首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The rise of public and private zero-deforestation commitments is opening a new collaborative space in global forest governance. Governments seeking to reduce national greenhouse gas emissions by protecting and restoring forests are partnering with companies motivated to eliminate deforestation from supply chains. The proliferation of zero-deforestation initiatives is creating opportunities for policy synergies and scaling up impacts, but has led to a more complex regulatory landscape. Drawing on policy analysis and expert interviews, we explore public-private policy interactions in Colombia as a case study for tropical forested nations with interest in aligning climate, forest, and development goals. We consider how zero-deforestation priorities are set on the national agenda and scaled up through public-private partnerships. We identify zero-deforestation initiatives in three overlapping governance domains—domestic public policy, REDD+, sustainable supply chain initiatives—and highlight ten multi-stakeholder pledges that have catalyzed supporting initiatives at multiple scales. Emerging from decades of armed conflict, Colombia is pursuing a peace building model based on low-emissions rural development. The peace deal provided a focusing event for zero-deforestation that converged with political momentum and institutional capacity to open a policy window. A government pledge to eliminate deforestation in the Colombian Amazon by 2020 set the national agenda and stimulated international REDD+ cooperation. Lessons from Colombia show that governments provide important directionality among the proliferation of zero-deforestation initiatives. Public pledges and the orchestration of actors through public-private partnerships allow governments to scale up efforts by aligning transnational activities with national priorities. The case of Colombia serves as a potential zero-deforestation model for other nations, but challenges around equitable land tenure, illegality, and enforcement must be overcome for multi-stakeholder initiatives to produce long-term change.  相似文献   

2.
Zero-deforestation commitments are a type of voluntary sustainability initiative that companies adopt to signal their intention to reduce or eliminate deforestation associated with commodities that they produce, trade, and/or sell. Because each company defines its own zero-deforestation commitment goals and implementation mechanisms, commitment content varies widely. This creates challenges for the assessment of commitment implementation or effectiveness. Here, we develop criteria to assess the potential effectiveness of zero-deforestation commitments at reducing deforestation within a company supply chain, regionally, and globally. We apply these criteria to evaluate 52 zero-deforestation commitments made by companies identified by Forest 500 as having high deforestation risk. While our assessment indicates that existing commitments converge with several criteria for effectiveness, they fall short in a few key ways. First, they cover just a small share of the global market for deforestation-risk commodities, which means that their global impact is likely to be small. Second, biome-wide implementation is only achieved in the Brazilian Amazon. Outside this region, implementation occurs mainly through certification programs, which are not adopted by all producers and lack third-party near-real time deforestation monitoring. Additionally, around half of all commitments include zero-net deforestation targets and future implementation deadlines, both of which are design elements that may reduce effectiveness. Zero-net targets allow promises of future reforestation to compensate for current forest loss, while future implementation deadlines allow for preemptive clearing. To increase the likelihood that commitments will lead to reduced deforestation across all scales, more companies should adopt zero-gross deforestation targets with immediate implementation deadlines and clear sanction-based implementation mechanisms in biomes with high risk of forest to commodity conversion.  相似文献   

3.
Deforestation for cattle production persists in the Brazilian Amazon despite ongoing efforts by the public and private sectors to combat it. The complexity of the cattle supply chain, which we describe in depth here, creates challenges for the landmark Zero-Deforestation Cattle Agreements in particular and for enforcement of deforestation policies in general. Here, we present a holistic analysis that is increasingly relevant as the number of policies, initiatives, and markets affecting the region increases. We provide the first property-level analysis of which ranchers decided to deforest in the last decade and identify the characteristics that are most related to deforestation. We rely on newly available animal transit and property boundary data to examine 113,000 properties in the three major cattle-producing states in the Brazilian Amazon. We consider characteristics related to a property’s role in the supply chain, location, land characteristics, and the policy environment. We find that deforestation is most likely to occur on properties that sell fewer cattle and earlier in the supply chain, are located in remote locations, and have a high percent of remaining forest. Our results can be used to improve enforcement of existing policies by targeting resources to properties and location where deforestation is more likely.  相似文献   

