首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Modeling of layered infinite slope failure triggered by rainfall   总被引:3,自引:2,他引:1  
The infinite slope is typically regarded as composed of a single-layered soil with a uniform property in various physical-based models used for modeling rainfall-induced shallow landslides. This study extends the physical-based model to consider the layered infinite slope to examine the importance of soil layer distribution for rainfall-induced shallow landslides. Hypothetical scenarios of infinite slope composed of soil layers with different thicknesses and parameters are employed to conduct this examination. The results show that pressure heads caused by rainfall infiltration are strongly related to soil layer distribution. This shows the significant influence of soil layer distribution in assessing infinite slope stability. Failure of a layered infinite slope does not necessarily occur at the impervious bottom of the hillslope soil, but may also occur at the interface between two soil layers. This result shows that a neglect of soil layer distribution could misestimate failure depth. Hence, soil layer distribution must be considered to reliably analyze infinite slope failure induced by rainfall.  相似文献   

2.
The effect of antecedent rainfall on slope stability   总被引:10,自引:0,他引:10  
A case study is presented in order to identify the effect of antecedent rainfall on slope stability for Singapore. A storm in February 1995 (during which 95 mm of rain fell in 2 h) caused more than twenty shallow landslides on the Nanyang Technological University Campus. Details of the location, size and morphology of the landslides are presented. The antecedent rainfall during the five days preceding the event was significant in causing these landslides since other rainfall events of similar magnitude (but with less antecedent rainfall) did not cause landslides. To further understand the effect of antecedent rainfall, numerical modelling of one of the slope failures is presented. The changes in pore-water pressure due to different rainfall patterns were simulated and these were used to calculate the changes in factor of safety of the slope. The results demonstrate that antecedent rainfall does play an important role in slope stability.  相似文献   

3.
Predictions of rainfall-induced fast-moving mass flow and/or debris flows require better knowledge of the mechanism controlling the debris discharge of slopes in debris source areas. A series of rainfall tests on 0.32 m-deep, 0.7 m-high, 1.35 m-wide sandy slopes resting on a bi-linear impermeable rigid base was performed. Soil moisture content and solid discharge measurements were performed to gain insights into the rainfall-induced retrogressive slope failure. The solid (or debris) discharge is a result of the wash-out of the fluidized slope toe by the interflow along the soil–bedrock interface. Characteristics of the failure process for the slopes are represented by mass wasting curves or ‘solid discharge (Qs) vs. time (t)’ curves which are functions of the rainfall intensity and/or the cumulative rainfall. The mass wasting curves have inflection points representing transitions from minor toe failures into remarkable retrogressive failures. The first inflection point of the soil moisture (ω) vs. t curve measured at the soil–bedrock interface signaling the arrival of the descending ‘wet front’, may serve as a precursor for predicting the onset of an abrupt solid discharge induced by shallow slope failures. The time of peak water content measured at the soil–bedrock interface may approximate the time of 5% total solid volume discharge. Up to the time of 5% of total slope volume discharge, a fully saturated state (Sr  100%) was never observed at the 0.2 m-below-surface zone; however, it was observed along the soil–bedrock interface at near-toe zone of the slope, regardless of the intensity of rainfall investigated. Retrogressive failures were essentially associated with nonuniformly distributed water content in the slope. For both the 0.2 m-below-surface zone and the soil–bedrock interface, a more uniform distribution of Sr along the full height of the slope was found for slopes subjected to high rainfall intensities of 47 and 65 mm/h than that for the slope subjected to a low rainfall intensity of 23 mm/h. At the inflection point of the Qs vs. t curve and 5% of total solid volume discharge, values of Sr at a certain distance from the toe for the soil–bedrock interface were higher than those measured at the same distance from the toe for the 0.2 m-below-surface zone, indicating the effect of infiltration-induced interflow along the soil–bedrock interface and its effects on the fluidization of the slope toe and the retrogressive failure of the slope.  相似文献   

