首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The significant loss of wave energy due to seabed interaction in finite depths is a known effect and bottom friction terms are used in the wave models to account for this dissipation. In this paper, a new bottom-interaction function is tested by means of the SWAN model, based on measurements at two field sites, Lake George and Lakes Entrance, both in Australia. The function accounts for dependence of the friction on the formation process of bottom ripples and on the grain size of the sediment. The overall improvement of the model prediction both for the wave height and wave period is demonstrated.  相似文献   

2.
《Coastal Engineering》1987,11(2):159-173
A general equation, which applies to incipient motion, general surface motion and disappearance of ripples under non-breaking water waves, is derived using an energy approach. Lower and upper limits of ripple development are derived, showing that existing criteria are not entirely sufficient. An explicit formula for the dissipation factor as a function of D/A (grain diameter near-bed wave amplitude) is also obtained. The formula has been used to evaluate the variation of fe with increasing flow characteristics for constant grain diameter. Finally, values of the sand grain roughness height, ks, in relation to grain diameter are given for different types of bottom motion.  相似文献   

3.
Seven numerical models which simulate waves and currents in the surf-zone are tested for the case of a reduced-scale detached breakwater subjected to the action of regular waves with normal incidence. The computed wave heights, water levels and velocities are compared with measurements collected in an experimental wave basin. The wave height decay in the surf-zone is predicted reasonably well. Set-up and currents appear to be less well predicted. This intercomparison exercise shows that radiation stresses are systematically overestimated by formulations used in the models, mean bottom shear stresses are not always co-linear with the mean bottom velocity vector in shallow water, and turbulence modelling in the surf-zone requires a sophisticated  相似文献   

4.
Wave-formed sedimentary structures can be powerful interpretive tools because they reflect not only the velocity and direction of the oscillatory currents, but also the length of the horizontal component of orbital motion and the presence of velocity asymmetry within the flow. Several of these aspects can be related through standard wave theories to combinations of wave dimensions and water depth that have definable natural limits. For a particular grain size, threshold of particle movement and that of conversion from a rippled to flat bed indicate flow-velocity limits. The ratio of ripple spacing to grain size provides an estimate of the length of the near-bottom orbital motion. The degree of velocity asymmetry is related to the asymmetry of the bedforms, though it presently cannot be estimated with confidence. A plot of water depth versus wave height (h—H diagram) provides a convenient approach for showing the combination of wave parameters and water depths capable of generating any particular structure in sand of a given grain size. Natural limits on wave height and inferences or assumptions regarding either water depth or wave period based on geologic evidence allow refinement of the paleoenvironmental reconstruction. The assumptions and the degree of approximation involved in the different techniques impose significant constraints. Inferences based on wave-formed structures are most reliable when they are drawn in the context of other evidence such as the association of sedimentary features or progradational sequences.  相似文献   

5.
A set of depth-integrated equations describing combined wave–current flows is derived and validated. To account for the effect of turbulence induced by interactions between waves and currents with arbitrary horizontal vorticity, new additional stress terms are introduced. These stresses are functions of a parameter b that relates the relative importance of wave radiation stress and bottom friction stress to the wave–current interaction. To solve the equations, a fourth-order MUSCL-TVD scheme with an approximate Riemann solver is adopted. As a first-order check of the model, the Doppler shift effect and wave dispersion over linearly sheared currents are analytically shown to be retained appropriately in the equation set. The model results are then validated through comparisons with three experimental data sets. First, based on the experiments of Kemp and Simons (1982, 1983), a reasonable functional form of b is estimated. Second, simulations examining the propagation of a weakly dispersive wave over a depth-uniform or linearly sheared current are performed. Finally, the model is applied to a more complex configuration where bichromatic waves interact with spatially varying currents. Simulated results indicate that the model is capable of predicting nearshore interactions of waves with currents of arbitrary vertical structure. One of the unique properties of the developed model is its ability to assimilate an external current field from any source, be it from a circulation model or an observation, and predict the interaction of a nonlinear and dispersive wave field with that current.  相似文献   

6.
A coupling model for calculating wind-driven currents and waves in a shallow basin with allowance for current-wave interactions is introduced. The model is constructed on the basis of the three-dimensional σ-coordinate model of currents [3] and the SWAN (Simulating Waves Nearshore) spectral wave model [4]. The effect of waves on currents is taken into account in the coefficients of surface and bottom friction through roughness parameters. Results of combined modeling of stationary fields of currents and waves generated by spatially homogeneous wind are correlated with the corresponding results of separate modeling for a cylindrical basin of constant depth and the water area of Lake Donuzlav (the northwestern coast of the Crimea). The allowance for the effect of waves during calculation of tangential wind stresses in the model of currents is shown to be among major factors intensifying water circulation and forming spatial inhomogeneities of the vortex type. In addition, some cases of local decreases in tangential wind stresses are revealed; they appear when the lake is penetrated from the side of the open sea by relatively long waves, which significantly decrease the roughness of the water surface.  相似文献   

