首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Due to growing concerns regarding persistent organic pollutants (POPs) in the environment, extensive studies and monitoring programs have been carried out in the last two decades to determine their concentrations in water, sediment, and more recently, in biota. An extensive review and analysis of the existing literature shows that whilst the vast majority of these efforts either attempt to compare (a) spatial changes (to identify "hot spots"), or (b) temporal changes to detect deterioration/improvement occurring in the environment, most studies could not provide sufficient statistical power to estimate concentrations of POPs in the environment and detect spatial and temporal changes. Despite various national POPs standards having been established, there has been a surprising paucity of emphasis in establishing accurate threshold concentrations that indicate potential significant threats to ecosystems and public health. Although most monitoring programs attempt to check compliance through reference to certain "environmental quality objectives", it should be pointed out that many of these established standards are typically associated with a large degree of uncertainty and rely on a large number of assumptions, some of which may be arbitrary. Non-compliance should trigger concern, so that the problem can be tracked down and rectified, but non-compliance must not be interpreted in a simplistic and mechanical way. Contaminants occurring in the physical environment may not necessarily be biologically available, and even when they are bioavailable, they may not necessarily elicit adverse biological effects at the individual or population levels. As such, we here argue that routine monitoring and reporting of abiotic and biotic POPs concentrations could be of limited use, unless such data can be related directly to the assessment of public health and ecological risks. Risk can be inferred from the ratio of predicted environmental concentration (PEC) and the predicted no effect concentration (PNEC). Currently, the paucity of data does not allow accurate estimation of PNEC, and future endeavors should therefore, be devoted to determine the threshold concentrations of POPs that can cause undesirable biological effects on sensitive receivers and important biological components in the receiving environment (e.g. keystone species, populations with high energy flow values, etc.), to enable derivation of PNECs based on solid scientific evidence and reduce uncertainty. Using the threshold body burden of POPs required to elicit damages of lysosomal integrity in the green mussel (Perna virvidis) as an example, we illustrate how measurement of POPs in body tissue could be used in predicting environmental risk in a meaningful way.  相似文献   

2.
《Marine pollution bulletin》2012,65(12):2782-2789
Plastics are known to sorb persistent organic pollutants from seawater. However, studies to quantify sorption rates have only considered the affinity of chemicals in isolation, unlike the conditions in the environment where contaminants are present as complex mixtures. Here we examine whether phenanthrene and 4,4′-DDT, in a mixture, compete for sorption sites onto PVC with no added additives (unplasticised PVC or uPVC) and Ultra-High Molecular Weight polyethylene. Interactions were investigated by exposing particles of uPVC and UHMW PE to mixtures of 3H and 14C radiolabelled Phe and DDT. Changes in sorption capacity were modelled by applying a Freundlich binding sorption isotherms. An Extended Langmuir Model and an Interaction Factor Model were also applied to predict equilibrium concentrations of pollutants onto plastic. This study showed that in a bi-solute system, DDT exhibited no significantly different sorption behaviour than in single solute systems. However, DDT did appear to interfere with the sorption of Phe onto plastic, indicating an antagonistic effect.  相似文献   