4.
黄土丘陵区土壤侵蚀链垂直带水沙流空间分布   总被引:4,自引:0,他引:4       下载免费PDF全文
采用多坡段组合模型、人工模拟降雨实验研究了土壤侵蚀链垂直带水沙流空间分布变化特征。结果表明:愈向下坡方向的坡段产流量愈大,单位面积、单位时间的产流量按坡段排列为:谷坡>梁峁坡下部>梁峁坡中部>梁峁坡上部。雨强为29.7mm/h时,坡面上没有沟蚀发育;雨强为60.5mm/h时,细沟主要分布在梁峁坡下部和谷坡处;雨强为90 2mm/h时,各种侵蚀形态在坡面均有较好发育,细沟的出现部位一直伸展到梁峁坡中部和上部之间。由于上坡来水来沙的作用,梁峁坡的产沙量增大了20.2%~63.5%,谷坡的产沙量增大了42.9%~74.5%。  相似文献   

5.
Effects of sheet flow rate and slope gradient on sediment load   总被引:2,自引:0,他引:2  
Sheet erosion is known as one of the most important forms of erosion, particularly in agricultural land. The purpose of this study was to investigate the effect of flow rate and slope gradient on runoff and sediment discharges in two different soils. Experiments were conducted using a tilting flume facility with the test area of 0.2?×?1.0 m. Overall, 24 experiments on two soils (clay loam and sandy clay loam textures) including six flow rates (75, 100, 125, 150, 175, and 200 ml/s) and two slope gradients (1.5 and 2 %) were performed. The selected flow rates and flume slopes were generated to simulate sheet erosion. The results showed that for both soils and slopes, unit flow discharge (q) and sediment concentration increased with increasing flow rate; however, the effect of slope gradient on flow discharge depends on soil type. In addition, sandy clay loam exhibited higher values of q and sediment concentration and consequently, it showed greater amounts of sediment load. At the start of event, sediment concentration was high but it decreased to approach a steady state. In addition, the time needed to reach a steady state condition was shorter for sandy clay loam than that for clay loam soil and in lower flow rates than higher flow rates. For each soil and slope, there was a direct relationship between sediment load and flow rate. The result implied that the effect of slope gradient on sediment load was almost greater in sandy clay loam soil than clay loam soil. Moreover, the differences between sediment loads of two soils are enlarged at slope 2 %.  相似文献   

6.
Modeling landslide recurrence in Seattle, Washington, USA   总被引:5,自引:0,他引:5  
To manage the hazard associated with shallow landslides, decision makers need an understanding of where and when landslides may occur. A variety of approaches have been used to estimate the hazard from shallow, rainfall-triggered landslides, such as empirical rainfall threshold methods or probabilistic methods based on historical records. The wide availability of Geographic Information Systems (GIS) and digital topographic data has led to the development of analytic methods for landslide hazard estimation that couple steady-state hydrological models with slope stability calculations. Because these methods typically neglect the transient effects of infiltration on slope stability, results cannot be linked with historical or forecasted rainfall sequences. Estimates of the frequency of conditions likely to cause landslides are critical for quantitative risk and hazard assessments. We present results to demonstrate how a transient infiltration model coupled with an infinite slope stability calculation may be used to assess shallow landslide frequency in the City of Seattle, Washington, USA. A module called CRF (Critical RainFall) for estimating deterministic rainfall thresholds has been integrated in the TRIGRS (Transient Rainfall Infiltration and Grid-based Slope-Stability) model that combines a transient, one-dimensional analytic solution for pore-pressure response to rainfall infiltration with an infinite slope stability calculation. Input data for the extended model include topographic slope, colluvial thickness, initial water-table depth, material properties, and rainfall durations. This approach is combined with a statistical treatment of rainfall using a GEV (General Extreme Value) probabilistic distribution to produce maps showing the shallow landslide recurrence induced, on a spatially distributed basis, as a function of rainfall duration and hillslope characteristics.  相似文献   