7.
A physical formulation of the problem is considered. A mathematical model and a numerical algorithm of the turbulence model as part of the ocean circulation model for simulations for decades are formulated. The model is based on the evolution equations for turbulent kinetic energy (TKE) and the frequency of its viscous dissipation. A numerical solution algorithm for both the circulation model and the turbulence model is based on implicit schemes of splitting with respect to physical processes and geometric coordinates. For the turbulence model, this provided analytical solutions at a splitting step related to TKE generation and dissipation. Numerical experiments have been performed with a model of the joint circulation of the North Atlantic, the Arctic Ocean, and the Bering Sea to reproduce the annual cycle and synoptic disturbances of ocean characteristics. The model has a resolution of 0.25° in latitude and longitude and 40 levels in the vertical, which are compressed toward the surface to reproduce the process of developed turbulence better. The results are compared with observations and with the results of simulations using traditional parameterizations of the upper ocean mixing. It is shown that the model reproduces ocean characteristics correctly, only slightly increasing the computation time in comparison with simple parameterizations. Spatial and temporal characteristics of turbulence are analyzed.  相似文献   

8.
We investigate the turbulence induced by wave-breaking at the ocean surface. Two recent models use a mechanism of direct depth injection of turbulent kinetic energy (TKE) by breaking waves. Those models aim to reproduce the near-surface mean and turbulent properties, in particular the TKE dissipation rates. Of critical importance are the injection depth of each breaking wave and the size distribution of those breaking waves. The models by Sullivan et al. (2007) and by Kudryavtsev et al. (2008) have very different parameterizations, and those differences are reviewed here and compared to available observations. Using realistic parameterizations in these models leads to TKE injections too shallow to compare to observations, in particular for developed seas. The near-surface turbulence is thus still not well understood to the zeroth order. For instance, whether developed seas produce deeper or shallower mixing than young seas is neither well understood nor well modelled. Additional dedicated measurements as well as investigations of breaking non-breaking wave interactions are needed.  相似文献   

9.
The motion of large bottom particles (cobbles/mines) was studied in the laboratory under simulated surf conditions. A series of experiments was conducted in a large wave tank, 32×0.9×1.8 m, equipped with a computer-controlled wave maker and a sloping beach. As a first step, a solid impermeable beach with artificial roughness was used in the experiments. Cobbles of different size were placed along the floor and their evolution with time was studied and compared with the model predictions. Onshore and offshore mean motions of cobbles, as well as steady oscillations with zero mean displacement, were observed for different conditions. To explain the results of observations a theoretical model was advanced. The model takes into account all main governing parameters (size and density of cobbles, bottom slope, dynamic and static friction at the bottom, background flow characteristics, etc.). Standard parameterizations were used for a pressure accelerating term, drag, lift and other nonlinear forces. For the range of parameters used in the experiments, satisfactory agreement between the measured and calculated values of the cobble displacements as a function of time was obtained. The model is practically insensitive to the vertical accelerating pressure term but sensitive to the dynamic and static friction. One of the most important variables in the model, which is known with the least accuracy, is the virtual mass coefficient for disk-shaped cobbles moving with variable velocity along a solid boundary.  相似文献   

10.
A bottom-mounted instrumental tripod was deployed in the tidally energetic Zhujiang (Pearl River) Estuary to examine the contrasting properties of the bottom boundary layer (BBL) flows between estuarine and tide-affected river systems. Three aspects of the BBL flows were investigated to understand the mechanism of the turbulence responses to the large-scale ambient forcing: the flow structures (profile, anisotropy, and spectra), shearing strains and stresses, and the balance of turbulent kinetic energy (TKE). Single log-law profiles and turbulence anisotropy predominated in the two systems, but the non-log regime and stronger anisotropy occurred more frequently at the slack tide in the estuary. The ADV-based turbulence intensities and shearing strains both exceeded their low-frequency counterparts (frictional velocities and mean shears) derived from the logarithmic law. On the contrary, the ADV-based Reynolds stresses were smaller than the log profile-derived bottom stresses, so the hypothesis of a constant stress layer cannot be well satisfied, especially in the river. The bandwidth of the inertial subrange in the river was of one decade larger than in the estuary. The balance between shear production and viscous dissipation was better achieved in the straight river. This first-order balance was significantly broken in the estuary and in the meandering river, by non-shear production/dissipation due to wave-induced fluctuations or salinity/sediment stratification. All these disparities between two systems in turbulence properties are essentially controlled by the anisotropy induced by the large-scale processes such as secondary currents, density stratification. In conclusion, the acceleration of unsteady flows determines the profile structure of the BBL flow, and turbulence anisotropy results in the invalidation of the phenomenological relations such as the constant stress hypothesis and the first-order TKE balance.  相似文献   

