首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Icarus》1987,71(1):137-147
Control networks of the five large satellites of Uranus have been established photogrammetrically from pictures taken by the Voyager 2 spacecraft. The control networks cover the illuminated southern hemisphere of each satellite. Coordinates are listed for 103 points on Miranda, 52 points on Ariel, 43 points on Umbriel, 46 points on Titania, and 34 points on Oberon; some points are identified on the U.S. Geological Survey maps of these satellites. Miranda is ellipsoidal in shape with radii of 241, 235 and 232 km. Mean radii are 579 km for Ariel, 586 km for Umbriel, 790 km for Titania, and 762 km for Oberon.  相似文献   

2.
We present 0.8-2.4 μm spectral observations of uranian satellites, obtained at IRTF/SpeX on 17 nights during 2001-2005. The spectra reveal for the first time the presence of CO2 ice on the surfaces of Umbriel and Titania, by means of 3 narrow absorption bands near 2 μm. Several additional, weaker CO2 ice absorptions have also been detected. No CO2 absorption is seen in Oberon spectra, and the strengths of the CO2 ice bands decline with planetocentric distance from Ariel through Titania. We use the CO2 absorptions to map the longitudinal distribution of CO2 ice on Ariel, Umbriel, and Titania, showing that it is most abundant on their trailing hemispheres. We also examine H2O ice absorptions in the spectra, finding deeper H2O bands on the leading hemispheres of Ariel, Umbriel, and Titania, but the opposite pattern on Oberon. Potential mechanisms to produce the observed longitudinal and planetocentric distributions of the two ices are considered.  相似文献   

3.
High-precision spectrophotometry at 5% resolution has been obtained for the Uranian satellites Ariel, Umbriel, Titania, and Oberon. These spectra cover the wavelength region 1.43–2.57 μm and represent a substantial improvement in precision or wavelength coverage over previous studies. The presence of a spectrally dominant water-ice component in the surface of Ariel, Umbriel, Titania, and Oberon is confirmed. The 1.5- and 2.0-μm water absorption band depths and the continuum reflectance (as defined by the reflectance at 1.78 and 2.25 μm) indicate significant differences among the surface compositional properties of the four satellites. Comparisons of the new spectra to those of other solar system bodies, and to laboratory spectra of water ice of various degrees of purity, indicate that these satellites have a significant non-water-ice component on/in their surfaces. The lack of spectral absorptions at 5% resolution attributable to anything other than water ice suggests that the non-water-ice component is a roughly neutral reflector in the 1.5- to 2.5- μm region. The nature of the non-water-ice component cannot be uniquely determined from these data, but it is relatively dark and has spectral similarities to substances such as carbon black, the dark substance covering one face of Iapetus, or other neutral-color, low-reflectance materials. Finally, preliminary measurements of the near-infrared opposition brightness surges of Ariel, Titania, and Oberon show them to be among the largest in the solar system.  相似文献   

4.
C. Miller  N.J. Chanover 《Icarus》2009,200(1):343-346
We observed the 15 August 2007 occultation of the uranian satellite Titania and the 19 August 2007 occultation of Ariel by Umbriel using the Agile high-speed photometer on the APO 3.5 m telescope. We find that the Titania event midpoint occurred at 09:16:39.20 UT and the Ariel event midpoint at 07:59:49.4 UT, which was 26.2 s and 37.4 s later than predicted, respectively. Our best fit impact parameter was 71.0 km for the Titania occultation and 476.9 km for the Ariel event, both of which were less than predicted.  相似文献   

5.
The spectral reflectances of Ariel, Umbriel, Titania, Oberon, and Triton were measured in 28 bandpasses between λ326 and λ976 nm on the night of 28/29 June 1974. These observations were made with the 200-in. Hale telescope and multichannel spectrometer. Bandpasses of 8 nm from λ326 to λ566 nm and 16 nm from λ592 to λ976 nm were employed. The spectral reflectances of Ariel, Oberon, and Titania increase from λ342 to λ534 nm and are relatively flat from λ550 to λ976 nm. Umbriel's reflectance decreases monotonically with increasing wavelength through the entire range of measured wavelengths. Triton is found to have a constant spectral reflectance.  相似文献   

