the old, outer cocoon. Standard models of the evolution of FRII sources predict gas densities within the region of the old cocoon that are insufficient to explain the observed properties of the inner source structure. Therefore additional material must have passed from the environment of the source through the bow shock surrounding the outer source structure into the cocoon. We propose that this material is warm clouds (∼104 K) of gas embedded in the hot IGM which are eventually dispersed over the cocoon volume by surface instabilities induced by the passage of cocoon material. The derived lower limits for the volume filling factors of these clouds are in good agreement with results obtained from optical observations. The long time-scales for the dispersion of the clouds (∼107 yr) are consistent with the apparently exclusive occurrence of the DDRG phenomenon in large (≳700 kpc) radio sources, and with the observed correlation of the strength of the optical/UV alignment effect in z ∼1 FRII sources with their linear size.  相似文献   

8.
We examine the properties of the X-ray gas in the central regions of the distant ( z =0.46) , X-ray luminous cluster of galaxies surrounding the powerful radio source 3C 295, using observations made with the Chandra Observatory . Between radii of 50 and 500 kpc, the cluster gas is approximately isothermal with an emission-weighted temperature, kT ∼5 keV . Within the central 50-kpc radius this value drops to kT ∼3.7 keV . The spectral and imaging Chandra data indicate the presence of a cooling flow within the central 50-kpc radius of the cluster, with a mass deposition rate of approximately 280 M yr−1. We estimate an age for the cooling flow of 1–2 Gyr , which is approximately 1000 times older than the central radio source. We find no evidence in the X-ray spectra or images for significant heating of the X-ray gas by the radio source. We report the detection of an edge-like absorption feature in the spectrum for the central 50-kpc region, which may be caused by oxygen-enriched dust grains. The implied mass in metals seen in absorption could have been accumulated by the cooling flow over its lifetime. Combining the results on the X-ray gas density profile with radio measurements of the Faraday rotation measure in 3C 295, we estimate the magnetic field strength in the region of the cluster core to be B ∼12 μG .  相似文献   

9.
BeppoSAX observations of the high-redshift ( z =4.72) blazar GB 1428+4217 confirm the presence of a complex soft X-ray spectrum first seen with the ROSAT PSPC. Flattening below a rest-frame energy of 5 keV can be accounted for by absorption from an equivalent column density of (cold) gas with N H∼8×1022 cm−2 . Below 2 keV a (variable) excess of a factor of ∼20 above the extrapolated absorbed spectrum is also detected. These findings are consistent with and extend to higher redshifts the correlation between increasing soft X-ray flattening and increasing z , previously pointed out for large samples of radio-loud quasars. We propose that such features, including X-ray absorption and soft excess emission as well as absorption in the optical spectra, can be satisfactorily accounted for by the presence of a highly ionized nuclear absorber with column N H∼1023 cm−2 , with properties possibly related to the conditions in the nuclear regions of the host galaxy. High-energy X-ray emission consistent with the extrapolation of the medium-energy spectrum is detected up to ∼300 keV (rest frame).  相似文献   

10.
We present spatially resolved X-ray spectroscopy of the luminous lensing cluster Abell 2390, using observations made with the Chandra observatory. The temperature of the X-ray gas rises with increasing radius within the central ∼ 200 kpc of the cluster, and then remains approximately isothermal, with kT =11.5−1.6+1.5 keV , out to the limits of the observations at r ∼1.0 Mpc . The total mass profile determined from the Chandra data has a form in good agreement with the predictions from numerical simulations. Using the parametrization of Navarro, Frenk and White, we measure a scale radius r s∼0.8 Mpc and a concentration parameter c ∼3 . The best-fitting X-ray mass model is in good agreement with independent gravitational lensing results and optical measurements of the galaxy velocity dispersion in the cluster. The X-ray gas to total mass ratio rises with increasing radius with f gas∼21 per cent at r =0.9 Mpc . The azimuthally averaged 0.3–7.0 keV surface brightness profile exhibits a small core radius and a clear 'break' at r ∼500 kpc , where the slope changes from S X   r −1.5 to S X   r −3.6 . The data for the central region of the cluster indicate the presence of a cooling flow with a mass deposition rate of 200–300 M yr−1 and an effective age of 2–3 Gyr .  相似文献   