11.
Coupled modeling of currents and wind waves in the Kerch Strait   总被引:1,自引:0,他引:1  
We present a numerical model of the dynamics of the Kerch Strait allowing one to perform the coordinated analysis of the fields of currents and wind waves. The model includes the spectral wave module and the hydrodynamic block of currents. The influence of waves on the currents is taken into account in the hydrodynamic block both via the surface and bottom tangential stresses and via the radiation stresses. In order to take into account the inverse influence of currents upon the waves, we use the fields of currents and sea level from the hydrodynamic block in the wave module. The specific features of the structure of currents and wind waves in the strait are studied for the typical wave situations. The results of the coupled and separate simulation are compared and the importance of taking into account the mechanisms of interaction between waves and currents in the analysis of the dynamic processes in the strait is demonstrated. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 5, pp. 3–20, September–October, 2007.  相似文献   

12.
In this review paper, state-of-the-art observational and numerical modeling methods for small scale turbulence and mixing with applications to coastal oceans are presented in one context. Unresolved dynamics and remaining problems of field observations and numerical simulations are reviewed on the basis of the approach that modern process-oriented studies should be based on both observations and models. First of all, the basic dynamics of surface and bottom boundary layers as well as intermediate stratified regimes including the interaction of turbulence and internal waves are briefly discussed. Then, an overview is given on just established or recently emerging mechanical, acoustic and optical observational techniques. Microstructure shear probes although developed already in the 1970s have only recently become reliable commercial products. Specifically under surface waves turbulence measurements are difficult due to the necessary decomposition of waves and turbulence. The methods to apply Acoustic Doppler Current Profilers (ADCPs) for estimations of Reynolds stresses, turbulence kinetic energy and dissipation rates are under further development. Finally, applications of well-established turbulence resolving particle image velocimetry (PIV) to the dynamics of the bottom boundary layer are presented. As counterpart to the field methods the state-of-the-art in numerical modeling in coastal seas is presented. This includes the application of the Large Eddy Simulation (LES) method to shallow water Langmuir Circulation (LC) and to stratified flow over a topographic obstacle. Furthermore, statistical turbulence closure methods as well as empirical turbulence parameterizations and their applicability to coastal ocean turbulence and mixing are discussed. Specific problems related to the combined wave-current bottom boundary layer are discussed. Finally, two coastal modeling sensitivity studies are presented as applications, a two-dimensional study of upwelling and downwelling and a three-dimensional study for a marginal sea scenario (Baltic Sea). It is concluded that the discussed methods need further refinements specifically to account for the complex dynamics associated with the presence of surface and internal waves.  相似文献   

13.
By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three-dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field.  相似文献   

14.
Measurements of tidal current and wave velocity made at 0.69 and 1.85 m above a rough seafloor exhibit large current gradients (boundary layer) in the water column. The logarithmic boundary layer flow model was fitted to the measurements, and thus roughness (z0) and friction velocity (u*) parameters were derived. The roughness parameter values were generally consistent with the observed upstream physical roughness. The values of both parameters for conditions in the rough turbulence flow regime are generally larger (much larger for ebb) than earlier published values for similar measurements of currents in the absence of significant waves but are comparable to values from recent measurements of currents in the presence of storm waves. The high parameter values here appear to relate more to the magnitude of the current and to the upstream physical bottom roughness than to the magnitude of the seastate. Large boundary layers in the flow at the seabed have a profound effect on the design of offshore structures such as offshore pipelines.  相似文献   

15.
A coupled-mode model is developed for treating the wave–current–seabed interaction problem, with application to wave scattering by non-homogeneous, steady current over general bottom topography. The vertical distribution of the scattered wave potential is represented by a series of local vertical modes containing the propagating mode and all evanescent modes, plus additional terms accounting for the satisfaction of the free-surface and bottom boundary conditions. Using the above representation, in conjunction with unconstrained variational principle, an improved coupled system of differential equations on the horizontal plane, with respect to the modal amplitudes, is derived. In the case of small-amplitude waves, a linearised version of the above coupled-mode system is obtained, generalizing previous results by Athanassoulis and Belibassakis [J Fluid Mech 1999;389:275–301] for the propagation of small-amplitude water waves over variable bathymetry regions. Keeping only the propagating mode in the vertical expansion of the wave potential, the present system reduces to an one-equation model, that is shown to be compatible with mild-slope model concerning wave–current interaction over slowly varying topography, and in the case of no current it exactly reduces to the modified mild-slope equation. The present coupled-mode system is discretized on the horizontal plane by using second-order finite differences and numerically solved by iterations. Results are presented for various representative test cases demonstrating the usefulness of the model, as well as the importance of the first evanescent modes and the additional sloping-bottom mode when the bottom slope is not negligible. The analytical structure of the present model facilitates its extension to fully non-linear waves, and to wave scattering by currents with more general structure.  相似文献   