6.
Craters with central peaks occur on the Uranian satellites Ariel, Umbriel, Titania, and Oberon; but do not occur on Miranda. The inelastic surface of Miranda is apparently due to the heavy tectonic reworking of its surface. A theory of expansion/contraction is proposed to explain the tectonic history of Miranda. The existence of central peak craters on the four largest satellites of Uranus implies that they have surface strengths similar to those of the Saturnian satellites and silicate bodies of the inner solar system which all have central peak craters. The absence of central peak craters on Miranda implies that it has an inelastic surface similar to those of the Jovian ice satellites Ganymede and Callisto whose surfaces do not contain central peak craters.  相似文献   

7.
In this paper, we analyze the results of ground-based and space-born photometric observations of the major satellites of Uranus—Miranda, Ariel, Umbriel, Titania, and Oberon. All sets of photometric observations of the satellites available in the literature were examined for uniformity and systematic differences and summarized to a unified set by wavelength ranging from 0.25 to 2.4 μm. This set covers the interval of phase angles from 0.034° to 35°. The compound phase curves of brightness of the satellites in the spectral bands at 0.25, 0.41, 0.48, 0.56, 0.75, 0.91, 1.4, and 1.8 μm, which include a pronounced opposition surge and linear part, were constructed. For each satellite, the geometric albedo was found in different spectral bands taking into account the brightness opposition effect, and its spectral dependence was studied. It has been shown that the reflectance of the satellites linearly depends on the wavelength at different phase angles, but has different spectral gradients. The parameters of the phase functions of brightness, including the amplitude and the angular width of the brightness opposition surge, the phase coefficient, and the phase angle at which the nonlinear increase in brightness starts, were determined and their dependences on wavelength and geometric albedo were analyzed. Our investigations show that, in their optical properties, the satellites Miranda and Ariel, Titania and Oberon, and Umbriel present three types of surfaces. The observed parameters of the brightness opposition effect for the Uranian satellites, some ice satellites of Jupiter and Saturn, and the E-and S-type asteroids are analyzed and compared within the framework of the coherent backscattering and mutual shadowing mechanisms.  相似文献   

8.
Richard Greenberg 《Icarus》1976,29(3):427-433
The theory of the effect of Ariel and Umbriel on Miranda's orbit is completed with a generalization of Souillart's theory of the Laplace relation. Comparison of observations of Miranda's motion with the theory yields an upper limit for the product of Ariel and Umbriel's masses of about 10?9, where Uranus' mass is unity. Therefore the albedos of Ariel and Umbriel cannot both be as low as the albedos of the darkest asteroids.  相似文献   

9.
《Icarus》1987,70(3):517-535
The cratering record at Uranus shows two different crater populations of different ages. The old crater population occurs on the heavily cratered surfaces of Oberon, Umbriel, and Miranda, while the younger one is found on Titania, Ariel and the resurfaced areas of Miranda. Since only the young population occurs on Titania, this satellite must have experienced a global resurfacing event which obliterated the older population prior to the impact of objects causing the younger one. The old crater population is characterized by an abundance of large craters and a relative paucity of small ones. The young crater population, however, has an abundance of small craters and a paucity of large ones relative to the old population. Furthermore, the abundance of small craters and the paucity of large craters increases with decreasing density. This change in the size distribution is consistent with a population of impactors that evolved with time by mutual collision, and therefore was probably in planetocentric orbits. In fact, both crater populations may be the result of accretional remnants in planetocentric orbits that evolved with time by mutual collisions. If so, then the higher crater density on Miranda compared to Oberon and Umbriel suggests that both Oberon and Umbriel were also resurfaced early in their histories.A comparison of the Solar System cratering record from Mercury to Uranus (19 AU) shows different crater populations at different locations in the Solar System. Computer simulations using a modified Holsapple-Schmidt crater scaling and short-period comet impact velocities to recover the projectile diameters from the cratering record produce different projectile populations in different parts of the Solar System. Furthermore, adjusting the Jovian crater curve to match that in the inner Solar System requires differences in the impact velocities that are unrealistic for objects in heliocentric orbits. These results suggest that the Solar System cratering record cannot be explained by a single family of objects in heliocentric orbits, e.g., comets. One possible explanation is that the cratering record is the result of different families of objects (possibly accretional remnants) indigenous to that region of the Solar System in which the different crater populations are found. Thus, in the inner Solar System, the impactors responsible for heavy bombardment were in heliocentric orbits with semimajor axes less than 3 AU. In the outer Solar System, they may have been in planetocentric orbits around each of the Jovian planets.  相似文献   

