首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photometric observations of Saturn's rings made by Camichel (1958a), and Focas and Dollfus (1969) are studied. It has been found that, at large elevation angles multiple scattering between ring particles, and at small elevation angles deviation from Seeliger's principal photometric theory can explain the observations. The geometric albedo 0.82 and the Bond albedo 0.90 have been suggested for the ring particles. The optical thickness of ring B is found to be 1.25 and that of ring A 0.30.  相似文献   

2.
G79.29+0.46 seems to be an unique object. Discovered as a nearly perfect ring in the radio continuum all subsequent observations are consistent with the interpretation that it is a large ring nebula (4′) around an heavily reddened LBV. Our ISOPHOT and LWS observations on board of ISO show that an infrared ring coincides with the radio ring. Line emission does not contaminate the continuum images. The resulting dust temperature of > 70 K) is unusually high. The LWS spectra of the 52 and 88 μm [OIII], 63 μm [OI], 122 μm [NII] and 158 μm [CII] lines are discussed. No cool neutral gas is found near the ring. A quantitative interpretation has to await modelling of the rather complicated background. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
We present observations of the spiral galaxy NGC 7331 using the Submillimetre Common User Bolometer Array (SCUBA) on the James Clark Maxwell Telescope. We have detected a dust ring of 45 arcsec radius (3.3 kpc) at wavelengths of 450 and 850 μm. The dust ring is in good correspondence with other observations of the ring in the mid-infrared (MIR), CO and radio continuum, suggesting that the observed dust is associated with molecular gas and star formation. A B  −  K colour map shows an analogous ring structure with an asymmetry about the major axis, consistent with the extinction being produced by a dust ring. The derived temperature of the dust lies between 16 and 31 K and the gas-to-dust ratio lies between 150 and 570, depending on the assumed dust emission efficiency index (β = 1.5 or 2).  相似文献   

4.
The sizes, composition, and number of particles comprising the rings of Saturn may be meaningfully constrained by a combination of radar- and radio-astronomical observations. In a previous paper, we have discussed constraints obtained from radar observations. In this paper, we discuss the constraints imposed by complementary “passive” radio observations at similar wavelengths. First, we present theoretical models of the brightness of Saturn's rings at microwave wavelengths (0.34–21.0 cm), including both intrinsic ring emission and diffuse scattering by the rings of the planetary emission. The models are accurate simulations of the behavior of realistic ring particles and are parameterized only by particle composition and size distribution, and ring optical depth. Second, we have reanalyzed several previously existing sets of interferometric observations of the Saturn system at 0.83-, 3.71-, 6.0-, 11.1-, and 21.0-cm wavelengths. These observations all have spatial resolution sufficient to resolve the rings and planetary disk, and most have resolution sufficient to resolve the ring-occulted region of the disk as well. Using our ring models and a realistic model of the planetary brightness distribution, we are able to establish improved constraints on the properties of the rings. In particular, we find that: (a) the maximum optical depth in the rings is ~ 1.5 ± 0.3 referred to visible wavelengths; (b) a significant decrease in ring optical depth from λ3.7 to λ21.0 cm allows us to rule out the possibility that more than ~30% of the cross section of the rings is composed of particles larger than a meter or so; this assertion is essentially independent of uncertainties in particle adsorption coefficient; and (c) the ring particles cannot be primarily of silicate composition, independently of particle size, and the particles cannot be primarily smaller than ~0.1 cm, independently of composition.  相似文献   

5.
Very low values of the radio brightness temperature of the rings of Saturn indicate that their high refar reflectivity is not simply due to a gain effect in the backscattering direction. These two sets of observations are consistent with the ring particles having a very high single scattering albedo at radio wavelenghts, with multiple scattering effects being important. Comparison of scattering calculations for ice and silicate particles with the radio and radar observations imply a mean particle radius of ~1 cm. The ice bands observed in the rings' near-infrared reflectivity spectra are formed by scattering within a microstructure on the surface of the ring particles, with the scattering centers being 25–125 μm in size. The Poynting-Robertson effect has caused a significant spiraling-in of the ring particles, probably resulting in a broadening of the rings. The inferred mean size is consistent with a model in which meteoroid impacts have caused a substantial reduction in the mean particle size from its initial value.  相似文献   