4.
Community forest management has been identified as a win-win option for reducing deforestation while improving the welfare of rural communities in developing countries. Despite considerable investment in community forestry globally, systematic evaluations of the impact of these policies at appropriate scales are lacking. We assessed the extent to which deforestation has been avoided as a result of the Indonesian government’s community forestry scheme, Hutan Desa (Village Forest). We used annual data on deforestation rates between 2012 and 2016 from two rapidly developing islands: Sumatra and Kalimantan. The total area of Hutan Desa increased from 750 km2 in 2012 to 2500 km2 in 2016. We applied a spatial matching approach to account for biophysical variables affecting deforestation and Hutan Desa selection criteria. Performance was assessed relative to a counterfactual likelihood of deforestation in the absence of Hutan Desa tenure. We found that Hutan Desa management has successfully achieved avoided deforestation overall, but performance has been increasingly variable through time. Hutan Desa performance was influenced by anthropogenic and climatic factors, as well as land use history. Hutan Desa allocated on watershed protection forest or limited production forest typically led to a less avoided deforestation regardless of location. Conversely, Hutan Desa granted on permanent or convertible production forest had variable performance across different years and locations. The amount of rainfall during the dry season in any given year was an important climatic factor influencing performance. Extremely dry conditions during drought years pose additional challenges to Hutan Desa management, particularly on peatland, due to increased vulnerability to fire outbreaks. This study demonstrates how the performance of Hutan Desa in avoiding deforestation is fundamentally affected by biophysical and anthropogenic circumstances over time and space. Our study improves understanding on where and when the policy is most effective with respect to deforestation, and helps identify opportunities to improve policy implementation. This provides an important first step towards evaluating the overall effectiveness of this policy in achieving both social and environmental goals.  相似文献   

5.
Using recent land cover maps, we used matching techniques to analyze forest cover and assess effectiveness in avoiding deforestation in three main land tenure regimes in Panama, namely protected areas, indigenous territories and non-protected areas. We found that the tenure status of protected areas and indigenous territories (including comarcas and claimed lands) explains a higher rate of success in avoided deforestation than other land tenure categories, when controlling for covariate variables such us distance to roads, distance to towns, slope, and elevation. In 2008 protected areas and indigenous territories had the highest percentage of forest cover and together they hosted 77% of Panama's total mature forest area. Our study shows the promises of matching techniques as a potential tool for demonstrating and quantifying conservation efforts. We therefore propose that matching could be integrated to methodological approaches allowing compensating forests’ protectors. Because conserving forest carbon stocks in forested areas of developing countries is an essential component of REDD+ and its future success, the discussion of our results is relevant to countries or jurisdictions with high forest cover and low deforestation rates.  相似文献   

6.
Deforestation for agriculture is a key threat to global carbon stocks, biodiversity, and indigenous ways of life. In the absence of strong territorial governance, zero-deforestation commitments (ZDCs), corporate policies to decouple food production from deforestation, remain a central tool to combat this issue. Yet evidence on their effectiveness remains mixed and the mechanisms limiting effectiveness are poorly understood. To advance understanding of ZDCs’ potential at reducing deforestation, we developed the first spatially explicit estimates of farmers’ exposure to ZDC companies in the Brazilian Amazon cattle sector. Exposure was measured by determining the market share of ZDC firms from the first full year of ZDC adoption in 2010 until 2018. Our analysis evaluated how variation in this exposure influenced deforestation. We found the G4 Agreement, the most widespread and strongly implemented cattle ZDC, reduced cattle-driven deforestation by 7,000 ± 4,000 km2 (15 ± 8%) between 2010 and 2018. Additionally, had all firms adopted and implemented an effective ZDC, cattle-driven deforestation could have dropped by 24,000 ± 13,000 km2 (51 ± 28%). These results for the world’s principal deforestation hotspot suggests supply chain policies can substantially reduce deforestation. However, their effectiveness is contingent on widespread adoption and rigorous implementation, both of which are currently insufficient to prevent large scale deforestation. Increased adoption and implementation could be incentivized through greater pressure from the Brazilian government and import countries.  相似文献   