10.
利用新发表的高精度、高密度天体测量星表UCAC2,对天王星的五颗主要卫星的CCD观测图像重新进行量测,采用不同方法作定标归算,并使用两种理论模型(GUST86和GUST06模型)计算卫星的理论位置。对不同方法所得到的卫星位置的O-C结果的分析和比较表明,本文获得的卫星位置精度,除天卫五(Miranda)有显著提高,其他4颗卫星的位置精度基本相同。本文中天卫一和天卫三的结果与"亮卫星定标法"的结果在精度上相当,天卫二的位置精度与其他天王星卫星的位置精度具有较好的一致性,这从另一方面证明了我们的"亮卫星定标法"的可靠性。此外我们还获得了天卫四的位置与精度。  相似文献   

11.
A two-layer model of a satellite interior with a rocky core with a density 3–3.4 g cm-3 and with a H2O mantle with a density 0.94–1.2 g cm-3 is applied for the icy satellites. The case of Mimas is discussed separately. A comparison of the results with these obtained for more complicated models as applied for Jupiter and Saturn icy satellites has been carried out. This comparison shows that the two-layer model offers a reasonable approximation and, therefore, it can be applied for the satellites of Uranus. We obtained the dimensionless core radii 0.55–0.74, 0.45–0.68, 0.59–0.67, 0.55–0.65, and dimensionless core masses 0.42–0.72, 0.26–0.63, 0.47–0.61, 0.41–0.57, for Ariel, Umbriel, Titania, and Oberon, respectively.Institute of Geophysics of Warsaw University, Warszawa, Poland.  相似文献   

12.
We present the results of polarimetric observations of the icymoons of Uranus (Ariel, Titania, Oberon, and Umbriel) performed at the 6-m BTA telescope of the SAO RAS with the SCORPIO-2 focal reducer within the phase angle range of $0_.^ \circ 06 - 2_.^ \circ 37$ . The parameters of the negative polarization branch (referred to the scattering plane) are obtained in the V filter: for Ariel the maximum branch depth of P min ≈ ?1.4% is reached at the phase angle of α min ≈ 1°; for Titania P min ≈ ?1.2%, $\alpha _{\min } \approx 1_.^ \circ 4$ ; for Oberon P min ≈ ?1.1%, $\alpha _{\min } \approx 1_.^ \circ 8$ . For Umbriel the polarization minimum was not reached: for the last measurement point at $\alpha _{\min } \approx 2_.^ \circ 4$ , polarization amounts to ?1.7%. The declining P min and shifting αmin towards larger phase angles correlate with a decrease of the geometric albedo of the Uranian moons. There is no longitudinal dependence of polarization for the moons within the observational errors which indicates a similarity in the physical properties of the leading and trailing hemispheres. The phase-angle dependences of polarization for the major moons of Uranus are quite close to those observed in the group of small trans-Neptunian objects (Ixion, Huya, Varuna, 1999 DE9, etc.), which are characterized by a large gradient of negative polarization, about ?1% per degree in the phase-angle range of $0_.^ \circ 1 - 1^ \circ$ .  相似文献   

