首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Particle track measurements have been reported for 25 (5%) of the regolith breccias in the collection; they have been reported for 16 breccias (30%) in the reference suite. The most frequently reported measurement for these 25 breccias is the maximum surface exposure age of the compacted rock (48% of the published breccia measurements). Information on the nature of the precompaction regolith is given for 9 rocks (36%) and on the nature of the compaction event for 6 rocks (24%). Most of the breccias appear to have simple post-compaction surface exposure histories (89%). From the few track density frequency distributions (7) that are available and inferring from the low exposure ages of these rocks (75% < 106 yr), it appears that most of these breccias are amenable to studies which separate the contemporary surface exposure age from information about the precompaction regolith. If the number of immature-submature precompaction soils (6 out of 10 of the breccias for which appropriate data are available) represents many regolith breccias, then we can infer that regolith breccias may sample the deeper, less reworked materials in the lunar soil and compliment the samples available from the returned cores.  相似文献   

2.
Wenzhe Fa 《Icarus》2010,207(2):605-615
In China’s first lunar exploration project, Chang-E 1 (CE-1), a multi-channel microwave radiometer was aboard the satellite, with the purpose of measuring microwave brightness temperature (Tb) from lunar surface and surveying the global distribution of lunar regolith layer thickness. In this paper, the primary 621 tracks of swath data measured by CE-1 microwave radiometer from November 2007 to February 2008 are collected and analyzed. Using the nearest neighbor interpolation to collect the Tb data under the same Sun illumination, global distributions of microwave brightness temperature from lunar surface at lunar daytime and nighttime are constructed. Based on the three-layer media modeling (the top dust-soil, regolith and underlying rock media) for microwave thermal emission of lunar surface, the CE-1 measured Tb and its dependence upon latitude, frequency and FeO + TiO2 content, etc. are discussed. The CE-1 Tb data at Apollo landing sites are especially chosen for validation and calibration on the basis of available ground measurements. Using the empirical dependence of physical temperature upon the latitude verified by the CE-1 multi-channel Tb data at Apollo landing sites, the global distribution of regolith layer thickness is further inverted from the CE-1 brightness temperature data at 3 GHz channel. Those inversions at Apollo landing sites and the characteristics of regolith layer thickness for lunar maria are well compared with the Apollo in situ measurements and the regolith thickness derived from the Earth-based radar data. Finally, the statistical distribution of regolith thickness is analyzed and discussed.  相似文献   

3.
Stephen J. Keihm 《Icarus》1984,60(3):568-589
A detailed model of the lunar regolith is analyzed to examine the feasibility of an orbital mapping of heat flow using microwave radiometers. For regolith thermal and electrical properties which are representative of Apollo findings, brightness temperature observations in the bandλ = 5–30 cm would be required for heat flow analysis. Spectral variations shortward of 5 cm are controlled primarily by the temperature dependencies of the thermal conductivity and electrical absorption within the diurnal-varying layer. For wavelengths longer than 30 cm, unwanted emission from high impedance subregolith layers can be significant and size limitations on spacecraft radiometers is a factor. Over the 5- to 30-cm band, lunation-averaged brightness temperature increases of 2–10°K are predicted for heat flow values representative of the Apollo measurements. The magnitude of this increase depends directly on the value of regolith microwave absorption. For absorption values consistent with Apollo laboratory measurements, a spectral increase of 5°K is predicted. This value is considered marginally sufficient for an orbital heat flow measurement. However, important non-heat flow effects must be accounted for. Spectral variations can occur due to surface topography and subsurface scattering. For nadir viewing, surface roughness effects are not expected to be significant and topographic effects are nearly constant with wavelength for λ > 5cm. Volume scattering due to subsurface rock fragments can cause emission darkening of 1–6°K. However, spectral variations will not be large unless the distribution of scatterer sizes is sharply skewed. For the Moon, the most serious spurious effect appears to be emissivity variations due to the near-surface density gradient. A brightness temperature decrease of 10°K is predicted from centimeter to decameter wavelengths. If the transition from porous surface fines to compacted regolith soil occurs rapidly (within the upper 3–5 cm), most of the emissivity decrease will occur in the 5- to 30-cm wavelength band. It is recommended that complementary radar measurements be utilized to augment constraints on regolith emissivity and scattering properties.  相似文献   