7.
Soybean farming has brought economic development to parts of South America, as well as environmental hopes and concerns. A substantial hope resides in the decoupling of Brazil's agricultural sector from deforestation in the Amazon region, in which case expansive agriculture need not imply forest degradation. However, concerns have also been voiced about the potential indirect effects of agriculture. This article addresses these indirect effects for the case of the Brazilian Amazon since 2002. Our work finds that as much as thirty-two percent of deforestation, or the loss of more than 30,000 km2 of Amazon forest, is attributable, indirectly, to Brazil's soybean sector. However, we also observe that the magnitude of the indirect impact of the agriculture sector on forest loss in the Amazon has declined markedly since 2006. We also find a shift in the underlying causes of indirect land use change in the Amazon, and suggest that land appreciation in agricultural regions has supplanted farm expansions as a source of indirect land use change. Our results are broadly congruent with recent work recognizing the success of policy changes in mitigating the impact of soybean expansion on forest loss in the Amazon. However, they also caution that the soybean sector may continue to incentivize land clearings through its impact on regional land markets.  相似文献   

8.
《Climate Policy》2013,13(1):7-22
Biomass dynamics in Amazonia are quantified and the value that carbon finance could deliver from slowing deforestation is assessed. Above-ground forest biomass in the Legal Amazon shrank from 90 Pg to 76 Pg between 1978 and 2004. An average decrease of 0.64 Pg (standard error 0.38 Pg) per year was estimated for primary and econdary vegetation. For an improved, spatially and temporally explicit estimation, a time series of remote-sensing results and a model of secondary forest area and age distribution was combined with a large-scale forest-growth model. The observed trend of biomass decline is continuous and defines a baseline that the avoidance of deforestation could be measured against. Based on scenario calculations, the emission reductions from slightly reduced deforestation rates could be valued in the range of €1 billion annually. Carbon finance for reducing emissions from deforestation (‘avoided deforestation’), which is being discussed as an additional mechanism under the UN Framework Convention on Climate Change and its Kyoto Protocol, has the potential to alter the economic logic driving forest conversion.  相似文献   

9.
Reducing greenhouse gas emissions from deforestation and forest degradation (REDD) is likely to be central to a post-Kyoto climate change mitigation agreement. As such, identifying conditions and factors that will shape the success or failure of a reduced deforestation scheme will provide important insights for policy planning. Given that protected areas (PAs) are a cornerstone in forest conservation, we draw on interviews and secondary data to analyze the effects of available PA resources, governance ability, the level of community involvement, and provincial deforestation rates on land-cover change in nine PAs in Panama. Our results illustrate that coupling surveillance measures with greater funding and strong governance are paramount to reducing deforestation. Alone, however, these factors are insufficient for forest protection. We argue that conservation approaches that complement effective surveillance with community participation and equitable benefit sharing will address the wider issues of leakage and permanence.  相似文献   

10.
In response to the clearing of tropical forests for agricultural expansion, agri-food companies have adopted promises to eliminate deforestation from their supply chains in the form of ‘zero-deforestation commitments’ (ZDCs). While there is growing evidence about the environmental effectiveness of these commitments (i.e., whether they meet their conservation goals), there is little information on how they influence producers’ opportunity to access sustainable markets and related livelihood outcomes, or how design and implementation choices influence tradeoffs or potential synergies between effectiveness and equity in access. This paper explores these research gaps and makes three main contributions by: i) defining and justifying the importance of analyzing access equity and its relation to effectiveness when implementing forest-focused supply chain policies such as ZDCs, ii) identifying seven policy design principles that are likely to maximize synergies between effectiveness and access equity, and iii) assessing effectiveness-access equity tensions and synergies across common ZDC implementation mechanisms amongst the five largest firms in each of the leading agricultural forest-risk commodity sectors: palm oil, soybeans, beef cattle, and cocoa. To enhance forest conservation while avoiding harm to the most vulnerable farmers in the tropics, it is necessary to combine stringent rules with widespread capacity building, greater involvement of affected actors in the co-production of implementation mechanisms, and support for alternative rural development paths.  相似文献   