6.
Cassini's Imaging Science Subsystem (ISS) instrument took nearly 1200 images of the Jupiter ring system during the spacecraft's 6-month encounter with Jupiter (Porco et al., 2003, Science 299, 1541-1547). These observations constitute the most complete data set of the ring taken by a single instrument, both in phase angle (0.5°-120° at seven angles) and wavelength (0.45-0.93 μm through eight filters). The main ring was detected in all targeted exposures; the halo and gossamer rings were too faint to be detected above the planet's stray light. The optical depth and radial profile of the main ring are consistent with previous observations. No broad asymmetries within the ring were seen; we did identify possible hints of 1000 km-scale azimuthal clumps within the ring. Cassini observations taken within 0.02° of the ring plane place an upper limit on the ring's full thickness of 80 km at a phase angle of 64°. We have combined the Cassini ISS and VIMS (Visible and Infrared Mapping Spectrometer) observations with those from Voyager, HST (Hubble Space Telescope), Keck, Galileo, Palomar, and IRTF (Infrared Telescope Facility). We have fit the entire suite of data using a photometric model that includes microscopic silicate dust grains as well as larger, long-lived ‘parent bodies’ that engender this dust. Our best-fit model to all the data indicates an optical depth of small particles of τs=4.7×10−6 and large bodies τl=1.3×10−6. The dust's cross-sectional area peaks near 15 μm. The data are fit significantly better using non-spherical rather than spherical dust grains. The parent bodies themselves must be very red from 0.4-2.5 μm, and may have absorption features near 0.8 and 2.2 μm.  相似文献   

7.
This is a review of recent in situ and remote sensing observations, and theoretical advances of our understanding dust plasma interactions in Jupiter's magnetosphere. Dust grains exposed to plasmas and UV radiation collect electrostatic charges and their dynamics can be altered due to electric and magnetic fields. Hence, magnetospheric effects can shape the size and spatial distributions of micron sized and smaller dust grains. The ring/halo region, the dust streams and the captured ring at Jupiter are recent examples where dust plasma interaction effects can best explain the observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We present a second epoch of Very Large Array Saturn observations taken in February 1997 spanning wavelengths 1.3-21 cm. These observations complement earlier observations at Saturn's autumnal equinox in November 1995. In this epoch, however, we generally have better signal-to-noise ratios and the ring inclination of the present observations was −5.0°, whereas the previous observations were made with ring inclination +2.7°.Our observations confirm the latitudinal structure on the saturnian disk as seen at 2.0, 3.6, and 6.1 cm. We also see some latitudinal structure at 1.3 cm for the first time. The details of this structure have changed dramatically from those reported by I. de Pater and J. R. Dickel (1991, Icarus94, 474-492) for the 1980s and are consistent with those seen in F. van der Tak et al. (1999, Icarus142, 125-147). The most prominent features are a pair of brightness enhancements just inside the edges of the Equatorial Zone.The rings do not show the east-west asymmetry seen in our previous epoch, perhaps indicative of a viewing angle effect on the scattering properties of the rings. The radial trend in brightness in the ansae is generally consistent with that expected from optical depth variations and increasing distance from the source of scattered light. In particular the increased optical depth towards the center of the C ring is evident. Azimuthal variation in brightness in the C ring shows the forward scattering expected of Mie scattering. By contrast, the A and B rings show little or no azimuthal variation.We present Monte Carlo simulations of the ring brightness under the assumptions of isotropic and Mie scattering. These are the first synthetic maps of Saturn which can be directly compared to the images we obtained. Neither model fits all the data well. However, a hybrid model combining isotropic and Mie scattering does fit well. We interpret the consistency with isotropic scattering in the outer rings as an indication that near-field effects may be important. This in turn implies geometrically thin rings, as predicted by dynamical simulations of these rings.  相似文献   