3.
Recently amended European (EU) water policies call for an adequate monitoring of the chemical status of sediments and suspended matter (SM) in rivers. In this study, we focus on long‐term time series of particle‐bound hexachlorobenzene (HCB) and selected polychlorinated biphenyls (PCB‐138 and PCB‐153) that were monitored biweekly to monthly at eight stations in the River Rhine catchment. Our aims are (1) to detect trends in the concentration series HCB, PCB‐138 and PCB‐153, (2) to estimate the uncertainty of loads caused by SM collection techniques and load calculation procedures and (3) to detect trends in the subsequently calculated annual load series. HCB concentration in the SM for the period 1995–2008 significantly (p < 0·01) decreased at six of the eight monitoring stations. Decreasing PCB‐138 and PCB‐153 concentrations are significant at six of the eight and seven of the eight monitoring stations, respectively. A two‐way analysis of variance (ANOVA) that tested the effect of two collection techniques and four load calculation procedures on annual loads indicates homogeneity of the methods at four of the five monitoring stations. At Weil, only the loads of HCB, PCB‐138 and PCB‐153 are significantly affected by the collection technique. The trend analysis of an extended series (1985–2007) of annual HCB loads at Koblenz showed a significant decrease from about 110 kg year?1 to about 15–23 kg year?1; however, in the shorter period (1995–2007) only at two of the eight monitoring stations decreasing trends of annual contaminant load could be detected. We conclude that any of the tested load calculation procedures can be applied, as loads do no differ systematically. Although a high uncertainty in load estimation exists (e.g. maximum percentage error of E = [18·1, 122·5]% for HCB), the monitoring programme at the Rhine is adequate for analysing the long‐term chemical status of SM. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
《Marine pollution bulletin》2009,58(6-12):775-781
To assess the levels of organochlorine compounds (OCs) in the Chinese coastal environment, monitoring study using bivalves was conducted in 2005. A total of 21 bivalve samples covering the northeastern coast of China were collected and analyzed. Organochlorine compounds were widely distributed in the Chinese coastal environment, with dichlorodiphenyltrichloroethane (DDT) contamination being particularly prevalent. The overall concentrations of PCBs, DDTs, HCHs, chlordane compounds (CHLs), dieldrin, and endosulfans in bivalves were in the ranges of 3.27–25.4, 54.8–2680, 1.42–25.5, n.d. (not detected)–2.28, n.d.–4.02, and n.d.–9.55 ng g−1 on a dry weight basis, respectively. The concentrations of DDT and HCH compounds are relatively higher than those from the coastal areas of other Asian countries. DDT metabolites were predominant, suggesting that the degradation of DDT is in progress in the Chinese coastal environment. Still, however, DDTs of high concentration exceeding 1000 ng g−1 were observed at 19% of the stations surveyed. Among HCH compounds, β-HCH, which is an isomer with strong persistency, was observed predominantly. Compositions of DDT and HCH compounds imply that fresh input of the two compounds into the Chinese coasts is possibly low.  相似文献   

5.
Jin Y  Hong SH  Li D  Shim WJ  Lee SS 《Marine pollution bulletin》2008,57(6-12):775-781
To assess the levels of organochlorine compounds (OCs) in the Chinese coastal environment, monitoring study using bivalves was conducted in 2005. A total of 21 bivalve samples covering the northeastern coast of China were collected and analyzed. Organochlorine compounds were widely distributed in the Chinese coastal environment, with dichlorodiphenyltrichloroethane (DDT) contamination being particularly prevalent. The overall concentrations of PCBs, DDTs, HCHs, chlordane compounds (CHLs), dieldrin, and endosulfans in bivalves were in the ranges of 3.27-25.4, 54.8-2680, 1.42-25.5, n.d. (not detected)-2.28, n.d.-4.02, and n.d.-9.55 ng g(-1) on a dry weight basis, respectively. The concentrations of DDT and HCH compounds are relatively higher than those from the coastal areas of other Asian countries. DDT metabolites were predominant, suggesting that the degradation of DDT is in progress in the Chinese coastal environment. Still, however, DDTs of high concentration exceeding 1000 ng g(-1) were observed at 19% of the stations surveyed. Among HCH compounds, beta-HCH, which is an isomer with strong persistency, was observed predominantly. Compositions of DDT and HCH compounds imply that fresh input of the two compounds into the Chinese coasts is possibly low.  相似文献   

6.
持久性有机污染物(POPs)在环境中分布广泛且持久存在并具有高生物富集性,通常具有致癌、致畸、致突变等危害.湖泊是POPs的主要环境归宿之一,湖泊中的POPs可被水生生物富集并通过食物网传递,对生态系统及人体健康构成极大的危害.中国是POPs生产及使用大国,也是世界上湖泊较多的国家之一.湖泊生物尤其是水产品是中国人饮食中的重要组成部分,因此POPs在中国湖泊生物体中的富集对当地的生态系统和人体健康存在很大的潜在危害.本文通过收集、分析1997年—2017年7月公开发表的中国湖泊生物体POPs数据,发现中国湖泊生物中POPs富集研究主要集中在东部平原湖区,青藏高原及云贵高原湖区有少量研究;不同POPs在不同湖区湖泊生物中富集的含量存在较大差异,DDTs和HCHs在各湖区生物中普遍检出且存在明显差异,东部平原湖区生物体内多氯联苯、多溴联苯醚含量高于其他湖区生物体内含量,其他POPs在湖泊生物体内的富集研究相对较少且主要集中在东部湖泊.中国湖泊生物中DDTs、HCHs、多环芳烃、多氯联苯、多溴联苯醚、多氯苯并二英和多氯苯并呋喃、全氟化合物、全氟辛酸、有机锡及六溴环十二烷脂肪归一化后的平均含量分别为454.56±653.40、153.57±435.99、2849.49±3092.52、118.40±20.28、18.40±20.28、17.43±19.43、147.17±192.93、1542.18±1347.64、11380.75±5316.75和2.19±1.92 ng/g.POPs在中国湖泊生物体内的含量水平与生物所处营养级、脂肪含量和年龄呈正相关,但并非完全一致,还受到生活习性、生物物种与结构、生存环境及生物量等多种因素的影响;生物不同组织对POPs的富集能力有较大差异,内脏器官对POPs的富集能力明显高于肌肉组织.  相似文献   