7.
Field variability of landslide model parameters   总被引:5,自引:1,他引:4  
 A data set of parameters (slope, soil depth and soil shear strength) relevant to spatially distributed modelling of shallow landslides triggered by rain and snowmelt events was determined from field measurements in 250 grid elements of dimensions 25 m (downslope)×10 m (across slope) in an area of 250 m×250 m on a hillslope in Scotland. These data provide an unusually detailed basis for the evaluation of spatial variability and uncertainty in model parameterisation. The variations in slope and soil strength are represented adequately by normal distributions; a Weibull distribution is suggested for the soil depth data. The factor of safety calculated at each point in the grid was shown partially to identify observed landslides, with a number of false predictions of occurrence. Trend analysis and semivariogram analysis of the data set suggest that the use of kriging could improve upon this approach to landslide prediction by providing areal estimates of parameters at the grid element scale with associated error bounds. Received: 30 October 1996 · Accepted: 25 June 1997  相似文献   

8.
Increasing rainfall intensity and frequency due to extreme climate change and haphazard land development are aggravating soil erosion problems in Korea. A quantitative estimate of the amount of sediment from the catchment is essential for soil and water conservation planning and management. Essential to catchment-scale soil erosion modeling is the ability to represent the fluvial transport system associated with the processes of detachment, transport, and deposition of soil particles due to rainfall and surface flow. This study applied a spatially distributed hydrologic model of rainfall–runoff–sediment yield simulation for flood events due to typhoons and then assessed the impact of topographic and climatic factors on erosion and deposition at a catchment scale. Measured versus predicted values of runoff and sediment discharge were acceptable in terms of applied model performance measures despite underestimation of simulated sediment loads near peak concentrations. Erosion occurred widely throughout the catchment, whereas deposition appeared near the channel network grid cells with a short hillslope flow path distance and gentle slope; the critical values of both topographic factors, providing only deposition, were observed at 3.5 (km) (hillslope flow path distance) and 0.2 (m/m) (local slope), respectively. In addition, spatially heterogeneous rainfall intensity, dependent on Thiessen polygons, led to spatially distinct net-erosion patterns; erosion increased gradually as rainfall amount increased, whereas deposition responded irregularly to variations in rainfall.  相似文献   

9.
This paper describes the potential applicability of a hydrological–geotechnical modeling system using satellite-based rainfall estimates for a shallow landslide prediction system. The physically based distributed model has been developed by integrating a grid-based distributed kinematic wave rainfall-runoff model with an infinite slope stability approach. The model was forced by the satellite-based near real-time half-hourly CMORPH global rainfall product prepared by NOAA-CPC. The method combines the following two model outputs necessary for identifying where and when shallow landslides may potentially occur in the catchment: (1) the time-invariant spatial distribution of areas susceptible to slope instability map, for which the river catchment is divided into stability classes according to the critical relative soil saturation; this output is designed to portray the effect of quasi-static land surface variables and soil strength properties on slope instability and (2) a produced map linked with spatiotemporally varying hydrologic properties to provide a time-varying estimate of susceptibility to slope movement in response to rainfall. The proposed hydrological model predicts the dynamic of soil saturation in each grid element. The stored water in each grid element is then used for updating the relative soil saturation and analyzing the slope stability. A grid of slope is defined to be unstable when the relative soil saturation becomes higher than the critical level and is the basis for issuing a shallow landslide warning. The method was applied to past landslides in the upper Citarum River catchment (2,310 km2), Indonesia; the resulting time-invariant landslide susceptibility map shows good agreement with the spatial patterns of documented historical landslides (1985–2008). Application of the model to two recent shallow landslides shows that the model can successfully predict the effect of rainfall movement and intensity on the spatiotemporal dynamic of hydrological variables that trigger shallow landslides. Several hours before the landslides, the model predicted unstable conditions in some grids over and near the grids at which the actual shallow landslides occurred. Overall, the results demonstrate the potential applicability of the modeling system for shallow landslide disaster predictions and warnings.  相似文献   