13.
Several unsolved problems in the evolutionary histories leading to current dynamical configurations of the planets and their systems of satellites are discussed. These include the possibilities of rather tight constraints on the primordial rotation states of Mercury and Venus and the stabilizing mechanism for the latter's retrograde spin, a brief mention of the problem of origin of the moons of Earth and Mars, the excessive heat flow from Jupiter's satellite lo which is not compatible with an otherwise self-consistent model of origin of the Laplace three-body libration, the mechanism for the long history of resurfacing of Saturn's satellite Enceladus and the possibly short lifetime of the A ring and the mechanisms for resurfacing the satellites of Uranus, especially Ariel, if the high stability of the mean motion orbital resonances at the 2/1 commensurability involving Ariel and Umbriel precludes a long term occupancy of the resonance. Finally, excessive times of accumulation of the outer planets in current models may possibly be reducible from the effects of nebular gas drag.  相似文献   

14.
New spectrophotometry from 1.5 to 2.5 μm is reported for the Uranian satellites Titania, Oberon, and Umbriel. A spectrum of the rings of Uranus from 2.0 to 2.4 μm is also reported. No evidence is found for frost covering the surface of the ring material, consistent with the low albedo of the rings (PK = 0.03) previously reported by Nicholson and Jones (1980). The surfaces of the satellites are found to be covered by dirty water frost. Assuming albedos of the frost and gray components covering the Uranian satellites to be the same as the light and dark faces of Iapetus, radii are derived that are roughly twice those inferred from the assumption of a visual albedo of 0.5.  相似文献   

15.
New reflectance spectra at 3.5% resolution have been obtained for Ariel, Titania, Oberon, and Hyperion in the 0.8- to 1.6-μm spectral region. The new spectra show no absoptions other than the 1.5-μm water-ice feature (within the precision of the data), and demonstrate extension into the 0.8- to 1.6-μm region of the 1.5- to 2.5-μm spectral similarity of Ariel to Hyperion (R. H. Brown and D. P. Cruikshank (1983). Icarus55,93-92). The new data confirm the presence of dark, spectrally bland component on/in the water-ice surfaces of the Uranian satellites, which, with some reservations, has spectral similarities to the dark substance on the leading side of Iapetus and the dark material on/in the surface of Hyperion, as well as other dark, spectrally neutral substances such as charcoal. Attempts were made to match the spectra of Ariel, Titania, and Oberon with additive reflectance mixes (areal coverage) of fine-grained water frost and various dark components such as charcoal, lampblack, and charcoal-water-ice mixtures. The results were broad limits on the amounts of possible areal coverage of a charcoal-like spectral component on the surfaces of the Uranian satellites, but the data are not of sufficient precision to conclusively determine whether the dominant mode of contaminant dispersal is areal or voluminal. The effect of highly variegated albedos on the diameters derived by R. H. Brown, D. P. Cruikshank, and D. Morrison (1982a) (Nature300, 423–425) is found to be small.  相似文献   

16.
彭青玉  刘威卫 《天文学报》1998,39(3):320-323,T001
天然卫星的位置测量在天体测量和天体力学中都有重要意义。国外有人对天王星卫星位置测量应用新的图象处理方法得到了高精度的卫星观测资料。利用云南天文台1米望远镜上获得的两颗卫星的SRT的CCD观测资料进行了新老图象处理方法的比较研究。当用两颗卫星直接作定标测量CCD的比例尺和指向时表明:主星晕的处理对卫星位置的测量非常重要。去晕处理后,测得的比例尺和指向的弥散将大为减少。  相似文献   

17.
Dale P. Cruikshank 《Icarus》1980,41(2):246-258
New JHK photometry and spectrometry (1.4–2.6 μm) are presented for Enceladus, Hyperion, Phoebe, Umbriel, Titania, and Oberon. From spectral signatures, mainly in the 2-μm region, water ice is verified on Enceladus and identified on Hyperion and the three Uranian satellites. The JHK photometry shows that Phoebe is different from all other satellites and asteroids observed thus far. The new photometry corroborates the earlier conclusion by Cruikshank et al. (1977) Astrophys. J217, 1006–1010] that the Uranian satellites, as a class, have overall surface reflectances different from other water-ice-covered satellites, and the reason for the difference remains unclear. The diameters and the masses of the Uranian satellites are reviewed in light of the probable high albedo representative of ice-covered surfaces and the new dynamical studies by Greenberg, 1975, Greenberg, 1976, Greenberg, 1978.  相似文献   