7.
Recent studies have shown that many persistent organic pollutants (POPs, e.g., polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and various pesticides), are strongly associated with carbonaceous materials (including organic carbon (OC) and black carbon (BC)). We hypothesize that carbonaceous materials can be used as a first-order pollution index, to indicate areas where POP pollution may require further investigation. We tested our hypothesis and found that strong, positive correlations between BC and OC contents versus the concentrations of PCBs (and PAHs) existed in estuarine sediments of the Danshui River in 2005 and 2008. Thus, our preliminary results demonstrate that POC and BC are potential indicators of the POP pollution potential in fluvial sediments of the Danshui River in Taiwan. This innovative approach can provide a simple, relatively inexpensive and expedient means to monitor concentrations of POPs in polluted aquatic sediments of Taiwan, and/or those having a legacy of POP inputs.  相似文献   

8.
陶玉强  赵睿涵 《湖泊科学》2020,32(2):309-324
持久性有机污染物(POPs)在环境中广泛且持久存在,多数具有致畸、致癌、致突变等危害中国是全球湖泊密度较大的国家之一,湖泊在供水、渔业、维护生态系统多样性等众多方面发挥了重要作用湖泊是POPs的重要归宿之一湖泊水体中的POPs可被水生生物吸收利用并传递,对生态系统及人体健康构成较大危害因此湖泊水体中POPs的分布水平对周围的生态系统及人体健康有非常重要的影响本文收集、分析了2003年至2019年2月公开发表的80篇文献中的中国湖泊水体POPs数据,包括多环芳烃(PAHs)、六六六类农药(HCHs)、滴滴涕类农药(DDX)、多氯联苯(PCBs)、多溴联苯醚(PBDEs)、多氯联苯醚类(PCDEs)、全氟化合物(PFCs)及邻苯二甲酸酯类(PAEs),发现:目前中国已有水体POPs研究数据的湖泊共有49个,涉及19个省、直辖市、自治区,研究区域主要在东部地区(n=32),云贵高原(n=14)和青藏新疆湖区(n=3)少有研究,其它地区鲜有研究; PAHs、HCHs和DDX是研究最多的三类POPs,在中国湖泊水体中平均浓度分别为360.0±433.8 ng/L(n=26)、12.8±23.5 ...  相似文献   

9.
Despite scientific and public concern, research on food web contamination from chemicals in plastic is limited, and distinguishing plastic sources from prey remains a challenge. We analyzed juvenile yellowtail (Seriola lalandi) from the North Pacific Central Gyre for plastic ingestion and tissue concentrations of persistent organic pollutants and nonionic surfactants to investigate potential contamination from plastic exposure. Ingestion of synthetic debris occurred in ∼10% of the sample population. PCBs and DDTs were 352 ± 240 (mean ± SD) and 1425 ± 1118 ng/g lw, respectively. PBDEs were 9.08 ± 10.6 ng/g lw, with BDEs-47, 99, and 209 representing 90% of PBDEs. Nonylphenol (NP) was detected in one-third of the yellowtail with a mean of 52.8 ± 88.5 ng/g ww overall and 167 ± 72.3 ng/g ww excluding non-detects. Because environmental NP is strongly associated with wastewater treatment effluents, long-range transport is unlikely, and NP was previously measured in gyre plastic, we concluded that plastic-mediated exposure best explained our findings of NP in yellowtail.  相似文献   