11.
Despite recent success in reducing forest loss in the Brazilian Amazon, additional forest conservation efforts, for example, through ‘Reducing Emissions from Deforestation and Forest Degradation’ (REDD+), could significantly contribute to global climate-change mitigation. Economic incentives, such as payments for environmental services could promote conservation, but deforestation often occurs on land without crucial tenure-security prerequisites. Improving the enforcement of existing regulatory disincentives thus represents an important element of Brazil's anti-deforestation action plan. However, conservation law enforcement costs and benefits have been much less studied than for conditional payments. We develop a conceptual framework and a spatially explicit model to analyze field-based regulatory enforcement in the Brazilian Amazon. We validate our model, based on historical deforestation and enforcement mission data from 2003 to 2008. By simulating the current conservation law enforcement practice, we analyze the costs of liability establishment and legal coercion for alternative conservation targets, and evaluate corresponding income impacts. Our findings suggest that spatial patterns of both deforestation and inspection costs markedly influence enforcement patterns and their income effects. Field-based enforcement is a highly cost-effective forest conservation instrument from a regulator's point of view, but comes at high opportunity costs for land users. Payments for environmental services could compensate costs, but will increase budget outlays vis-à-vis a command-and-control dominated strategy. Both legal and institutional challenges have to be overcome to make conservation payments work at a larger scale. Decision-makers may have to innovatively combine incentive and disincentive-based policy instruments in order to make tropical forest conservation both financially viable and socially compatible.  相似文献   

12.
Despite accounting for 17–25% of anthropogenic emissions, deforestation was not included in the Kyoto Protocol. The UN Convention on Climate Change is considering its inclusion in future agreements and asked its scientific board to study methodological and scientific issues related to positive incentives to reduce emissions from deforestation. Here we present an empirically derived mechanism that offers a mix of incentives to developing countries to reduce emissions from deforestation, conserve and possibly enhance their ecosystem's carbon stocks. We also use recent data to model its effects on the 20 most forested developing countries. Results show that at low CO2 prices (~US$ 8/t CO2) a successful mechanism could reduce more than 90% of global deforestation at an annual cost of US$ 30 billion.  相似文献   

13.
South America’s tropical dry forests and savannas are under increasing pressure from agricultural expansion. Cattle ranching and soybean production both drive these forest losses, but their relative importance remains unclear. Also unclear is how soybean expansion elsewhere affects deforestation via pushing cattle ranching to deforestation frontiers. To assess these questions, we focused on the Chaco, a 110 million ha ecoregion extending into Argentina, Bolivia, and Paraguay, with about 8 million ha of deforestation in 2000–2012. We used panel regressions at the district level to quantify the role of soybean expansion in driving these forest losses using a wide range of environmental and socio-economic control variables. Our models suggest that soybean production was a direct driver of deforestation in the Argentine Chaco only (0.08 ha new soybean area per ha forest lost), whereas cattle ranching was significantly associated with deforestation in all three countries (0.02 additional cattle per hectare forest loss). However, our models also suggested Argentine soybean cultivation may indirectly be linked to deforestation in the Bolivian and Paraguayan Chaco. We furthermore found substantial time-delayed effects in the relationship of soybean expansion in Argentina and Paraguay (i.e., soybean expansion in one year resulted in deforestation several years later) and deforestation in the Chaco, further suggesting that possible displacement effects within and between Chaco countries may at least partly drive forest loss. Altogether, our study showed that deforestation in the Chaco appears to be mainly driven by the globally surging demand for soybean, although regionally other proximate drivers are sometimes important. Steering agricultural production in the Chaco and other tropical dry forests onto sustainable pathways will thus require policies that consider these scale effects and that account for the regional variation in deforestation drivers within and across countries.  相似文献   

