首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we analyze some Viking infrared thermal mapping (IRTM) measurements of local Martian dust storms observed in the southern tropical region of the planet between Ls=225 and 262°. The derived opacities of these storms show that in the most opaque regions of the cloud, the optical thickness may be ≈6. Away from the individual clouds, the opacity is ≈2, which is still about four times the background level of dustiness in the Martian atmosphere. We find considerable structure in the derived opacity which will create corresponding variations in the atmospheric heating, which in turn may have an important feedback upon the local winds.  相似文献   

2.
A fine grained magnetic iron oxide precipitate found in Denmark has been studied with regard to grain size, magnetic properties, aerosol transport, grain electrification, aggregation and optical reflectance. It has shown itself to be a good Martian dust analogue. The fraction of the Salten Skov I soil sample <63 μm was separated from the natural sample by dry sieving. This fraction could be dispersed by ultrasonic treatment into grains of diameter ~1 μm, in reasonable agreement with suspended dust grains in the Martian atmosphere estimated from the Viking, Pathfinder and Mars Exploration Rover missions. Though mineralogical and chemical differences exist between this analogue and Martian dust material, in wind tunnel experiments many of the physical properties of the atmospheric dust aerosol are reproduced.  相似文献   

3.
It is uncertain whether the residual (perennial) south polar cap on Mars is a transitory or a permanent feature in the current Martian climate. While there is no firm evidence for complete disappearance of the cap in the past, clearly observable changes have been documented. Observations suggest that the perennial cap lost more CO2 material in the spring/summer season prior to the Mariner 9 mission than in those same seasons monitored by Viking and Mars Global Surveyor. In this paper we examine one process that may contribute to these changes—the radiative effects of a planet encircling dust storm that starts during late Martian southern spring on the stability of the perennial south polar cap. To approach this, we model the radiative transfer through a dusty planetary atmosphere bounded by a sublimating CO2 surface.A critical parameter for this modeling is the surface albedo spectrum from the near-UV to the thermal-IR, which was determined from both space-craft and Earth-based observations covering multiple wavelength regimes. Such a multi-wavelength approach is highly desirable since one spectral band by itself cannot tightly constrain the three-parameter space for polar surface albedo models, namely photon “scattering length” in the CO2 ice and the amounts of intermixed water and dust.Our results suggest that a planet-encircling dust storm with onset near solstice can affect the perennial cap's stability, leading to advanced sublimation in a “dusty” year. Since the total amount of solid CO2 removed by a single storm may be less than the total CO2 thickness, a series of dust storms would be required to remove the entire residual CO2 ice layer from the south perennial cap.  相似文献   

4.
During the Martian landings the descent engine plumes on Viking Lander 1 (VL-1) and Viking Lander 2 (VL-2) eroded the Martian surface materials. This had been anticipated and investigated both analytically and experimentally during the design phase of the Viking spacecraft. This paper presents data on erosion obtained during the tests of the Viking descent engine and the evidence for erosion by the descent engines of VL-1 and VL-2 on Mars. From these and other results, it is concluded that there are four distinct surface materials on Mars: (1) drift material, (2) crusty to cloddy material, (3) blocky material, and (4) rock.Work performed as part of NASA contract W 14,575.  相似文献   

5.
T.J. Ringrose  M.C. Towner 《Icarus》2003,163(1):78-87
Dust devil data from Mars is limited by a lack of data relating to diurnal dust devil behaviour. Previous work looking at the Viking Lander meteorological data highlighted seasonal changes in temporal occurrence of dust devils and gave an indication of typical dust devil diameter, size, and internal dynamics. The meteorological data from Viking Lander 2 for sols 1 to 60 have been revisited to provide detailed diurnal dust devil statistics. Results of our analysis show that the Viking Lander 2 experienced a possible 38 convective vortices in the first 60 sols of its mission with a higher occurrence in the morning compared to Earth, possibly as a result of turbulence generated by the Lander body. Dust devil events have been categorised by statistical confidence and intensity. Some initial analysis and discussion of the results is also presented. Assuming a similar dust loading to the vortices seen by Mars Pathfinder, it is estimated that the amount of dust lofted in the locality of the Lander is approximately 800 ± 10 kgsol−1km−2.  相似文献   

6.
A euphotic zone seems to exist at about 1 cm subsurface in the Martian epilith. At this depth visible light is still intense enough to be utilized by conceivable photosynthetic organisms; but the germicidal ultraviolet intensities at the Martian surface have been reduced to values manageable by terrestrial life. Such euphotic zone organisms would experience moderately high Martian temperatures at equatorial latitudes and can be dispersed readily during global dust stroms. During such storms the Martian euphotic zone may reach the surface. The aerosol content of the Martian atmosphere can be monitored by multiband single line scans of the sun at large zenith angles by the Viking lander camera; and the postulated euphotic zone organisms can be searched for with the Viking lander sample arm and biology experiments.  相似文献   