9.
S.G. Gibbard  I. de Pater 《Icarus》2005,174(1):253-262
We present the first Earth-based images of several of the individual faint rings of Uranus, as observed with the adaptive optics system on the W.M. Keck II telescope on four consecutive days in October 2003. We derive reflectivities based on multiple measurements of 8 minor moons of Uranus as well as Ariel and Miranda in filters centered at wavelengths of 1.25(J), 1.63(H), and 2.1(Kp) μm. These observations have a phase angle of 1.84°-1.96°. We find that the small satellites are somewhat less bright than in observations made by the HST at smaller phase angles, confirming an opposition surge effect. We calculate albedoes for the ring groups and for each ring separately. We find that the ε ring particles, as well as the particles in the three other ring groups, have albedoes near 0.043 at these phase angles. The equivalent depths of some of the individual rings are different than predicted based upon ring widths from occultation measurements (assuming a constant particle ring brightness); in particular the γ ring is fainter and the η ring brighter than expected. Our results indicate that q, the ratio of ε ring intensity at apoapse vs. periapse, is close to 3.2±0.16. This agrees well with a model that has a filling factor for the ε ring of 0.06 (Karkoschka, 2001, Icarus 151, 78-83). We also determine values of the north to south brightness ratio for the individual rings and find that in most cases they are close to unity.  相似文献   

10.
This paper reviews our current knowledge of Saturn's rings’ physical properties as derived from thermal infrared observations. Ring particle composition, surface structure and spin as well as the vertical structure of the main rings can be determined. These properties are the key to understand the origin and evolution of Saturn's rings. Ring composition is mainly constrained by observations in the near-infrared but the signature of some probable contaminants present in water ice may also be found at mid-infrared wavelengths. The absence of the silicate signature limits nowadays their mass fraction to 10−7±1. Recent measurements on the thermal inertia of the ring particle surface show it is very low, of the order of 5±2 Jm−2 K−1 s−1/2. New models and observations of the complete crossing of the planetary shadow are needed to attribute this low value either to compact regoliths covered by cracks due to collisions and thermal stresses or to large fluffy and irregular surfaces. Studies of the energy balance of ring particles show a preference for slowly spinning particles in the main rings. Supplementary observations at different phase angles, showing the temperature contrast between night and day sides of particles, and new models including finite spin and thermal inertia, are needed to constrain the actual spin distribution of ring particles. These results can then be compared to numerical simulations of ring dynamics. Many thermal models have been proposed to reproduce observations of the main rings, including alternative mono- or many-particles-thick layers or vertical heterogeneity, with no definitive answer. Observations on the lit and dark faces of rings as a function of longitude, at many incidence and emission angles, would provide prime information on the vertical thermal gradient due to interparticle shadowing from which constraints on the local vertical structure and dynamics can be produced. Future missions such as Cassini will provide new information to further constrain the ring thermal models.  相似文献   

11.
This paper describes N-body simulations of two regions of the saturnian ring system and examines what we might expect the Cassini orbiter to see in those areas. The first region is the edge of the Encke gap in the A ring that is perturbed by the satellite, Pan. Our previous simulations of this region neglected particle self-gravity [Lewis and Stewart, 2000a, Bull. Am. Astron. Soc. 34, 883]. Here we examine the interactions of the wakes caused by Pan with the wakes that form from local gravitational instabilities. We find that the two phenomena do not normally coexist and predict that measurements of particle sizes between the moon wakes should reflect the true particle size distribution of the region and not what is caused by gravitational aggregation. The region between the Encke gap edge and the first wake peak is an exception to this rule because our simulations exhibit the formation of exceptionally large gravity-induced wakes in this region. We also describe simulations of the F ring and explain the nature of braid-like structures that form naturally when the ring is perturbed by a single moon on an eccentric orbit. Finally, we discuss the very dynamic nature of the F ring system and how this should be taken into account when interpreting observations and even when planning future observations of this system.  相似文献   

12.
We present results of near-infrared (2.26 μm) observations of Saturn's main rings taken with the W.M. Keck telescope during August 8-11, 1995, surrounding the time that Earth crossed Saturn's ring plane. These observations provide a unique opportunity to study the evolution of the ring brightness in detail, and by combining our data with Hubble Space Telescope (HST) results (Nicholson et al., 1996, Science 272, 453-616), we extend the 12-hour HST time span to several days around the time of ring plane crossing (RPX). In this paper, we focus on the temporal evolution of the brightness in Saturn's main rings. We examine both edge-on ring profiles and radial profiles obtained by “onion-peeling” the edge-on data. Before RPX, when the dark (unlit) face of the rings was observed, the inner C ring (including the Colombo gap), the Maxwell gap, Cassini Division and F ring region were very bright in transmitted light. After RPX, the main rings brighten rapidly, as expected. The profiles show east-west asymmetries both before and after RPX. Prior to RPX, the evolution in ring brightness of the Keck and HST data match one another quite well. The west side of the rings showed a nonlinear variation in brightness during the last hours before ring plane crossing, suggestive of clumping and longitudinal asymmetries in the F ring. Immediately after RPX, the east side of the rings brightened more rapidly than the west. A quantitative comparison of the Keck and HST data reveals that the rings were redder before RPX than after; we ascribe this difference to the enhanced multiple scattering of photons passing through to the unlit side of the rings.  相似文献   