14.
Deforestation, the second largest source of anthropogenic greenhouse gas emissions, is largely driven by expanding forestry and agriculture. However, despite agricultural expansion being increasingly driven by foreign demand, the links between deforestation and foreign demand for agricultural commodities have only been partially mapped. Here we present a pan-tropical quantification of carbon emissions from deforestation associated with the expansion of agriculture and forest plantations, and trace embodied emissions through global supply chains to consumers. We find that in the period 2010–2014, expansion of agriculture and tree plantations into forests across the tropics was associated with net emissions of approximately 2.6 gigatonnes carbon dioxide per year. Cattle and oilseed products account for over half of these emissions. Europe and China are major importers, and for many developed countries, deforestation emissions embodied in imports rival or exceed emissions from domestic agriculture. Depending on the trade model used, 29–39% of deforestation-related emissions were driven by international trade. This is substantially higher than the share of fossil carbon emissions embodied in trade, indicating that efforts to reduce greenhouse gas emissions from land-use change need to consider the role of international demand in driving deforestation. Additionally, we find that deforestation emissions are similar to, or larger than, other emissions in the carbon footprint of key forest-risk commodities. Similarly, deforestation emissions constitute a substantial share (˜15%) of the total carbon footprint of food consumption in EU countries. This highlights the need for consumption-based accounts to include emissions from deforestation, and for the implementation of policy measures that cross these international supply-chains if deforestation emissions are to be effectively reduced.  相似文献   

15.
Armed conflicts trigger region-specific mechanisms that affect land use change. Deforestation is presented as one of the most common negative environmental impacts resulting from armed conflicts, with relevant consequences in terms of greenhouse gas emissions and loss of ecosystem services. However, the impact of armed conflict on forests is complex and may simultaneously lead to positive and negative environmental outcomes, i.e. forest regrowth and deforestation, in different regions even within a country. We investigate the impact that armed conflict exerted over forest dynamics at different spatial scales in Colombia and for the global tropics during the period 1992–2015. Through the analysis of its internally displaced population (departures) our results suggest that, albeit finding forest regrowth in some municipalities, the Colombian conflict predominantly exerted a negative impact on its forests. A further examination of georeferenced fighting locations in Colombia and across the globe shows that conflict areas were 8 and 4 times more likely to undergo deforestation, respectively, in the following years in relation to average deforestation rates. This study represents a municipality level, long-term spatial analysis of the diverging effects the Colombian conflict exerted over its forest dynamics over two distinct periods of increasing and decreasing conflict intensity. Moreover, it presents the first quantified estimate of conflict's negative impact on forest ecosystems across the globe. The relationship between armed conflict and land use change is of global relevance given the recent increase of armed conflicts across the world and the importance of a possible exacerbation of armed conflicts and migration as climate change impacts increase.  相似文献   

16.
Over the last decades there have been a considerable number of deforestation studies in Latin America reporting lower rates compared with other regions; although these studies are either regional or local and do not allow the comparison of the intraregional variability present among countries or forest types. Here, we present the results obtained from a systematic review of 369 articles (published from 1990 to 2014) about deforestation rates for 17 countries and forest types (tropical lowland, tropical montane, tropical and subtropical dry, subtropical temperate and mixed, and Atlantic forests). Drivers identified as direct or indirect causes of deforestation in the literature were also analysed. With an overall annual deforestation rate of −1.14 (±0.092 SE) in the region, we compared the rates per forest type and country. The results indicate that there is a high variability of forest loss rates among countries and forest types. In general, Chile and Argentina presented the highest deforestation rates (−3.28 and −2.31 yearly average, respectively), followed by Ecuador and Paraguay (−2.19 and −1.89 yearly average, respectively). Atlantic forests (−1.62) and tropical montane forests (−1.55) presented the highest deforestation rates for the region. In particular, tropical lowland forests in Ecuador (−2.42) and tropical dry forests in Mexico (−2.88) and Argentina (−2.20) were the most affected. In most countries, the access to markets and agricultural and forest activities are the main causes of deforestation; however, the causes vary according to the forest types. Deforestation measurements focused at different scales and on different forest types will help governments to improve their reports for international initiatives, such as reducing emissions from deforestation and forest degradation (REDD+) but, more importantly, for developing local policies for the sustainable management of forests and for reducing the deforestation in Latin America.  相似文献   