10.
Effects of degree of saturation on shallow landslides triggered by rainfall   总被引:4,自引:3,他引:1  
The empirical rainfall threshold concept and the physical-based model are two commonly used approaches for the assessment of shallow landslides triggered by rainfall. To investigate in detail the rainfall-triggered shallow landslides, many physical-based models coupling the infinite slope stability analysis with the rainfall infiltration modeling in variably saturated soil were developed. However, in those physical-based shallow landslide models, the unit weight and the unsaturated shear strength were assumed constant rather than depending on the degree of saturation. In this study, the effects of the unit weight and the unsaturated shear strength as function of degree of saturation on rainfall-triggered shallow landslides are examined. Several designed scenarios and a real case scenario are used to conduct the examinations. The results show that not only the occurrence of shallow landslides but also the failure depth and the time to failure could be misassessed if the influences of degree of saturation on the unit weight and the unsaturated shear strength are neglected.  相似文献   

11.
降雨诱发浅层滑坡稳定性的计算模型研究   总被引:6,自引:0,他引:6  
李宁  许建聪  钦亚洲 《岩土力学》2012,33(5):1485-1490
我国是一个滑坡灾害频发的国家,众多事实表明:降雨是影响边坡稳定性,导致边坡失稳的最主要和最普遍的环境因素,是浅层滑坡的触发因素。为了更好地对降雨诱发浅层滑坡进行研究,采用非饱和土VG模型与改进的Green-Ampt入渗模型对Mein-Larson降雨入渗模型进行改进,并结合无限边坡提出了一个降雨诱发浅层滑坡的简化计算模型。与以往提出的简化计算模型相比,该模型既考虑了坡面倾斜的影响,又考虑了非饱和土的特性,并可用于两种降雨形式下的边坡浅层稳定性估算,具有更广的应用范围。通过与有限元得到的结果进行比较可得:在不同降雨条件下,该计算模型得到的各项结果与数值解是接近的,安全系数计算结果是偏于安全的,因此,可将该计算模型用于降雨诱发浅层滑坡的近似估算;该计算模型公式简单,便于计算,计算效率较高。  相似文献   

12.
Soil pipes are considered to drain off water from a hillslope and play an important role in the subsurface runoff generation process, thus reducing the slope failure susceptibility. However, soil pipes are also often detected on the collapsed slope suggesting that they might act to induce slope instability. To examine how the soil pipes act on pore-water pressure generation and on a slope failure processes, a numerical model was developed. The model was used to test the response of pore-water pressure in a hillslope with soil pipes of different cross-sectional areas, lengths, distances from the impermeable bed, roughness, and hillslope angles. The model was also tested to find the response of open soil pipe if blocked. The study reveals that pipes reduce pore-water pressure (measured closed to bed) around its upstream end and increase around its downstream end if compared with no pipe case. Pore-water pressure at downstream end is increased with increase in hillslope angle, pipe cross-sectional area, pipe length, or depth of soil pipe. Soil pipe, even if it is ended within the hillslope, increases the total discharge from hillslope. Location of rough soil also affects the discharge and pressure within the hillslope. If the less rough pipe is close to the source of water, discharge from hillslope matrix is greater regardless of its downstream pipe roughness. Blockage of small portion of open soil pipe increases the soil pressure around the region but not beyond the case if there is no soil pipe. However, complete collapse of soil pipe from a point to all along the downstream end of hillslope increases the pore-water pressure beyond the pressure if there were no soil pipes. Therefore, the position and type of soil pipe collapse might play an important role in shallow landslide initiation.  相似文献   

13.
波浪在斜坡沙质海床上破碎会加剧泥沙输移导致海床形态变化,研究破碎波作用下沙质海床形态变化机制对于岸滩演变分析极为重要。在波浪水槽中采用中值粒径0.47 mm原型沙铺设1∶20坡度的底床模型进行试验研究,测量不同波浪条件下床面形态和沙坝顶端悬浮泥沙浓度变化。通过测量和计算破碎带输沙率、沙坝尺度和沙坝移动速度,分析破碎波作用下沙质斜坡海床上床面形态变化规律。试验结果表明,破碎带沙坝顶端的悬浮泥沙浓度与水深和底部床面密切相关,在形成沙坝和沙坝水平方向移动时,悬浮泥沙浓度较大;斜坡上沙坝前后来回运动的周期大小具有随机性,沙坝既有向岸又有离岸移动;在多组波长时间作用后沙坝尺度趋于稳定,底床净输沙量趋于0。  相似文献   