4.
We report on observations of the full Moon brightness temperature covering the frequency range of 300-950 GHz, and also on observations of the lunar eclipse of July 16, 2000, though only covering the frequency range of 165-365 GHz due to poor atmospheric transmission at higher frequencies. All observations were performed from the summit of Mauna Kea (HI) using a Fourier Transform Spectrometer mounted on the Caltech Submillimeter Observatory and supplemented by measurements of the atmospheric opacity using a 183 GHz Water Vapor Monitor. The telescope was pointed to the center of the lunar disk (with a footprint of ∼45-15 km on the Moon at 300 through 900 GHz). In order to obtain the correct values of the Moon brightness temperatures at all frequencies we carefully corrected for the atmospheric absorption, which varies across the submillimeter domain. This correction is fully described. The measured pre-eclipse brightness temperature is around 337 K in the 165-365 GHz range. This temperature slightly increases with frequency to reach ∼353 K at 950 GHz, according to previous broader band data. The magnitude of the temperature drop observed during the eclipse at 265 GHz (central frequency of the band covered) was about ∼70 K, in very good agreement with previous millimeter-wave measurements of other lunar eclipses. We detected, in addition, a clear frequency trend in the temperature drop that has been compared to a thermal and microwave emission model of the lunar regolith, with the result of a good match of the relative flux drop at different frequencies between model and measurements.  相似文献   

5.
We present the first in situ measurements of the secondary electron emission efficiency of lunar regolith, utilizing Lunar Prospector measurements of secondary electrons emitted from the negatively charged night side and accelerated upward by surface electric fields. By comparing measurements of secondary currents emitted from the surface and incident primary electron currents, we find that the secondary yield of lunar regolith is a factor of ∼3 lower than that measured for samples in the laboratory. This lower yield significantly affects current balance at the lunar surface and the resulting equilibrium surface potentials. This information must be folded into models of the near-surface plasma sheath, in order to predict the effects on dust and other components of the lunar environment, and ultimately determine the importance for surface exploration and scientific investigations on the Moon.  相似文献   

6.
The aim of this paper is to point out that if the sinuous rilles on the Moon represent trenches in the mare ground in which they meander, the existence of a great number of individual boulders on their slopes - as discovered on the high-resolution photographs taken by US Lunar Orbiters 4 and 5 in 1967 - suggests that the solid substrate of the lunar globe is covered by broken-up debris produced by cosmic abrasion - and hereafter referred to as lunar regolith - of thickness comparable with the depth of the respective rilles - at least of those lacking flat floors; which is generally in the order of 200–300 m. This depth is much greater than that indicated previously by other methods possessing more limited depth in range; and need not apply uniformly all over the Moon. In point of fact, marial regions abounding in sinuous rilles may represent loci where the lunar regolith has developed its maximum depth.  相似文献   

7.
A summary is given of the literature data on the content of volatiles in the lunar regolith, the characterization of the likely sources of the volatiles, and the possible processes of their migration and burial. The main sources of volatiles in the regolith are the solar wind, small Solar System bodies (comets and meteorites), and the lunar interior. Different sources are the leading ones for different volatiles. Water and other volatiles can accumulate on the surface and in the near-surface layers of the Moon only in the so-called cold traps in polar basins, where other volatiles, as well as water ice, including highly toxic elements such as mercury and cadmium must be accumulated. The content of volatiles in the lunar interior is comparable to that in terrestrial rocks. Water could have played an important role in the early stages of the Moon’s history, e.g., in the formation of mare basalts. The isotopic composition of the lunar juvenile water is similar to that on the Earth, which suggests a common origin of the terrestrial and lunar water.  相似文献   

