首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
大洋环流的刚盖模式与自由表面模式的比较(英文)   总被引:1,自引:0,他引:1  
首先从海洋原始方程组出发,讨论了刚盖模式(RL)与自由表面模式(FF)的闭合方程组的异同;在包括海底地形的同一模式海盆中,在相同外力──定常的海面风应力和加热场──强迫下,使用这两种模式分别进行了大洋环流的数值模拟。由于选用了适当的初值、运用了时间步长调整技术等,从而加快了模拟速度,节省了CPU时间。对此两模式的结果本文进行了详细比较,尤以流函数、水位、上层温度及垂直速度作为讨论的重点。比较结果证实:使用这两个模式模拟出的大洋环流的各种物理量是一致的。另外,又从大洋环流形成机制上对此一致性作了进一步讨论。最后对这两种模式进行了评价。  相似文献   

2.
The problem of stationary vertical distribution of saturated moist air thermodynamic parameters that takes place, for example, in an eyewall cloud of a tropical cyclone is considered. Based on these distributions, the cloud-growth dynamics problem is also considered. The heat and moisture fluxes from the ocean surface are determined by the wind and temperature difference and subcloud layer condition and last after the beginning of cloud formation. They change the condition of both the cloud and the subcloud layer. The coexistence and interaction of the two different regions require additional conditions. We assume continuity of the temperature and humidity profiles at the lower cloud boundary. The problem of cloud formation over the warmer ocean with account for water-phase transformations is considered in the present study. The cloud boundaries (the upper and the lower) in the process are determined and the temperature and moisture profiles within the cloud are also investigated. The lower boundary dipping is determined while taking the subcloud moisture into account. An approximate analytical model of these processes is formulated, and the corresponding equations are solved numerically. Approximate equations govern the vertical cloud structure well.  相似文献   

3.
The present study investigates the way an ocean filled with homogeneous warm water is cooled by prescribing cold water formation inside the ocean in the southern part of the southern hemisphere using multi-level numerical models. Cooling of the whole ocean starts with introduction of the cold water from the formation region into the deepest part of the ocean in the equatorial and eastern boundary regions by Kelvin wave-type density currents. The cold water along the eastern boundary extends westward as a Rossby wave-type density current setting up an interior poleward flow, and hits the western boundary to form a northward flowing boundary current in the northern hemisphere. Only then does the western boundary current cross the equator. Cooling of the rest of the ocean basin is accomplished by upwellings in the interior and also along the coasts. During this introduction the cold water is mixed with surrounding warm waters, and the thermocline, rather than forming just below the top level where heating is imposed, tends to spread down to deeper depths. Consequently the circulation at a steady state has a significant vertical structure such that the maximum upwelling in the interior occurs in the mid-depths, and only the deeper part of the deep ocean yields the Stommel and Arons circulation pattern. In the equatorial region higher vertical mode motions dominate, and a set of alternating zonal jets forms along the equator.  相似文献   

4.
Seven one-dimensional oceanic boundary layer models are investigated to assess the possible nonlocal transport characteristics of mass and heat in the upper ocean. The dynamical models have been chosen from the diffusion and bulk types currently in use plus two modifications of the transilient type that have been used extensively for atmospheric work by Stull. The models are forced using wind speed and insolation conditions recorded during a 9-day oceanographic cruise near Bermuda in March 1993 during the decline of the spring bloom. The attenuation of sunlight in the upper ocean is calculated using a full spectral model for downwelling irradiance. The vertical heat transport characteristics are reported and compared. A series of spectral diagnostic tests (Green's function analysis, process spectra, and overall mixing lengths) reveal significant differences in the vertical transport characteristics of the models that are not observed in commonly used diagnostics such as sea surface temperature or mixed layer depth. Age spectra (or modal time since last surface contact) are calculated from Green's functions and reveal how a water mass can be cut off from the surface within a short time period. The large differences in the vertical mixing characteristics of the upper ocean boundary layer models have potential implications on the vertical distributions of short-lived chemical tracers and phytoplankton.  相似文献   