10.
Representatives of the Antarctic food web (krill, cephalopod, fish, penguin, seal) of the area around Elephant Island and from the Weddell Sea were analysed for the most recalcitrant organochlorine compounds. Due to sorption of the compounds to sinking particles and accumulation in sediments, two benthic fish species (Gobionotothen gibberifrons, Chaenocephalus aceratus) feeding on benthos invertebrates and fish reflected significantly increasing concentrations within a decade (1987-1996), while a benthopelagic species (Champsocephalus gunnari) feeding on krill did not. In the pelagic food chain, lipid normalised concentrations of all compounds increased from Antarctic krill to fish proving that biomagnification of highly lipophilic pollutants (log octanol-water partition coefficient>5) occurs in water-breathing animals. As top predators Weddell and southern elephant seals (Leptonychotes weddellii, Mirounga leonina) biomagnified the persistent organic pollutants relative to krill 30-160 fold with the exception of hexachlorobenzene, the levels of which were lower than in fish indicating its intense specific elimination.  相似文献   

11.
Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent organic pollutants (POPs) are a class of pollutants that are transported worldwide. Determining the impact of climate warming on the global cycling of POPs is important for understanding POP cycling processes and formulating relevant environmental policies. In this review, the main research findings in this field over the past ten years are summarized and the effects of climate warming on emissions, transport, storage, degradation and toxicity of POPs are reviewed. This review also summarizes the primary POP fate models and their application. Additionally, research gaps and future research directions are identified and suggested. Under the influence of climate change, global cycling of POPs mainly shows the following responses. (1) Global warming directly promotes the secondary emission of POPs; for example, temperature rise will cause POPs to be re-released from soils and oceans, and melting glaciers and permafrost can re-release POPs into freshwater ecosystems. (2) Global extreme weather events, such as droughts and floods, result in the redistribution of POPs through intense soil erosion. (3) The changes in atmospheric circulation and ocean currents have significantly influenced the global transport of POPs. (4) Climate warming has altered marine biological productivity, which has changed the POP storage capacity of the ocean. (5) Aquatic and terrestrial food-chain structures have undergone significant changes, which could lead to amplification of POP toxicity in ecosystems. (6) Overall, warming accelerates the POP volatilization process and increases the amount of POPs in the environment, although global warming facilitates their degradation at the same time. (7) Various models have predicted the future environmental behaviors of POPs. These models are used to assist governments in comprehensively considering the impact of global warming on the environmental fate of POPs and therefore controlling POPs effectively. Future studies should focus on the synergistic effects of global changes on the cycling of POPs. Additionally, the interactions among global carbon cycling, water cycling and POP cycling will be a new research direction for better understanding the adaptation of ecosystems to climate change.  相似文献   

12.
We investigated the transfer of persistent organic pollutants (POPs) from unspiked bottom sediment to a benthic marine fish, marbled sole (Pleuronectes yokohamae), via non-food-chain pathways, i.e., via sediment particles and water column. One-year-old sole were held for 28 days in an exposure tank with bottom sediment or in a control tank. o,p′-DDE and tri- to penta-chlorobiphenyls were transferred from the sediment to the fish via non-food-chain pathways, as demonstrated by concentrations in the exposed fish at 2.5-30 times the control levels. A model analysis based on first-order kinetic equations indicated that the overall rate constant of transfer of these compounds from sediment to fish was generally lower than that from food (median of ratio, 0.48). It also suggested that relatively high concentrations of the other POPs in the food and the longer times necessary for them to reach a steady state masked any transfer of them from the sediment.  相似文献   

13.
Five marine fish species were collected from the Natuna Island, South China Sea to investigate the occurrence of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs). Concentrations of PBDEs, PCBs, and DDTs in marine fish ranged from 2.85 to 7.82, 14.3 to 48.1, and 7.99 to 40.3 ng/g lipid weight, respectively. Higher concentrations of PBDEs, PCBs, and DDTs were observed in Snakefish (Trachinocephalus myops), which might be attributed to their different feeding and living habits. PCBs were the predominant POPs in all marine fish, followed by DDTs and PBDEs. BDE 47 and PCB 153 were the predominant congener of PBDEs and PCBs, respectively. Compositional distribution of DDTs indicated the possible presence of fresh input sources around the Natuna Island. The ratios of o,p′-DDT/p,p′-DDT being less than 1 in fish samples suggested that DDT contributions from dicofol seemed considerably low. New input sources of DDT in South China Sea are worth further research.  相似文献   