7.
A semiquantitative analysis of clearing in the 1971 great dust storm on Mars is presented as a function of time and altitude, using Mariner 9 orange- and visual-light photos. Steady settling of dust approximately accounts for the decline of the storm after December 22, 1971. Continuous settling cannot be invoked prior to that date; injection of dust into the atmosphere, i.e., a storm resurgence, occurred in mid-December 1971. Theoretical models of optical depth versus time are developed for various distributions of particles in the atmosphere. By intespreting settling in terms of Stokes' law, estimates of the maximum radii of dust particles throughout the atmosphere have been obtained. Models which best account for the dust-storm decline indicate particles ? 5μm in diameter high in the atmosphere, with a concentration of larger particles (? 10μm) near the ground in the lowest parts of Mars. Long-term thin high hazes should persist through much of the Martian year, perhaps clearing before perihelion.  相似文献   

8.
Richard W. Zurek 《Icarus》1978,35(2):196-208
This paper examines the solar heating of the Martian atmosphere during the 1971 global dust storm observed by Mariner 9. Radiative scattering as well as absorption is included by utilizing the delta-Eddington approximation to the full radiative transfer equation. The necessary optical parameters are generated by a Mie program which uses a size distribution and a complex refractive index inferred from a number of sources, particularly from recent analyces of Mariner 9 UVS and TV observations. Assuming uniform mixing of the dust, the solar heating per unit mass during a Martian global dust storm is remarkably uniform with height for small solar zenith angles. Heating rates may reach 80°K day? for overhead sunlight. Overall, 20% of the direct insolation is absorbed by the dust-laden atmosphere. Even optically thin widespread dust hazes may produce heating rates of several degrees Kelvin per day.  相似文献   

9.
There are reasons to expect that Mars is surrounded by a region of dust, similar to rings, originating from the bombardment of Phobos and Deimos by meteroids. Using a simple radiative transfer model, we have investigated the angular distribution and the absolute values of the solar radiance scattered by such a dust region, to the purpose of assessing the possibilities and limitations of future photometric searches after the circummartian dust. Our model values of the number density of the dust grains in the space around Mars and of their size distribution have been derived from the results obtained by other authors. The single-scattering albedo of the dust grains has been deduced from the reflectance spectra of Phobos, taken by the spacecraft Phobos 2. Calculations, carried out for a few phenomenological phase functions, have shown that in the visible the radiance scattered by the rings is well within the detectability range of a modern sensible photometer, so that the prospectives for photometric search for the Martian dust rings are optimistic. Furthermore, our results confirm that the dust region could not be observed by the Viking cameras and this supports o our assumptions regarding the optical properties of the circummartian grains.  相似文献   

10.
The secular variation of the thermal structure of the Martian atmosphere during the dissipation phase of the 1971 dust storm is examined, using temperatures obtained by the infrared spectroscopy investigation on Mariner 9. For the latitude range ?20° to ?30°, the mean temperature at the 2mbar level is found to decrease from approximately 220 K in mid-December 1971 to about 190 K by June 1972 while for the 0.3mbar level a decrease from 203 K to 160 K is observed. Over the same period, the amplitude of the diurnal temperature wave also decreased. Assuming a simplified radiative heating model, the dust optical depth is found to decrease approximately exponentially with an e-folding time of about 60 days at both the 0.3 and 2mbar levels. Stokes-Cunningham settling alone cannot account for this behavior. Sedimentation models which include both gravitational settling and vertical mixing are developed in an effort to explain the time evolution of the dust. Within the framework of a model which assumes an effective vertical diffusivity K independent of height, a mean dust particle diameter of ~2 μm is inferred. To provide the necessary vertical mixing, K ? 107 cm2sec?1 is required in the lower atmosphere.  相似文献   