5.
To assess each of the two possible mechanisms responsible for the fortnightly modulation of semi-enclosed basin–ocean water exchange (‘density tides’), a set of numerical experiments is carried out using a vertically two-dimensional numerical model with realistic situations in Puget Sound in mind. It is found that, although the localized vertical viscosity (or the localized vertical diffusivity) enhanced in the entrance sill region primarily controls the bottom-water transport (or the bottom-water density) during spring tides, it does not lead to any appreciable variations of bottom-water density (or bottom-water transport). This indicates that the fortnightly modulation of vertical viscosity and that of vertical diffusivity both play important roles in creating density tides. In the real ocean, the vertical viscosity and diffusivity are enhanced simultaneously during spring tides, so that it is difficult to discriminate between both effects on density tides. This causes the widespread misunderstanding that density tides are mainly caused by the decreased advection of dense bottom-water from outside due to the enhanced vertical viscosity during spring tides.  相似文献   

6.
The paper presents coastal structures design in the presence of waves by the minimization of a cost function. It aims to show that shape optimization can be efficiently applied to ocean engineering. This is an underlying guiding principle for the design of harbors or offshore breakwaters. We compute the solution of a specific simplified boundary value problem describing the short wave propagation toward a vertical sea cliff or vertical wall and modify accordingly the shape of defense structures in order to minimize a pre-defined cost function taking into account the strength (energy) of the water waves. The optimization procedure relies on a global semi-deterministic search algorithm able to escape from local minima.  相似文献   

7.
In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the ocean interior. The effective wind stress can thus be decomposed into spatially slow-varying and fast varying components. Careful scale analysis on the classical Munk winddriven ocean circulation theory, which consists of the interior Sverdrup flow and the western boundary current but of no eastern boundary current, shows that the wind stress curl appearing in the Sverdrup equation must have negligible spatial variations. In the present model the spatially slow-varying component of the wind stress appears in the Sverdrup equation, and the spatially fastvarying component becomes the forcing term of the boundary equations. As a result, in addition to the classical Munk solution the present model has an extra term at the western boundary which (Northern Hemisphere) increases the northward transport as well as the southward return transport, and has a term at the eastern boundary corresponding to the eastern boundary current.  相似文献   

8.
Effects of the presence of a circumpolar region on buoyancy-driven circulation are investigated by using an idealized numerical ocean model. Comparison of circulation and meridional density (heat) transport is made between a closed ocean and an ocean with a cyclic gap near its southern boundary. The presence of the circumpolar region leads to disconnection of the meridional overturning across the circumpolar region. And the circumpolar eastward flow reaches the bottom of the ocean. It is essential for this that the pycnocline is deeper than the bottom of the gap. Since the amount of the mass transported northward must return southward at the levels deeper than the bottom of the cyclic gap, the weak stratification, hence weak vertical geostrophic shear, at the deeper levels leads to inactive communication across the circumpolar region. Meridional heat transport across the circumpolar region is made mainly by horizontal diffusion for the ocean with the cyclic gap, while the contribution of the advection is dominant for the closed ocean. Sensitivity of meridional heat transport to change in horizontal diffusivity is studied. The meridional heat transport for the ocean with the cyclic gap is more sensitive than for the closed ocean. The change in heat transport occurs not only in the circumpolar region but also in the rest of the ocean. It is suggested that subgrid scale phenomena, especially mesoscale eddies, in the circumpolar region controls the whole ocean to a great extent.  相似文献   

9.
Bridge scour modeling requires storm surge hydrographs as open ocean boundary conditions for coastal waters surrounding tidal inlets. These open coast storm surge hydrographs are used to accurately determine both horizontal and vertical circulation patterns, and thus scour, within the inlet and bay for an extreme event. At present, very little information is available on the effect that tidal inlets have on these open coast storm surge hydrographs. Furthermore, current modeling practice enforces a single design hydrograph along the open coast boundary for bridge scour models. This study expands on these concepts and provides a more fundamental understanding on both of these modeling areas.  相似文献   

10.
We propose a method for the solution of the inverse problem of reconstruction of the vertical stratification of density in the ocean according to the known dispersion curves for internal gravity waves. For the stratification of density modeled by a linear distribution, we determine the accuracy of its reconstruction for values of the frequency of oscillations and wave numbers given with different degrees of accuracy. The posed problem is studied in the Boussinesq approximation for two traditionally used types of boundary conditions on the surface of the fluid. We deduce dispersion equations and focus our attention on their asymptotic analysis. An asymptotic solution of the inverse problem is constructed and its sensitivity to the degree of accuracy of the input data is investigated.  相似文献   