8.
Results from particle-size distribution analyses of the lunar regolith (less than 1 mm) as sampled by Apollos 11, 12, 14, 15 and 16 have been tested to see if they conform to Rosin's law, which has been found to describe crushed products of many kinds and sizes. In all the lunar examples the law appears to be followed closely. It is concluded that the lunar regolith is probably the result of crushing forces, most likely impacts on the lunar surface.  相似文献   

9.
M.J. Klein 《Icarus》2006,184(1):170-180
We present a self-consistent, 36-year record of the disk-averaged radio brightness of Uranus at wavelengths near 3.5 cm. It covers nearly half a uranian year, and includes both equatorial and polar viewing geometries (corresponding to equinox and solstice, respectively). We find large (greater than 30 K) changes over this time span. In agreement with analyses made of more limited microwave data sets, our observations suggest the changes are not caused by geometric effects alone, and that temporal variations may exist in the deep uranian troposphere down to pressures of tens of bars. Our data also support an earlier suggestion that a rapid, planetary-scale change may have occurred in late 1993 and early 1994. The seasonal record presented here will be useful for constraining dynamical models of the deep atmosphere, and for interpreting observations made during Uranus' 2007 equinox passage. As part of a multi-wavelength observing campaign for this event, the Goldstone-Apple Valley Radio Telescope (GAVRT) project will continue to make frequent, single-dish observations near 3.5 cm.  相似文献   

10.
B.L. Ulich 《Icarus》1974,21(3):254-261
Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also presented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.  相似文献   

11.
A model for radon diffusion through the lunar regolith is proposed in which the atom migrates by random walk. The regolith is represented by a system of randomly oriented baffles in which the mean distanced which the atom travels between two collisions takes on the role of a mean free path. The effective mean time between two collisions depends on two entities: the actual mean time-of-flight and the mean sticking time on grain surfaces for one collision. The latter depends strongly on the temperature and the heat of adsorption of radon on regolith materials. Bothd (mean free path) as well asQ (heat of adsorption) are either poorly known or unknown for the lunar regolith; hence these quantities are treated as free parameters. Because of the greatly different mean lifetimes against radioactive decay of219Rn,220Rn, and222Rn, the regolith acts as a powerful filter for these species.222Rn escape is significant (32%) even ford = 1µ,Q = 7.0 kcal/mole and a regolith depth of 4 m. Calculations of radon escape from a 4 m thick regolith, usingd = 1, 10 and 80µ andQ = 4.0, 5.2 and 7.0 kcal/mole show that the222Rn/220Rn escape ratio can be as small as 7.7 and as large as, or larger than 47. The small value of 7.7 is of particular interest, because it is nearly equal to the escape ratio inferred by Turkevichet al. from their Surveyor 5 results.  相似文献   

12.
The solar ultraviolet flux in the wavelength bands 1580–1640 Å and 1430–1470 Å (FWHM) has been measured using photon ion chambers carried on the satellite WRESAT I (1967-118A). These observations of the integrated ultraviolet flux from the entire disk indicate a value of (4570 ± 50) K for the solar temperature minimum. The results are compared with other estimates of the minimum value of the solar brightness temperature.Died August, 1971.  相似文献   

13.
Lunar Penetrating Radar(LPR) based on the time domain Ultra-Wideband(UWB) technique onboard China's Chang'e-3(CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.  相似文献   

14.
15.
In the analysis of X-ray fluorescence spectra from planetary surfaces, it is traditionally assumed that the observed surface is a plane-parallel, smooth, and homogeneous medium. The spectral and spatial resolutions of the instruments that have been used to measure X-ray emission from planetary surfaces to date have been such that this has been a reasonable assumption, but a new generation of X-ray spectrometers will provide enhanced spectral and spatial resolutions when compared with previous instrumentation. In light of these improvements in performance, it is important to assess how the requirements on the methodology of analysis of spectra may change when the surface is considered as a regolith. At other wavelengths, varying physical properties of planetary regoliths, such as the packing density, are known to have an effect on the observed signal as a function of viewing geometry. In this paper, the results from laboratory X-ray fluorescence measurements of regolith analogue materials at different viewing geometries are presented. Characteristic properties of the regolith such as particle sizes and packing density are found to affect the measured elemental line ratios. A semiempirical function is introduced as a tool for fitting fluorescent line intensity dependences as a function of viewing geometry. The importance of the results is discussed and recommendations are made for the future analysis of planetary X-ray fluorescence data.  相似文献   