14.
For the assessment of shallow landslides triggered by rainfall, the physically based model coupling the infinite slope stability analysis with the hydrological modeling in nearly saturated soil has commonly been used due to its simplicity. However, in that model the rainfall infiltration in unsaturated soil could not be reliably simulated because a linear diffusion-type Richards’ equation rather than the complete Richards’ equation was used. In addition, the effect of matric suction on the shear strength of soil was not actually considered. Therefore, except the shallow landslide in saturated soil due to groundwater table rise, the shallow landslide induced by the loss in unsaturated shear strength due to the dissipation of matric suction could not be reliably assessed. In this study, a physically based model capable of assessing shallow landslides in variably saturated soils is developed by adopting the complete Richards’ equation with the effect of slope angle in the rainfall infiltration modeling and using the extended Mohr–Coulomb failure criterion to describe the unsaturated shear strength in the soil failure modeling. The influence of rainfall intensity and duration on shallow landslide is investigated using the developed model. The result shows that the rainfall intensity and duration seem to have similar influence on shallow landslides respectively triggered by the increase of positive pore water pressure in saturated soil and induced by the dissipation of matric suction in unsaturated soil. The rainfall duration threshold decreases with the increase in rainfall intensity, but remains constant for large rainfall intensity.  相似文献   

15.
A hillslope flow model is developed considering 3D saturated and unsaturated flow of water during rainfall events. A finite difference-based numerical model of hillslope flow processes is developed. Four different experiments are done to see the effects of a single- and double-layered soil in pore-water pressure dynamics and slope failure. Results from the numerical model are verified with experimental results. The numerical and experimental values of the pore-water pressure and moisture contents are in good agreement. The results show that the hillslope heterogeneity caused by multiple layers of soil has greater influence on hillslope pore-pressure dynamics and slope failure patterns. The depth of slope failure shows high dependency on layering characteristics of the soil slope and pattern of rainfall. The proposed model provides a perspective on failure mechanism of a single- or double-layered slope under rainfall infiltration.  相似文献   

16.
福建南安市地质灾害特征及防治对策   总被引:1,自引:0,他引:1  
根据福建省南安市地质灾害调查和区划工作成果,总结该区地质灾害类型主要有滑坡、崩塌和泥石流,尤以滑坡和崩塌的危害性最大。全市共发现地质灾害140处,其中滑坡72处(含土质滑坡67处),崩塌65处(土质崩塌55处),泥石流3处。南安市地质灾害具有分布广、规模小、突发性强、危害性大等特点,其控制因素:包括地形地貌、岩土体性质、降雨和人类工程活动等。南安市属于低山丘陵地貌,其中低山山地占全市面积的50%,丘陵、台地占25%;花岗岩、凝灰岩分布面积广,其残积层厚度较大,约5~17m,岩性为残积砾(砂)质粘性土,是致灾的主要土体。98%的地质灾害与降雨有直接的关系,当过程雨量达到100mm时,滑坡开始产生;过程雨量大于200mm时,滑坡普遍发生。直接与人类工程活动有关的地质灾害共134处,占地质灾害总数的95%,坡脚开挖是引发地质灾害的主要因素,占调查总数的84.4%。论文还提出了地质灾害防治的相应对策。  相似文献   