11.
The inorganic chemical investigation added in August 1972 to the Viking Lander scientific package will utilize an energy-dispersive X-ray fluorescence spectrometer in which four sealed, gas-filled proportional counters will detect X-rays emitted from samples of the Martian surface materials irradiated by X-rays from radioisotope sources (55Fe and 109Cd). The output of the proportional counters will be subjected to pulse-height analysis by an on-board step-scanning single-channel analyzer with adjustable counting periods. The data will be returned to Earth, via the Viking Orbiter relay system, and the spectra constructed, calibrated, and interpreted here. The instrument is inside the Lander body, and samples are to be delivered to it by the Viking Lander Surface Sampler. Calibration standards are an integral part of the instrument.The results of the investigation will characterize the surface materials of Mars as to elemental composition with accuracies ranging from a few tens of parts per million (at the trace-element level) to a few percent (for major elements) depending on the element in question. Elements of atomic number 11 or less are determined only as a group, though useful estimates of their individual abundances maybe achieved by indirect means. The expected radiation environment will not seriously hamper the measurements. Based on the results, inferences can be drawn regarding (1) the surface mineralogy and lithology; (2) the nature of weathering processes, past and present, and the question of equilibrium between the atmosphere and the surface; and (3) the extent and type of differentiation that the planet has undergone.The Inorganic Chemical Investigation supports and is supported by most other Viking Science investigations.  相似文献   

12.
Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.  相似文献   

13.
Windborne dust is one of the most important and dynamic factors affecting the Martian surface and its atmosphere, yet there lacks a detailed physical understanding how it is transported. We present a miniature laser-based optoelectronic instrument for use on a Mars lander. It integrates sensors capable of quantifying important parameters needed for the understanding and modeling of dust transport on Mars, these include wind speed, wind direction, suspended dust concentration, dust deposition and removal rates as well as the electrification of the Martian dust. Dust electrification has been seen from experimental simulations to be of considerable importance to the processes of adhesion and cohesion, specifically prompting the formation of low mass density dust aggregates. Testing of this prototype instrument has been performed under simulated Martian conditions in a wind tunnel facility. The results and analysis of its functionality will be presented.  相似文献   

14.
Of the four spacecraft that the Viking Project put into operation at Mars in the summer of 1976, one continues to acquire data periodically. The missions of the two orbiters were terminated by the depletion of their attitude-control gas: Orbiter 2 in July 1978 and Orbiter 1 in August 1980. Lander 2 was shut down in April 1980 because of degradation of its batteries. Lander 1 is programmed to continue acquiring a modest number of imaging, meteorology, and ranging data periodically until December 1994. During its final year Orbiter 1 continued to produce excellent data from its full complement of instruments—two cameras, two infrared instruments (thermal mapper and water vapor detector), and the radio subsystem. The major emphasis was on photography, with 10,000 images being acquired. These included two very large swaths of high-resolution contiguous coverage of the Martian surface and the completion of the moderate-resolution mapping of nearly the entire surface, as well as miscellaneous other observations. The majority of these images has not been processed and examined, but the others have revealed many previously unobserved features and have greatly enhanced the base for a geological understanding of the planet. The history of Viking mission operations is brought up to date.  相似文献   

15.
Viking data suggest the presence of volatile-rich materials in the Martian regolith. The thermal stabilities of mineral phases and their volatile release profiles were studied in detail in our laboratory. Thermal analysis, combined with mass spectrometry, was applied to the study of the behavior of carbonates, sulfates, hydrates, and clays. The results indicate that these techniques are useful in the preliminary mineralogical characterizations of volatile-rich minerals. However, our results also indicate that great care must be taken in the incorporation into planetary probes of such methods as heating rates, pressure, composition of atmospheres, grain size, etc., because these factors affect volatile release.  相似文献   

16.
Edwin K. Schneider 《Icarus》1983,55(2):302-331
The simplified theory of steady, nearly inviscid, thermally forced axially symmetric atmospheric motions developed by Schneider (1977) is applied to the study of the problem of the Martian great dust storms. A highly idealized calculation of the atmospheric response to heating concentrated in a small latitude band is carried out. Qualitatively different local and global response regimes are identified. As the heating is increased from zero, some critical value is reached at which the response jumps from local to global. It is suggested that this transition from local to global response may be related to the observed explosive growth of great dust storms. Results from the idealized model indicate that subtropical latitudes are favored for the initiation of a dust raising global dust storm, as the meridional scale of the response to a heat source of fixed intensity is largest for the heat source located close to the equator, but the surface stress in the zonal direction produced by the response increases as the heat source is moved towards the poles. Also, the steady axially symmetric Martian response to solar forcing is examined. Modification to the solar forced response due to an added latitudinally localized heat source is briefly discussed, and it is indicated that similar transition behavior to that obtained in the more idealized model is to be expected in this case also. Implications of the dynamical model for the dependence of the occurence of great dust storms on orbital parameters are remarked on.  相似文献   