16.
17.
关皓  周林  王汉杰  景丽 《海洋学报》2008,30(4):30-38
利用LINUX操作系统下的进程通讯(IPC)技术将中尺度大气模式MM5(V3)与第三代海浪模式WW3进行双向耦合,建立考虑大气-海浪相互作用的风浪耦合模式,在耦合模式中引入3种海表粗糙度参数化方案,通过对一次热带气旋过程的模拟,研究大气-海浪相互作用对热带气旋系统的影响及耦合模式对海表粗糙度参数化方案的敏感性。结果表明:LINUX系统下的进程通讯技术可以方便有效地实现大气和海浪模式的双向耦合,模式运行稳定;耦合模式能够较好的模拟热带气旋的发展和演变过程及其影响下海浪场的分布和演变,模拟结果对海表粗糙度参数化方案较敏感;海浪的反馈作用同时影响了海气间的动力和热力作用过程,不同的海表粗糙度参数化方案下,海浪对两种作用过程不同的影响程度决定了其对气旋系统强度的影响。  相似文献   

18.
沙纹微地形普遍存在于海底,沙纹的消长能改变底部应力进而影响泥沙的运移。以往研究较多侧重于波致沙纹,并已应用于波浪模式的底摩擦计算,而较少考虑波流联合效应产生的沙纹,也未将其应用于综合的水动力模式和沉积物输运模式。本文在POM水动力模式中嵌入新南威尔士大学泥沙模式,通过耦合波流共同作用的微地形模型与波流相互作用底边界层模型,发展了波浪-海流-微地形(沙纹)耦合的沉积动力模式。本文将该模式应用于澳大利亚Jervis湾,针对波主导和波流联合主导沙纹两种类型,分别进行了沙纹发展状态、几何形态的分布及悬浮泥沙的模拟。结果表明:波致沙纹比波流联合作用的沙波具有更大的波高和波长,因此当波主导时沙纹对悬浮泥沙起着关键作用。通过考虑随沙纹变化的粗糙度,相比于以往模式设置均一的粗糙度,该模型能对悬浮物浓度的骤升过程进行更精细的预测。  相似文献   

19.
Abstract

Lower Cook Inlet in Alaska has high‐ tidal currents that average 3–4 knots and normally reach a peak of 6–8 knots. The bottom has an average depth of about 60–70 m in the central part of the inlet that deepens toward the south. Several types of bedforms, such as sand waves, dunes, ripples, sand ribbons, and lag deposits form a microtopography on the otherwise smooth seafloor. Each bedform type covers a small field, normally a few hundred to a few thousand meters wide, and usually several kilometers long parallel to the tidal flow. High‐resolution seismic systems, side‐scan sonar and bottom television were used to study these bedforms. Large sand waves with wavelengths over 300 m and wave heights up to 10 m were observed. Fields of ebb‐oriented or flood‐oriented asymmetric bedforms commonly grade into more symmetric shapes. Several orders of smaller sand waves and dunes cover the flanks of the very large bedforms. The crest directions of both size groups are normally parallel, but deviations of up to 90° have been observed; local deviations may occur where smaller forms approach the crests of the larger sand waves. Bottom television observations demonstrated active bedload transport in a northerly direction on crests and midflanks of southward asymmetric large sand waves, but not in their troughs. Movement of bedload occurs in the form of small ripples. Although the asymmetry of the large bedforms suggests that migration has taken place in the ebb or flood directions, the very low surface angles (2.5°‐8°) of these bedforms do not indicate regular movements. The large bedforms are probably relict features, or they migrate only under severe conditions, whereas active sand transport by ripples and smaller sand waves and dunes moves bedload back and forth with the tides. An understanding of such movements is essential for determining design criteria for offshore installations and in benthic‐faunal studies.  相似文献   

20.
For various stratifications and different types of bottom patterns we study the transformations of solitary perturbations of density appearing in the depth of the sea. In the two-dimensional case, under the assumption that the average dynamic characteristics weakly vary in time as compared with the wave characteristics, we deduce the equations for mean currents and waves taking into account vertical and horizontal viscosity and the diffusion of density. Numerical examples show that the stratification, bottom topography, nonlinearity, mean currents, and dissipation strongly affect both the process of splitting of a solitary wave into wave trains and their amplitude and length. The wave currents exhibit the oscillatory (train-like) character. It is emphasized that, in the case of propagation of solitary perturbations of density with dissipation, it is also important to take into account the combined influence of nonlinearity, currents, bottom topography, and stratification. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号