17.
The conversion of tropical forests to croplands and grasslands is a major threat to global biodiversity, climate and local livelihoods and ecosystems. The enforcement of protected areas as well as the clarification and strengthening of collective and individual land property rights are key instruments to curb deforestation in the tropics. However, these instruments are territorial and can displace forest loss elsewhere. We investigate the effects of protected areas and various land tenure regimes on deforestation and possible spillover effects in Bolivia, a global tropical deforestation hotspot. We use a spatial Durbin model to assess and compare the direct and indirect effects of protected areas and different land tenure forms on forest loss in Bolivia from 2010 to 2017. We find that protected areas have a strong direct effect on reducing deforestation. Protected areas – which in Bolivia are all based on co-management schemes - also protect forests in adjacent areas, showing an indirect protective spillover effect. Indigenous lands however only have direct forest protection effects. Non-indigenous collective lands and small private lands, which are associated to Andean settlers, as well as non-titled lands, show a strong positive direct effect on deforestation. At the same time, there is some evidence that non-indigenous collective lands also encourage deforestation in adjacent areas, indicating the existence of spillovers. Interestingly, areas with high poverty rate tend to be less affected by deforestation whatever tenure form. Our study stresses the need to assess more systematically the direct and indirect effects of land tenure and of territorial governance instruments on land use changes.  相似文献   

18.
We used a mixed-methods approach to assess the impact of a ‘forest-friendly’ titling program on previously untitled lands surrounding the Cuyabeno Reserve in Ecuador. Such programs are part of an increasing trend in tenure formalization intended to simultaneously strengthen tenure security, reduce deforestation, and open the door for more incentive-based conservation programs. We use quasi-experimental methods to estimate and compare the impact of titling on forest outcomes for lands that are titled with certain limitations on the ownership bundle of rights, alongside lands titled but without these restrictions. This quantitative analysis is paired with results from a series of focus group interviews with landowners to understand their experiences with the titling effort, particularly tied to the restrictions. Our results point to a statistically significant impact of titling with restrictions on reducing deforestation by 34%, whereas titling without such restrictions resulted in no significant effect. When we explore impacts according to annual deforestation rates, the results suggest that titled lands are buffered from the surges in deforestation that otherwise occurred on untitled lands and more broadly across the region. While ‘forest-friendly’ restrictions had more of an effect on forest outcomes than titled lands without, the insights shared by landowners suggest important concerns about equity and unjust burdens on current households that could risk livelihood options for future generations.  相似文献   

19.
This paper presents a new accounting mechanism in the context of the UNFCCC issue on reducing emissions from deforestation in developing countries, including technical options for determining baselines of forest conversions. This proposal builds on the recent scientific achievements related to the estimation of tropical deforestation rates and to the assessment of ‘intact’ forest areas. The distinction between ‘intact’ and ‘non intact’ forests used here arises from experience with satellite-based deforestation measurements and allows accounting for carbon losses from forest degradation. The proposed accounting system would use forest area conversion rates as input data. An optimal technical solution to set baselines would be to use historical average figures during the time period from 1990 to 2005. The system introduces two different schemes to account for preserved carbon: one for countries with high forest conversion rates where the desired outcome would be a reduction in their rates, and another for countries with low rates. A ‘global’ baseline rate would be used to discriminate between these two country categories (high and low rates). For the hypothetical accounting period 2013–2017 and considering 72% of the total tropical forest domain for which data are available, the scenario of a 10% reduction of the high rates and of the preservation of low rates would result in approximately 1.6 billion tCO2 of avoided emissions. The resulting benefits of this reduction would be shared between those high-rate countries which reduced deforestation and those low-rate countries which did not increase their deforestation over an agreed threshold (e.g., half of “global” baseline rate).  相似文献   

20.
Forest tenure reform in the age of climate change: Lessons for REDD+   总被引:1,自引:0,他引:1  
Numerous authors have stressed the importance of guaranteeing and protecting the tenure and human rights of indigenous and other forest-based communities under schemes for reducing emissions from deforestation and forest degradation (REDD, or REDD+); and important international indigenous organizations have spoken out strongly against REDD+. This article examines two specific issues that present risks for local communities: rights to forests and rules for resource use. It draws on the findings of a study conducted by the Center for International Forestry Research (CIFOR) on forest tenure reforms in selected countries in Asia, Africa and Latin America from 2006 to 2008. The study underlines the numerous obstacles faced by communities after rights are won, in moving from statutory rights to their implementation and to access to benefits on the ground. It argues that there is currently little reason to expect better results from national policies under REDD+ without binding agreements to protect local rights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号