17.
Shallow landslides usually occur during hevy rainfall and result in casualties and property losses. Thus, the possible locations where landslides are likely to occur must be identified in advance in order to avoid or reduce the harm they cause. When performing a slope-instability analysis, soil thickness is an important factor; however, soil thickness information from landslide-prone areas is rarely obtained. The objective of this study is to realize the influences of spatial distribution of soil thickness on shallow landslide prediction. Three different spatial soil-thickness distributions were applied to perform a slope-instability analysis, and uniform-distributed soil thicknesses from 0.4 m to 2.0 m were also applied for comparison. Geomorphologic information and hydrological records from a landslide-prone area in southern Taiwan were collected. Results show that the spatial distribution of soil thickness related to wetness index provides a reasonable estimation in order to avoid an over-prediction for landslide-prone areas or an under-prediction for stable areas. The analytical procedure used in this study is a simple way for assessing hillslope instability for shallow landslide prediction.  相似文献   

18.
In Nepal, people live in widely spread settlements in the fragile Himalayan terrains, and suffer more from landslides than from any other type of natural disaster. The small-scale rainfall-triggered landslides in the Lesser Himalaya of Nepal are generally shallow (about 0.5 to 2.5 m) and are triggered by changes in the physical property of soil layers during rainfall. The relation between landslides and slope hydrology has received little attention in Himalayan landslide research. Thus, this paper deals with the probability of slope failure during extreme rainfall events by considering a digital elevation model (DEM)-based hydrological model for soil saturation depth and an infinite slope stability model. Deterministic distributed analysis in a geographic information system (GIS) was carried out to calculate the probability of slope failure. A simple method of error propagation was used to calculate the variance of the safety factors and the probability of failure. When normally distributed failure probability values were checked against existing landslides, it was found that more than 50% of the pixels of existing landslides coincided with a high calculated probability of failure. Although the deterministic distributed analysis has certain drawbacks, as described by previous researchers, this study concluded that the calculated failure probability can be utilised to predict the probability of slope failure in Himalayan terrain during extreme rainfall events.  相似文献   

19.
Landslides are mainly triggered by decrease in the matric suction with deepening the wetting band by rainfall infiltrations. This paper reports rainfall-induced landslides in partially saturated soil slopes through a field study. A comprehensive analysis on Umyeonsan (Mt.) landslides in 2011 was highlighted. The incident involves the collapse of unsaturated soil slopes under extreme-rainfall event. Fundamental studies on the mechanism and the cause of landslides were carried out. A number of technical findings are of interest, including the failure mechanism of a depth of soil and effect of groundwater flow, the downward movement of wetting band and the increase of groundwater level. Based on this, an integrated analysis methodology for a rainfall-induced landslide is proposed in this paper that incorporates the field matric suction for obtaining hydraulic parameters of unsaturated soil. The field matric suction is shown to govern the rate of change in the water infiltration for the landslide analysis with respect to an antecedent rainfall. Special attention was given to a one-dimensional infiltration model to determine the wetting band depth in the absence of the field matric suction. The results indicate that landslide activities were primarily dependent on rainfall infiltration, soil properties, slope geometries, vegetation, and groundwater table positions. The proposed methodology has clearly demonstrated both shallow and deep-seated landslides and shows good agreement with the results of landslide investigations.  相似文献   

20.
坡面流水力学参数对团聚体剥蚀程度的定量影响   总被引:7,自引:0,他引:7       下载免费PDF全文
土壤团聚体作为径流搬运过程中的基本结构单元,其在径流运移中的剥蚀破坏影响着坡面径流入渗状况、泥沙含量及地表侵蚀过程的强度。利用变坡试验水槽,在不同流量(0.4~1.2 L/s)和坡度(8.8%~46.6%)范围内,详细分析了流量、坡度、径流水深和阻力系数对鄂南两种典型母质发育红壤团聚体剥蚀破坏的定量影响。研究结果表明,流量和坡度对两种母质发育红壤团聚体的剥蚀影响都是极显著的,坡度对两种红壤团聚体的剥蚀破坏影响均大于流量;不同流量和坡度组合下的团聚体剥蚀破坏变化规律不同,利用流量和坡度的幂函数可以准确地预测团聚体剥蚀程度;在两种水力学参数之间,团聚体剥蚀程度随着径流水深的增加而降低,随着阻力系数的变大剥蚀程度增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号