14.
To assess threats to endangered species, it is critical to establish baselines for contaminant concentrations that may have detrimental consequences to individuals or populations. We measured contaminants in blubber and fat from dead leatherback turtles and established baselines in blood and eggs in nesting turtles. In fat, blubber, blood and eggs, the predominant PCBs were 153 + 132, 187 + 182, 138 + 163, 118, and 180 + 193. Total PCBs, 4,4′-DDE, total PBDEs and total chlordanes were significantly and positively correlated between blood and eggs, suggesting maternal transfer. Significant positive relationships also existed between fat and blubber in stranded leatherbacks. Less lipophilic PCBs appeared to more readily transfer from females to their eggs. PBDE profiles in the four tissues were similar to other wildlife populations but different from some turtle studies. Concentrations were lower than those shown to have acute toxic effects in other aquatic reptiles, but may have sub-lethal effects on hatchling body condition and health.  相似文献   

15.
Landfill leachates that contain persistent organic pollutants (POPs) are a big threat to groundwater systems and are projected to have hazardous effects in the long term if proper management strategies of the landfills are not put in place by those responsible. Monitoring the levels of POPs in landfill leachates is very crucial. This work presents an amperometric biosensor for determination of selected POPs in landfill leachates. The biosensor is based on kinetic inhibition of horseradish peroxidase (HRP). The enzyme was immobilised by electrostatic attachment on a polyaniline-modified Pt electrode surface. Selected POPs inhibited HRP enzyme activity and the decrease in the enzyme activity was used to determine these environmental pollutants. Selected polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs) and polychlorinated biphenyls (PCBs) were the analytes of choice because they are commonly found in South Africa water systems. Limits of detection for the amperometric biosensor were established as 0.014, 0.018, 0.022, 0.016 and 0.019 μg l−1 for BDE-100, PBB-1, PCB-1, PCB-28 and PCB-101, respectively. The HRP biosensor system gave different linear ranges for; BDE-100 (0.424–25.8 μg l−1), PBB-1 (0.862–13.4 μg l−1), PCB-1 (0.930–18.1 μg l−1), PCB-28 (0.730–15.7 μg l−1) and PCB-101 (0.930–27.1 μg l−1). Inhibition studies on HRP biosensor response toward the reduction of H2O2 in the absence and presence of the selected POPs were carried out to investigate the inhibition kinetics and its mechanism. The results obtained indicated that the inhibition mechanism was competitive for PBDEs and non-competitive for biphenyls (PCBs and PBBs). The application of the biosensor was tested on wastewater samples obtained from landfill leachate for determination of selected POPs. The leachate samples were found to contain PCB-28 (0.28 ± 0.03 μg l−1) and PCB-101 (0.31 ± 0.02 μg l−1). The samples were also analysed by GC–MS as a cross-check method and the two sets of results were in close agreement.  相似文献   

16.
《Marine pollution bulletin》2012,65(12):2756-2760
Polyethylene pellets provide a convenient means to monitor Persistent Organic Pollutants (POPs) in marine systems. Pellets collected between 1984 and 2008 at three South African beaches were analysed for PCB, HCH and DDT. Concentrations of all three POPs decreased over the last two decades, although this signal was less clear for PCBs, and further monitoring is needed to assess trends in this family of compounds. DDT concentrations at two sites were higher than previous records for southern Africa, but there is no evidence of a link to the ongoing use of DDT for malaria control. HCHs concentrations were lower than in pellets from the east coast of southern Africa, suggesting that this pesticide was mainly used in the eastern part of the region. Our study demonstrates the potential for International Pellet Watch to track temporal as well as geographical patterns in the abundance of POPs in marine environments.  相似文献   

17.
The study provides a baseline for the assessment of the organic and inorganic pollution specially, heavy metal contamination in the surface sediments of Pyeongchang River,South Korea.The assessment of the study areas was done with respect to metal pollution load,ecological risk and geoaccumulated risk.Based upon the used indices,a priority index(Pindex) was used to rank the utmost contaminated sites.Though the concentrations of mercury in all sediments were below the guideline, the significant enriched contamination was observed by all applied indices.As expected,the values of pollution load index(PLI),ecological risk index(RI) and geoaccumulation risk index(Igeo) demonstrated lower heavy metal contamination in upstream areas compared to the downstream. Admittedly,sediments were unpolluted to slightly-polluted according to PLI while high to extremely high ecological risks were observed in several sediment samples.Furthermore,all the samples were uncontaminated as per Igeo.After simplification of Igeo,the Pindex,showed the utmost contaminated sediments with a value of 2.537.Notably,protective measures should be taken to the highly contaminated areas which are prioritized by Pindex Admittedly,the maximum concentrations of total organic carbon,total nitrogen,inorganic nitrogen,total phosphorous,inorganic phosphorous,calcium, magnesium,sodium and potassium were significantly observed as 7.8×104,3,185,36,1,032,3.7, 1,5163,2,881,669 and 4,076mg/kg accordingly.  相似文献   