17.
《Planetary and Space Science》2006,54(9-10):911-918
As the data from space missions and laboratories improve, a research domain combining plasmas and charged dust is gaining in prominence. Our solar system provides many natural laboratories such as planetary rings, comet comae and tails, ejecta clouds around moons and asteroids, and Earth's noctilucent clouds for which to closely study plasma-embedded cosmic dust. One natural laboratory to study electromagnetically controlled cosmic dust has been provided by the Jovian dust streams and the data from the instruments which were on board the Galileo spacecraft. Given the prodigious quantity of dust poured into the Jovian magnetosphere by Io and its volcanoes resulting in the dust streams, the possibility of dusty plasma conditions exist. This paper characterizes the main parameters for those interested in studying dust embedded in a plasma with a focus on the Jupiter environment. I show how to distinguish between dust-in-plasma and dusty-plasma and how the Havnes parameter P can be used to support or negate the possibility of collective behavior of the dusty plasma. The result of applying these tools to the Jovian dust streams reveals mostly dust-in-plasma behavior. In the orbits displaying the highest dust stream fluxes, portions of orbits E4, G7, G8, C21 satisfy the minimum requirements for a dusty plasma. However, the P parameter demonstrates that these mild dusty plasma conditions do not lead to collective behavior of the dust stream particles.  相似文献   

18.
The electrification of wind-blown dust grains was studied in a series of laboratory experiments to examine how grain electrification depends on grain size, grain mineralogy, atmospheric composition, atmospheric pressure, and the method of dust dispersal. This work is intended to contribute to a deeper physical understanding of particle electrification on both Mars and Earth. Findings indicate that the amount of electrification per suspended particle generally is independent of dust entrainment process and atmospheric composition. As expected, the electrification process is grain size-dependent, with smaller grains predominantly electrifying negatively. Although there appears to be a weak dependence upon dust mineralogy, this work supports the expectation that dust suspended in the Martian atmosphere will be significantly electrified.  相似文献   

19.
Global Martian atmospheric results derived from the infrared imaging spectrometer ISM flown aboard the Phobos 2 Soviet spacecraft are presented. Over low altitude regions the expected CO mixing ratio of (8 +/- 3) x 10(-4) is measured. Variations of the 2.35-micrometers feature are inconsistent with this value over the Great Martian Volcanoes. If the 2.35-micrometers band is entirely attributable to carbon monoxide, the CO mixing ratio is typically depleted by a factor of 3 over these high altitude areas. Orography should play a major role in the existence of this CO "hole." If, however, these spectral variations at 2.35 micrometers are due to the surface composition, the fraction of the surface covered by the responsible mineral must smoothly decrease as the surface elevation decreases. This phenomenon implies a strong interaction between the surface and the atmosphere for the Great Martian Volcanoes. Diurnal behavior and latitudinal variations of water vapor are globally consistent with Viking measurements. During the Phobos observations, the water vapor amounts over the bright equatorial regions range around 11 pr-micrometers during the day. These amounts are slightly larger than those inferred from 1976 to 1979. The lack of global dust storms during 1988-1989 could explain the enhancement of H2O in the atmosphere.  相似文献   

20.
《Icarus》1987,72(1):95-127
The possibility that snowmelt could have provided liquid water for valley network formation early in the history of Mars is investigated using an optical-thermal model developed for dusty snowpacks at temperate latitudes. The heating of the postulated snow is assumed to be driven primarily by the absorption of solar radiation during clear sky conditions. Radiative heating rates are predicted as a function of depth and shown to be sensitive to the dust concentration and the size of the ice grains while the thermal conductivity is controlled by temperature, atmospheric pressure, and bulk density. Rates of metamorphism indicate that fresh fine-grained snow on Mars would evolve into moderately coarse snow during a single summer season. Results from global climate models are used to constrain the mean-annual surface temperatures for snow and the atmospheric exchange terms in the surface energy balance. Mean-annual temperatures within Martian snowpacks fail to reach the melting point for all atmospheric pressures below 1000 mbar despite a predicted temperature enhancement beneath the surface of the snowpacks. When seasonal and diurnal variations in the incident solar flux are included in the model, melting occurs at midday during the summer for a wide range of snow types and atmospheric pressures if the dust levels in the snow exceed 100 ppmw (parts per million by weight). The optimum dust concentration appears to be about 1000 ppmw. With this dust load, melting can occur in the upper few centimeters of a dense coarse-grained snow at atmospheric pressures as low as 7 mbar. Snowpack thickness and the thermal conductivity of the underlying substrate determine whether the generated snow-melt can penetrate to the snowpack base, survive basal ice formation, and subsequently become available for runoff. Under favorable conditions, liquid water becomes available for runoff at atmospheric pressures as low as 30 to 100 mbar if the substrate is composed of regolith, as is expected in the ancient cratered terrain of Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号