11.
Estimation of eddy heat transport in the global ocean from Argo data   总被引:6,自引:2,他引:4  
The Argo data are used to calculate eddy(turbulence)heat transport(EHT)in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v′,T′profiles within each 2×2 bin.The velocity and temperature anomalies are obtained by removing their climatological values from the Argo"instantaneous"values respectively.Through the Student’s t-test and an error evaluation,we obtained a total of 87%Argo bins with significant depth-integrated EHTs(D-EHTs).The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents(WBC)and Antarctic Circumpolar Current(ACC).The zonally-integrated D-EHT(ZI-EHT)of the global ocean reaches 0.12 PW in the northern WBC band and–0.38 PW in the ACC band respectively.The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean.The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport,which may play an important role in regulating the climate.The analysis of vertical structures of the EHT along the 35 N and45 S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current(ARC)region.It also shows that the strong EHT could reach 600 m in the WBC regions and 1 000 m in the ARC region,with the maximum mainly located between 100 and 400 m depth.The results would provide useful information for improving the parameterization scheme in models.  相似文献   

12.
We study elevations of the level of a homogeneous ocean caused by a large-scale elliptic anomaly of the field of atmospheric pressure and determine the conditions under which Earth's rotation and the asymmetry of the region of disturbances of the baric field lead to significant deviations of the ocean level from its values given by the law of inverted barometer. Our investigation is based on the numerical analysis of the integral solution of the linear problem. It is shown that the deviations from the law of inverted barometer are especially pronounced in shallow-water regions, at high latitudes, and for strongly asymmetric regions of disturbances of atmospheric pressure.  相似文献   

13.
《Ocean Modelling》2003,5(3):249-266
The eddy-induced mass transport is diagnosed for the Southern Ocean in an eddy-permitting global ocean model (OCCAM). The focus is on the transport by transient eddies in the deep ocean. The transport streamfunction is calculated in four different combinations of coordinate system. Depending on the coordinate system employed, the strength of transient eddy transport varies from 6 Sv meridional transport in latitude-density coordinates to 20 Sv across-streamline transport in streamline-depth coordinates. It is shown that transient eddies as well as standing eddies are necessary for cancelling the Deacon cell.In the Antarctic bottom water density layer, the major contribution of the transient eddies towards net equatorward transport occurs (a) as a strong transport over the narrow Drake Passage and (b) as a weaker but systematic transport over a broader region in the southeast Pacific where the Antarctic circumpolar current breaks up into multiple jets. In contrast, in the North Atlantic deep water density layer the net poleward eddy transport is spread out almost everywhere. This suggests that attention to eddies should not be restricted to places where the eddy transport has large magnitude.  相似文献   

14.
The two-dimensional nonlinear time domain free surface flow problem is analysed using potential flow theory. The problem is solved by a time marching method. At each time step two numerical approaches are used. One is based on the boundary element method in the complex plane. The complex potential is assumed to vary linearly within each element and the solution is obtained by imposing the boundary conditions at the nodes of the elements. The other approach is based on the finite element formulation. Triangular elements and linear shape functions are used. The solution is obtained by the Galerkin method. Numerical results are obtained for the wave elevation generated by a vertical wave maker. Results are also provided for a circular cylinder oscillating below the free surface. For these cases the finite element method is found to provide substantially more efficient computations than the boundary element method using equivalent discretizations.  相似文献   

15.
Quite frequently naval and ocean structural designers confront the problem of a plate or slab which supports a motor or engine which excites, dynamically, the structural element. Very often the excitation is treated as a concentrated force but, obviously, it acts over a finite area. The present study deals with the title problem for several combinations of boundary conditions by means of a variational approach and also using the finite element method. Dynamic displacement and bending moment amplitudes are determined.  相似文献   

16.
A fast algorithm for recovering profiles of density and compressional (P) and shear-vertical (SV) wave speeds as functions of depth for the inverse seismic problem in a continuous layered elastic medium is obtained. This algorithm differs from previous fast algorithms for this problem since it requires only the compressional wave P-P reflection response at the surface of the medium, for three different slownesses or angles of incidence. Previous algorithms have required shear stress data in the form of the P-SV and SV-SV reflection responses, making them unsuitable for an ocean environment. This algorithm is thus much more suitable for reconstructing the ocean floor from pressure data taken in the ocean. The algorithm is exact, and it includes the effects of multiple reflections and mode conversions. A computer run illustrates the performance of the algorithm on synthetic data.  相似文献   