13.
We simulate the collisional formation of a ring galaxy and we integrate its evolution up to 1.5 Gyr after the interaction. About 100–200 Myr after the collision, the simulated galaxy is very similar to observed ring galaxies (e.g. Cartwheel). After this stage, the ring keeps expanding and fades. Approximately 0.5–1 Gyr after the interaction, the disc becomes very large (∼100 kpc) and flat. Such extended discs have been observed only in giant low surface brightness galaxies (GLSBs). We compare various properties of our simulated galaxies (surface brightness profile, morphology, H  i spectrum and rotation curve) with the observations of four well-known GLSBs (UGC 6614, Malin 1, Malin 2 and NGC 7589). The simulations match quite well the observations, suggesting that ring galaxies could be the progenitors of GLSBs. This result is crucial for the cold dark matter (CDM) model, as it was very difficult, so far, to explain the formation of GLSBs within the CDM scenario.  相似文献   

14.
We present results from a large suite of simulations of Saturn’s dense A and B rings using a new model of particle sticking in local simulations (Perrine, R.P., Richardson, D.C., Scheeres, D.J. [2011]. Icarus 212, 719–735). In this model, colliding particles can be incorporated into or help fragment rigid aggregations on the basis of certain user-specified parameters that can represent van der Waals forces or interlocking surface frost layers.Our investigation is motivated by laboratory results that show that interpenetration of surface layers can allow impacting frost-covered ice spheres to stick together. In these experiments, cohesion only occurs below specific impact speeds, which happen to be characteristic of impact speeds in Saturn’s rings. Our goal is to determine if weak bonding is consistent with ring observations, to constrain cohesion parameters in light of existing ring observations, to make predictions about particle populations throughout the rings, and to discover other diagnostics that may constrain bonding parameters.We considered the effects of five parameters on the equilibrium characteristics of our ring simulations: speed-based merge and fragmentation limits, bond strength, ring surface density, and patch orbital distance (i.e., the A or B ring), some with both monodisperse and polydisperse comparison cases. In total, we present data from 95 simulations.We find that weak cohesion is consistent with observations of the A and B rings (e.g., French, R.G., Nicholson, P.D. [2000]. Icarus 145, 502–523), and we present a range of simulation parameters that reproduce the observed size distribution and maximum particle size. It turns out that the parameters that match observations differ between the A and B rings, and we discuss the potential implications of this result. We also comment on other observable consequences of cohesion for the rings, such as optical depth and scale height effects, and discuss whether very large objects (e.g., “propeller” source objects) are grown bottom-up from cohesion of smaller ring particles.  相似文献   

15.
Abstract— The structural, topographic and other characteristics of the Vredefort, Sudbury, and Chicxulub impact structures are described. Assuming that the structures originally had the same morphology, the observations/interpretations for each structure are compared and extended to the other structures. This does not result in any major inconsistencies but requires that the observations be scaled spatially. In the case of Vredefort and Sudbury, this is accomplished by scaling the outer limit of particular shock metamorphic features. In the case of Chicxulub, scaling requires a reasoned assumption as to the formation mechanism of an interior peak ring. The observations/interpretations are then used to construct an integrated, empirical kinematic model for a terrestrial peak‐ring basin. The major attributes of the model include: a set of outward‐directed thrusts in the parautochthonous rocks of the outermost environs of the crater floor, some of which are pre‐existing structures that have been reactivated during transient cavity formation; inward‐directed motions along the same outermost structures and along a set of structures, at intermediate radial distances, during transient cavity collapse; structural uplift in the center followed by a final set of radially outward‐directed thrusts at the outer edges of the structural uplift, during uplift collapse. The rock displacements on the intermediate, inward and innermost, outward sets of structures are consistent with the assumption that a peak ring will result from the convergence of the collapse of the transient cavity rim area and the collapse of the structural uplift.  相似文献   