11.
The interaction of optically emitting clouds with warm X-ray gas and hot, tenuous radio plasma in radio jet cocoons is modelled by 2D compressible hydrodynamic simulations. The initial setup is the Kelvin–Helmholtz instability at a contact surface of density contrast 104. The denser medium contains clouds of higher density. Optically thin radiation is realized via a cooling source term. The cool phase effectively extracts energy from the other gas which is both, radiated away and used for acceleration of the cold phase. This increases the system's cooling rate substantially and leads to a massively amplified cold mass dropout. We show that it is feasible, given small seed clouds of the order of  100 M  , that all of the optically emitting gas in a radio jet cocoon may be produced by this mechanism on the propagation time-scale of the jet. The mass is generally distributed as   T −1/2  with temperature, with a prominent peak at 14 000 K. This peak is likely to be related to the counteracting effects of shock heating and a strong rise in the cooling function. The volume filling factor of cold gas in this peak is of the order of  10−5–10−3  and generally increases during the simulation time.
The simulations tend towards an isotropic scale-free Kolmogorov-type energy spectrum over the simulation time-scale. We find the same Mach-number density relation as Kritsuk & Norman and show that this relation may explain the velocity widths of emission lines associated with high-redshift radio galaxies, if the environmental temperature is lower, or the jet-ambient density ratio is less extreme than in their low-redshift counterparts.  相似文献   

12.
We present new X-ray and H  I 21-cm data on the poor cluster of galaxies Abell 3581. The ASCA spectrum requires a low temperature, has a strong requirement for excess absorption and shows evidence for multi-temperature components. The ROSAT HRI image shows the strongly peaked emission indicative of a cooling flow. Despite the low temperature (∼ 1.5–2.0 keV) and low luminosity (∼ 2 × 1042 erg s−1 in the 2–10 keV band), Abell 3581 has a mass deposition rate ∼ 80 M⊙ yr−1 which is larger than found for other nearby low-luminosity objects. VLA observations in the 21-cm band set velocity width and spin temperature dependent limits on the column density of atomic hydrogen.  相似文献   

13.
We present a pair of high-resolution smoothed particle hydrodynamics simulations that explore the evolution and cooling behaviour of hot gas around Milky Way size galaxies. The simulations contain the same total baryonic mass and are identical other than their initial gas density distributions. The first is initialized with a low-entropy hot gas halo that traces the cuspy profile of the dark matter, and the second is initialized with a high-entropy hot halo with a cored density profile as might be expected in models with pre-heating feedback. Galaxy formation proceeds in dramatically different fashion depending on the initial setup. While the low-entropy halo cools rapidly, primarily from the central region, the high-entropy halo is quasi-stable for  ∼4 Gyr  and eventually cools via the fragmentation and infall of clouds from ∼100 kpc distances. The low-entropy halo's X-ray surface brightness is ∼100 times brighter than current limits and the resultant disc galaxy contains more than half of the system's baryons. The high-entropy halo has an X-ray brightness that is in line with observations, an extended distribution of pressure-confined clouds reminiscent of observed populations and a final disc galaxy that has half the mass and ∼50 per cent more specific angular momentum than the disc formed in the low-entropy simulation. The final high-entropy system retains the majority of its baryons in a low-density hot halo. The hot halo harbours a trace population of cool, mostly ionized, pressure-confined clouds that contain ∼10 per cent of the halo's baryons after 10 Gyr of cooling. The covering fraction for H  i and Mg  ii absorption clouds in the high-entropy halo is ∼0.4 and ∼0.6, respectively, although most of the mass that fuels disc growth is ionized, and hence would be under counted in H  i surveys.  相似文献   