17.
基于椭圆型拉格朗日拟序结构(elliptic Lagrangian Coherent Structures, eLCSs)可以提取出黑洞涡旋,它具有较强的输运能力并且随流场长时间运动后仍保持连贯,类似于海洋中的“黑洞”,故被称为黑洞涡旋。本文基于地转流速度场数据,针对西太平洋中一个典型的黑洞涡旋(Eddy A)使用eLCSs的方法提取涡旋边界,并进行分析研究。利用海表温度、海表盐度和叶绿素浓度数据分析验证Eddy A水平方向上物质输运的连贯性;使用Argo浮标得到的不同深度的温度、盐度和溶解氧数据对Eddy A垂直方向的物质相干性进行分析验证。通过分析证明,在较长的时间尺度上,黑洞涡旋边界较欧拉涡旋边界的连贯性更强,能更加客观地描述物质输运。  相似文献   

18.
《Ocean Modelling》2000,2(1-2):1-15
Many test problems have been posed in which the behavior of schemes may be examined within the simplified context of passive tracer transport. Most often these tests involve transport of a tracer containing sharp or discontinuous gradients within a smooth advecting field. Hecht et al. [J. Geophys. Res. 100 (1995) 20763–20778] presented a test problem, using the simple analytical gyre of Stommel [Trans. Am. Geophys. Union 29 (1948) 202–206], in which an initially smooth tracer field is transported through a highly sheared circulation, representing another scenario of relevance to ocean modeling. We present a modification of that test in which the underlying grid is rotated relative to the gyre, such that the western boundary falls at 45° to the principal grid axes. The advection schemes used by most ocean modelers to date are examined within this test problem. We find, in two cases, that methods which performed acceptably under the original formulation of the problem, and which have seen extensive application to geophysical fluid dynamics, fail to perform acceptably within the reformulated problem. The important qualities of this more discriminating test include the skewing of the fast boundary current flow relative to the underlying grid axes and the high shear in that boundary current.  相似文献   

19.
This paper considers steep wave impact on seawalls of various geometries. A simple analytical model for the pressure impulse due to a wave of idealized geometry and dynamics is developed and applied to the following geometries: (a) vertical seawall with a berm, (b) vertical seawall with a ditch at its base and (c) vertical seawall with a block missing (damaged condition).The method uses eigenfunction expansions in each of the rectangular regions that satisfy some of the rigid surface conditions and a simplified free-surface condition. Their unknown coefficients are determined from the impact boundary condition, rigid wall conditions and by matching the values and the horizontal derivatives of the solutions in each rectangular region at their mutual boundary. The method yields the pressure impulse throughout the entire region. The overall impulse and moment impulse on the seawall and a simple model for the uprush of the spray jet after the impact are also presented. The effects of different impact regions and different geometries can therefore be quickly estimated and used to show trends in the results. It is shown that berms generally have a beneficial effect on reducing the impulse, moment impulse and uprush, but not the maximum pressure impulse on the seawall, whereas ditches are generally and sometimes strongly detrimental for all effects except uprush. A missing block in the seawall gives an almost constant or linearly decreasing value inside the gap (depending on the boundary condition applied at the rear of the gap being hard or soft respectively); the soft case can affect the pressure impulse on the front face of the seawall, thereby affecting the impulse and moment impulse.  相似文献   

20.
A new method of assimilating sea surface height (SSH) data into ocean models is introduced and tested. Many features observable by satellite altimetry are approximated by the first baroclinic mode over much of the ocean, especially in the lower (but non-equatorial) and mid latitude regions. Based on this dynamical trait, a reduced-dynamics adjoint technique is developed and implemented with a three-dimensional model using vertical normal mode decomposition. To reduce the complexity of the variational data assimilation problem, the adjoint equations are based on a one-active-layer reduced-gravity model, which approximates the first baroclinic mode, as opposed to the full three-dimensional model equations. The reduced dimensionality of the adjoint model leads to lower computational cost than a traditional variational data assimilation algorithm. The technique is applicable to regions of the ocean where the SSH variability is dominated by the first baroclinic mode. The adjustment of the first baroclinic mode model fields dynamically transfers the SSH information to the deep ocean layers. The technique is developed in a modular fashion that can be readily implemented with many three-dimensional ocean models. For this study, the method is tested with the Navy Coastal Ocean Model (NCOM) configured to simulate the Gulf of Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号