18.
Plastic pellets found stranded on beaches are hydrophobic organic materials and thus, they are a favourable medium for persistent organic pollutants to absorb to. In the present study, plastic pellets are used to determine the diffuse pollution of selected Greek beaches. Samples of pellets were taken from these beaches and were analyzed for PCBs, DDTs, HCHs, and PAHs. The observed differences among pellets from various sampling sites are related to the pollution occurring at each site. Plastic pellets collected in Saronikos Gulf beaches demonstrate much higher pollutant loading than the ones collected in a remote island or close to an agricultural area. Based on data collected in this study and the International Pellet Watch program, pollution in Saronikos Gulf, Greece, is comparable to other heavily industrialized places of the world. The present study demonstrates the potential of pellet watch to be utilized as a detailed-scale monitoring tool within a single country.  相似文献   

19.
《Marine pollution bulletin》2009,58(6-12):846-857
The objective of this study was to determine the concentrations and possible sources of heavy metals and persistent organic pollutants (POPs) in water and estuarine sediments from Gao-ping River in order to evaluate the environmental quality of aquatic system in southern Taiwan. High concentrations of heavy metals including Cr, Zn, Ni, Cu and As, ranging from 10.7 to 180 mg/kg-dry weight (dw), were detected in sediments from Gao-ping River. When normalized to the principal component analysis (PCA), swinery and electroplating wastewaters were found to be the most important pollution sources for heavy metals. Of various organochlorine pesticide (OCP) residues detected, aldrin and total-hexachlorocyclohexane (HCH) were frequently found in sediments. The total concentrations of OCPs were in the range 0.47–47.4 ng/g-dw. Also, the total-HCH, total-cyclodiene, and total-dichlorodiphenyltrichloroethane (DDT) were in the range 0.37–36.3, 0.21–19.0, and 0.44–1.88 ng/g-dw, respectively. The polychlorinated biphenyl (PCB) concentrations in sediments from Gao-ping River ranged between 0.37 and 5.89 ng/g-dw. The PCB concentrations are positively correlated to the organic contents of the sediment particles. α-HCH was found to be the dominant compound of HCH in the sediments, showing that long-range transport may be the possible source for the contamination of HCH in sediments from Gao-ping River. In summary, trace amounts of POPs in estuarine sediments from Gao-ping River were detected, showing that there still exist a wide variety of POP residues in the river sediments in Taiwan. These POP residues may be mainly from long-range transport and weathered agricultural soils, while heavy metal contamination is primarily from the swinery and industrial wastewaters.  相似文献   

20.
The objective of this study was to determine the concentrations and possible sources of heavy metals and persistent organic pollutants (POPs) in water and estuarine sediments from Gao-ping River in order to evaluate the environmental quality of aquatic system in southern Taiwan. High concentrations of heavy metals including Cr, Zn, Ni, Cu and As, ranging from 10.7 to 180 mg/kg-dry weight (dw), were detected in sediments from Gao-ping River. When normalized to the principal component analysis (PCA), swinery and electroplating wastewaters were found to be the most important pollution sources for heavy metals. Of various organochlorine pesticide (OCP) residues detected, aldrin and total-hexachlorocyclohexane (HCH) were frequently found in sediments. The total concentrations of OCPs were in the range 0.47-47.4 ng/g-dw. Also, the total-HCH, total-cyclodiene, and total-dichlorodiphenyltrichloroethane (DDT) were in the range 0.37-36.3, 0.21-19.0, and 0.44-1.88 ng/g-dw, respectively. The polychlorinated biphenyl (PCB) concentrations in sediments from Gao-ping River ranged between 0.37 and 5.89 ng/g-dw. The PCB concentrations are positively correlated to the organic contents of the sediment particles. alpha-HCH was found to be the dominant compound of HCH in the sediments, showing that long-range transport may be the possible source for the contamination of HCH in sediments from Gao-ping River. In summary, trace amounts of POPs in estuarine sediments from Gao-ping River were detected, showing that there still exist a wide variety of POP residues in the river sediments in Taiwan. These POP residues may be mainly from long-range transport and weathered agricultural soils, while heavy metal contamination is primarily from the swinery and industrial wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号