14.
We carry out a comprehensive joint analysis of high-quality HST /ACS and Chandra measurements of A1689, from which we derive mass, temperature, X-ray emission and abundance profiles. The X-ray emission is smooth and symmetric, and the lensing mass is centrally concentrated indicating a relaxed cluster. Assuming hydrostatic equilibrium we deduce a 3D mass profile that agrees simultaneously with both the lensing and X-ray measurements. However, the projected temperature profile predicted with this 3D mass profile exceeds the observed temperature by ∼30 per cent at all radii, a level of discrepancy comparable to the level found for other relaxed clusters. This result may support recent suggestions from hydrodynamical simulations that denser, more X-ray luminous small-scale structure can bias observed temperature measurements downward at about the same (∼30 per cent) level. We determine the gas entropy at  0.1 r vir  (where r vir is the virial radius) to be ∼800 keV cm2, as expected for a high-temperature cluster, but its profile at  >0.1 r vir  has a power-law form with index ∼0.8, considerably shallower than the ∼1.1 index advocated by theoretical studies and simulations. Moreover, if a constant entropy 'floor' exists at all, then it is within a small region in the inner core,   r < 0.02 r vir  , in accord with previous theoretical studies of massive clusters.  相似文献   

15.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   

16.
We report on the analysis of a ∼60-ks XMM–Newton observation of the bright, narrow emission line quasar PG1211+143. Absorption lines are seen in both European Photon Imaging Camera and Reflection Grating Spectrometer spectra corresponding to H- and He-like ions of Fe, S, Mg, Ne, O, N and C. The observed line energies indicate an ionized outflow velocity of ∼24 000 km s−1. The highest energy lines require a column density of   N H∼ 5 × 1023 cm−2  , at an ionization parameter of  log ξ∼ 3.4  . If the origin of this high-velocity outflow lies in matter being driven from the inner disc, then the flow is likely to be optically thick within a radius of ∼130 Schwarzschild radii, providing a natural explanation for the big blue bump (and strong soft X-ray) emission in PG1211+143.  相似文献   

17.
We report on the BeppoSAX detection of a hard X-ray excess in the X-ray spectrum of the classical high-ionization Seyfert 2 galaxy Tol 0109–383. The X-ray emission of this source observed below 7 keV is dominated by reflection from both cold and ionized gas, as seen in the ASCA data. The excess hard X-ray emission is presumably caused by the central source absorbed by an optically thick obscuring torus with N H∼2×1024 cm−2 . The strong cold X-ray reflection, if it is produced at the inner surface of the torus, is consistent with the picture where much of the inner nucleus of Tol 0109–383 is exposed to direct view, as indicated by optical and infrared properties. However, the X-ray absorption must occur at small radii in order to hide the central X-ray source but leave the optical high-ionization emission-line region unobscured. This may also be the case for objects such as the Seyfert 1 galaxy Mrk231.  相似文献   

18.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

19.
We present results for the first three low-power radio galaxies from the B2 bright sample to have been observed with Chandra . Two have kiloparsec-scale radio jets, and in both Chandra resolves jet X-ray emission, and detects soft X-ray core emission and an X-ray-emitting galaxy-scale atmosphere of luminosity a few ×1041 erg s−1. These are the first detections of X-ray jets in low-power radio galaxies more distant than Centaurus A and M87. The cooling time of the galaxy-scale gas implies mass infall rates of the order of 1 M yr−1. The gas pressure near the jets is comparable to the minimum pressure in the jets, implying that the X-ray-emitting gas may play an important role in jet dynamics. The third B2 radio galaxy has no kiloparsec-scale radio jet, and here only soft X-ray emission from the core is detected. The ratio of X-ray to radio flux is similar for the jets and cores, and the results favour a synchrotron origin for the emission. Kiloparsec-scale radio jets are detected in the X-ray in ∼7-ks exposures with Chandra more readily than in the optical via Hubble Space Telescope snapshot surveys.  相似文献   

20.
We present high-resolution images of the Faraday rotation measure (RM) structure of the radio galaxy PKS 1246−410 at the centre of the Centaurus cluster. Comparison with Hα-line and soft X-ray emission reveals a correspondence between the line-emitting gas, the soft X-ray emitting gas, regions with an excess in the RM images and signs of depolarization. Magnetic field strengths of 25 μG, organized on scales of ∼1 kpc and intermixed with gas at a temperature of 5 × 106 K with a density of ∼0.1 cm−3, can reproduce the observed RM excess, the depolarization and the observed X-ray surface brightness. This hot gas may be in pressure equilibrium with the optical line-emitting gas, but the magnetic field strength of 25 μG associated with the hot gas provides only 10 per cent of the thermal pressure and is therefore insufficient to account for the stability of the line-emitting filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号