16.
Kari Lumme  H.J. Reitsema 《Icarus》1978,33(2):288-300
Analysis of 206 high-quality plates from three recent apparitions taken in five colors has yielded several photometric parameters for Saturn and its A and B rings. Phase curves and geometric albedos are derived for two regions of Saturn and for each ring. The phase coefficients of the rings are found to be independent of the ring-plane inclination angle. A comparison of the phase curves shows that the particles of ring A exhibit a larger phase coefficient than do those of ring B. When examined with a multiple-scattering model using Henyey-Greenstein phase functions, the observations of the ring tilt effect indicate that the particles of ring A may also have lower single-scattering and geometric albedos. The color dependence of the geometric albedo of the particles in ring B is shown to be very similar to that of Europa (J II). We find for ring A an optical thickness of 0.50 (0.45 ≤ τA ≤ 0.57) and for the Cassini division, 0.018 ± 0.004.  相似文献   

17.
The tenuous E ring of Saturn is found to commence abruptly at 3 Saturn radii, to peak sharply in the vicinity of the orbit of the satellite Enceladus (about 4 radii), and to spread out thinly to more than 8 radii. This distribution strongly suggests it to be associated with Enceladus and perhaps to be material ejected from Enceladus. The spread of E-ring material above and below the ring plane is greater in its tenuous outskirts than in its denser inner region, suggesting that the E ring may be at an early stage in its evolution. Thus far, our analysis reveals only a marginal variation of the ring with time or Enceladus azimuth. In this paper we describe the special instrumentation used for photometric observations of the E ring, and we present some of the data obtained in March 1980. In Paper II we shall derive the three-dimensional distribution of material in the E ring and discuss its cosmogonic implications.  相似文献   

18.
We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°?|B|?26.7°. The average radar cross-section of the A ring is ∼77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal asymmetry in the radar images compared with that seen at optical wavelengths is due to the forward-scattering behavior of icy ring particles at decimeter wavelengths. A much weaker azimuthal asymmetry with a similar orientation may be present in the B ring.  相似文献   

19.
We present infrared (20 μm) observations of Saturn's rings for a solar elevation angle of 10° and phase angle of 6°. Scans across the rings yield information about the cooling of particles during eclipse and the subsequent heating along their orbits. All three rings exhibit significant cooling during eclipse, as well as a 20-μm brightness asymmetry between east and west ansae, the largest asymmetry occuring in the C ring (the brightest ring). The eclipse cooling is a simple and adequate explanation for 20-μm brightness asymmetries between the ansae of Saturn's rings. The relatively large C ring asymmetry is thought to be primarily due to the short travel time of the particles in that ring from eclipse exit to east ansa. We compare the B ring data to the theoretical models of H.H. Aumann and H.H. Kieffer (1973, Astrophys. J.186, 305–311) in order to set constraints on the average particle size and thermal inertia. The rather rapid heating after exit from eclipse points to low-conductivity-particle surfaces, similar to the water frost surfaces of Galilean satellites. If the surface conductivity is indeed low, one cannot determine an upper limit for the particle size through such infrared observations, since only the uppermost millimeters experience a thermal response during eclipse. However, based on these infrared data alone, it is clear that particles of radius equal to a few millimeters or less cannot occupy a significant fraction of the ring surface area, because-regardless of thermal inertia-their thermal response is much faster than observed.  相似文献   

20.
J.W. Fountain  S.M. Larson 《Icarus》1978,36(1):92-106
Observations of Saturn's rings during passage of the Earth through the ring plane, coupled with those of others, suggest a ring thickness of 1.3 ± 0.3 km. The wide disparity in the optical depth of Cassini's division found by other investigators is resolved, and for conservative isotropic single scattering, a normal optical depth for Cassini's division of 0.060 ± 0.006 is obtained. We find the mean normal optical depth of ring C to be 0.074 ± 0.007. Analysis of all available observations of faint objects near Saturn indicates the presence of at least one previously undiscovered satellite of Saturn. The orbit for Janus determined by Dollfus is supported. These satellites may be major members of an extended ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号