16.
A numerical solution to the integral equation for radiative transfer by resonance reradiation in an isothermal spherical atmosphere is described. The method presented is 100 times more efficient than earlier spherical radiative transfer models. The new model can accommodate density variations in the full three dimensional space and includes effects due to the presence of pure absorbers. Complete frequency redistribution is assumed for photon scattering. Applications of this model to the problem of solar photons scattered by atomic hydrogen in the atmospheres of Venus, Earth and Mars are described, and limb and disk profiles, as well as equivalent mean disk intensities for Venus, Earth and Mars, are presented.  相似文献   

17.
Remote observations of the lunar radiowave emission are reexamined in the light of physical property data accumulated through the Apollo program. It is found that thermal and electrical properties determined for a number of different landing sites yield theoretical results in good agreement with remote observations for millimeter and short centimeter wavelengths. Theoretical models incorporating reflecting layers of rock and physical property data from the Apollo program are compared to the longer wavelength (5–500 cm) observational data to estimate a disk average steady state heat flow and a mean depth of the lunar regolith. It is found that a high heat flow, comparable to the heat flows measured at the Apollo 15 and 17 sites, is required to fit the available 5–20 cm wavelength remote data, and that a lunar surface layer relatively free of large boulders within the upper 10–30 m best fits the observations of a decreasing brightness temperature with wavelength for wavelengths greater than ~ 50 cm.  相似文献   

18.
19.
We report results of telescope polarimetric imaging of the Moon with a CCD LineScan Camera at large phase angles, near 88°. This allows measurements of the polarization degree with an absolute accuracy better than 0.3% and detection of features with polarization contrast as small as 0.1%. The measurements are carried out in two spectral bands centered near 0.65 and 0.42 μm. We suggest characterizing the lunar regolith with the parameter a(Pmax)A, where Pmax,A, and a are the degree of maximum polarization, albedo, and the parameter describing the linear regression of the correlation Pmax-A. The parameter bears significant information on the particle characteristic size and packing density of the lunar regolith. We also suggest characterizing the lunar regolith with color-ratio images obtained with a polarization filter at large phase angles. We here consider the color-ratios C||(0.65/0.42 μm) and C(0.65/0.42 μm). Using light scattering model calculations we show that the color-ratio images obtained with a polarization filter at large phase angles suggest a new tool to study the lunar surface. In particular, it turns out that the color-ratios C||(0.65/0.42 μm) and C(0.65/0.42 μm) are sensitive to somewhat different thicknesses of the surfaces of regolith particles. We consider the applicability of the Hubble Space Telescope, the Very Large Telescope (ESO), and a spacecraft on a lunar polar orbit for polarimetric observations of the lunar surface.  相似文献   

20.
The angular light scattering properties of an Apollo 11 lunar regolith ‘fines’ sample have been determined experimentally for both flat and undulating sample surface preparations. The light scattering curves, whose shapes are known to be a function of the porosity and slope distribution of the measured surface, have been compared with corresponding Earth-based lunar measurements. The comparison method involves the numerical fitting of theoretical photometric functions to both the astronomical and laboratory data.It is deduced that regolith material can, under favourable circumstances, maintain a very underdense structure (porosity of the surface layer greater than 90 per cent) in air, so that vacuum cold-welding is not essential in the formation of such a structure. Photometric scanning is shown to provide a rapid method of determining the effective porosity of regolith sample surfaces in the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号