18.
Highly accurate astrometric positions obtained from eclipses and occultations of planetary satellites are reported. These measurements may be used to test existing ephemerides, to improve upon them, and to fit system constants such as satellite masses and planetary zonal harmonics. Eclipse and occultation photometry of 5 uranian satellite mutual events has resulted in precise astrometry for 3 of these moons. Relative satellite positions were determined with an uncertainty of less than 10 milli-arcseconds for 4 of the events. These observations plus two additional data from C. Miller and N.J. Chanover (private communication) indicate that predictions based on the SPICE [Acton, C.H., 1996. Planet. Space Sci. 44, 65-70] ephemeris URA083 and those from the LA06 ephemeris in a paper by Arlot et al. [Arlot, J.-E., Lainey, V., Thuillot, W., 2006. Astron. Astrophys. 456, 1173-1179] are significantly more accurate than predictions generated by Christou [Christou, A.A., 2005. Icarus 178, 171-178] using the GUST86 ephemeris in the along-track component of motion. The observations indicate that Ariel, Umbriel and Titania are lagging behind their predicted positions for all of the ephemerides, but by varying distances and significance levels. Analysis of data recorded by Hidas et al. [Hidas, M.G., Christou, A.A., Brown, T.M., 2008. Mon. Not. R. Astron. Soc. 384, L38-L40] suggests a similar lag for Oberon. Photometry recorded during the ingress portion of a saturnian eclipse of Iapetus on 2007 May 5 indicates that the middle of the event occurred at geocentric UTC 02:14:58. At that moment the center of the satellite disk facing the Sun was intersected by a solar-centered ray refracted at a minimum altitude of 240 km above the 1-bar pressure level in the planet's atmosphere. The uncertainty in the timings due to observational scatter was only 5 s which equates to 16 km of Iapetus motion, but other factors increased the overall uncertainty to 111 km or 16 milli-arcseconds at the distance of Saturn from the Sun. The astrometric result is fit very well by the SPICE ephemeris SAT288.  相似文献   

19.
Medium-resolution infrared (1–2.5 μm; Δλ/λ ∽ 0.05) photometry of Triton, Titania, and Hyperion and medium-resolution (1.5–2.4 μm; Δλ/λ ? 0.01) spectroscopy of Triton are presented. Hyperion and Titania have spectra roughly similar to the laboratory spectrum of water frost, while the spectrum of Triton is inconsistent with the spectra of frosts likely to be major surface constituents.  相似文献   

20.
We consider the problem of calculating the Lyapunov time (the characteristic time of predictable dynamics) of chaotic motion in the vicinity of separatrices of orbital resonances in satellite systems. The primary objects of study are the chaotic regimes that have occurred in the history of the orbital dynamics of the second and fifth Uranian satellites (Umbriel and Miranda) and the first and third Saturnian satellites (Mimas and Tethys). We study the dynamics in the vicinity of separatrices of the resonance multiplets corresponding to the 3 : 1 commensurability of mean motions of Miranda and Umbriel and the multiplets corresponding to the 2 : 1 commensurability of mean motions of Mimas and Tethys. These chaotic regimes have most probably contributed much to the long-term orbital evolution of the two satellite systems. The equations of motion have been numerically integrated to estimate the Lyapunov time in models corresponding to various epochs of the system evolution. Analytical estimates of the Lyapunov time have been obtained by a method (Shevchenko, 2002) based on the separatrix map theory. The analytical estimates have been compared to estimates obtained by direct numerical integration.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 364–374.Original Russian Text Copyright © 2005 by Mel’nikov, Shevchenko.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号