首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Mesozoic accretionary complexes of the southern Chichibu and the northern Shimanto Belts, widely exposed in the Kanto Mountains, consist of 15 tectonostratigraphic units according to radiolarian biochronologic data. The units show a zonal arrangement of imbricate structure and the age of the terrigenous clastics of each unit indicates successive and systematic southwestward younging. Although rocks in these complexes range in age from Carboniferous to Cretaceous, the trench-fill deposits corresponding to the Hauterivian, the Aptian to Middle Albian and the Turonian are missing. A close relationship between the missing accretionary complexes and the development of strike-slip basins is recognizable. The tectonic nature of the continental margin might have resulted from a change from a convergent into a transform or oblique-slip condition, so that strike-slip basins were formed along the mobile zones on the ancient accretionary complexes. Most terrigenous materials were probably trapped by the strike-slip basins. Then, the accretion of the clastic rock sequence occurred, probably as a result of the small supply of terrigenous materials in the trench. However, in the case of right-angle subduction, terrigenous materials might have been transported to the trench through submarine canyons and deposited there. Thus, the accretionary complexes grew rapidly and thickened. Changes both in oceanic plate motion and in the fluctuation of terrigenous supply due to the sedimentary trap caused pulses of accretionary complex growth during Jurassic and Cretaceous times. In the Kanto Mountains, three tectonic phases are recognized, reflecting the changes of the consuming direction of the oceanic plates along the eastern margin of the Asian continent. These are the Early Jurassic to early Early Cretaceous right-angle subduction of the Izanagi Plate, the Early to early Late Cretaceous strike-slip movement of the Izanagi and Kula Plates, and the late Late Cretaceous right-angle subduction of the Kula Plate.  相似文献   

2.
3.
On the basis of the third generation map of the magnetic lineations of the world’s ocean basins (Cande et al., 1989), a systematic element division is made for the accretion tectonics of the world’s seafloor by use of the conception of accretion area and accretion period. This work reveals the evolution process of the seafloor, which is divided into 49 accretion areas and 6 accretion periods. It is found that the latter accretion processes play reform roles such as splitting and wedging action to the former. From the viewpoint of the whole it seems that the accretion process of the seafloor is characterized by the global episodic synchroneity and strong heterogeneity in spatial distribution as well as the local discontinuity.  相似文献   

4.
Based on comprehensive studies in petrography, petrofabric analysis and geochemistry, this paper describes a unique and rare laminated micritic ferruginous primary dolostone crystallized and precipitated from the alkaline hot brine under the conditions of the Mesozoic faulted lake basin. The main rock-forming mineral of this dolostone is ferruginous dolomite with a micritic structure. This dolomite mostly exhibits laminae of 0.1–1 mm thick and is often discovered with other minerals, such as albite, analcite, barite and dickite, which have at least two types of interbedded laminae. Petrogeochemistry reveals that this dolostone contains a large number of typomorphic elements of hydrothermal sedimentation, including Sb, Ba, Sr, Mn, and V. In addition, the LREE is in relatively high concentrations and possesses the typical REE distribution pattern with negative Eu anomaly. Oxygen isotope values (δ18OPDB) range from 5.89‰ to 14.15‰ with an average of 9.69‰. The ratio of 87Sr/86Sr is between 0.711648 and 0.719546, with an average of 0.714718. These data indicate that the depositional environment is a stable, blocked, anoxic low-lying hot brine pool in the bottom of deep lake controlled by basement faults. The hydrothermal fluid is the alkaline hot brine formed by the combination of the infiltration lake water and mantle-derived magmatic water, consisting of many ions, including Ca2+, Mg2+ and Fe2+. Under the driving flow power of magmatic heat, gravity and compaction, the hydrothermal fluid overcame the overburden pressure and hydrostatic pressure of the lake water body, and boiled to explosion, and then the explosion shattered the original laminated micritic ferruginous primary dolostone near the vent and then formed a new type of dolostone called shattered “hydroexplosion breccias”. In the low-lying, unperturbed hot brine pool, far from the vent, the laminated micritic ferruginous primary dolostone was quickly crystallized and chemicals precipitated from the hydrotherm. This study of special rocks contributes to research into the causes of the formation of lacustrine carbonate rocks and dolostone. In particular, it provides new examples and research insights for future studies of the lacustrine dolomite from the similar Mesozoic and Cenozoic basins in China.  相似文献   

5.
Many features of the Cenozoic tectonic history of central and southeastern Asia can be understood as direct consequences of the thrust and penetration of India into Asia. Recent indentation experiments with plasticine (Tapponnier et al. [7]) have extended this idea and have led to the prediction of a pattern of large rotations and displacements of continental blocks that can be tested by paleomagnetism. The available Cretaceous and Cenozoic paleomagnetic data from this part of the world have been reviewed and a new APWP for Eurasia has been constructed for reference. The negligible rotation of South China and large clockwise rotation of Indochina are consistent with the model, i.e., with an history of large-scale left-lateral strike-slip motion along the Altyn Tagh and Red River faults. Data from Malaya and Borneo can be reconciled with the model, although in a less straightforward fashion. The large counter clockwise rotation of South Tibet implies that it rotated in sympathy with India during the collision and suggests that future indentation experiments should include this feature. Finally a middle Cretaceous reconstruction of the south margin of Asia is proposed. One interesting result is the restored continuity of geological features in Tibet and Indochina, with active subduction of oceanic (Indian plate) crust taking place to the south at subtropical latitudes.  相似文献   

6.
Some problems of the conventional “minimum polar distance” approach to Precambrian pole path construction are discussed. An alternative technique, based on a less restricted approach, is proposed and assessed by using all presently-available Precambrian and Paleozoic data from the world. In the construction of any pole path, assumptions are always made on the shape of the path through regions of apparently missing data. Many different assumptions are possible. Assuming that the Precambrian tectono-stratigraphic record conforms to repeated sequences of geological events suggests we should observe cycles in the paleomagnetic data. Empirically, it is found that the pole paths for the periods Cambrian-Devonian, and 750–1000 Ma, define cycles of pole motion from equator, up to and over the pole, and back down to the equator. Similar cycles of 250-Ma periodicity can be identified in paleomagnetic data back to 2500-Ma. Global wide changes in the phase of the cycles appears to be coincident with the major subdivisions of geological time i.e., Phanerozoic + Hadrynian, Helikian, Aphebian, and Archean. Finally, the geological implications of these cyclic changes in Precambrian pole paths are briefly discussed.  相似文献   

7.
8.
正Recently,a mechanism of hydrothermal sedimentation about a mantel-derived source was proposed to interpret the formation of lacustrine dolostone in the Cretaceous Xiagou Formation based on systematic petrological,mineralogical,and geochemical analyses(Wen et al.,2013).Similar to the texture found in classic hydrothermal sediments(Zhang,  相似文献   

9.
Atsushi  Matsuoka 《Island Arc》1995,4(2):140-153
Abstract A radiolarian zonal scheme for the entire Jurassic and Lower Cretaceous using biostratigraphic data from both Japanese Island sections and the western Pacific seafloor is documented. The zonation is applicable to low and middle paleolatitude portions of the Paleo-Pacific ocean. Radiolarian bio-events such as the evolutionary first appearance biohorizon, first occurrence biohorizon, and last occurrence biohorizon were used to define zones. The 11 zones proposed are, in ascending order, Parahsuum simplum, Trillus elkhornensis, Laxtorum(?) jurassicum, Tricolocapsa plicarum, Tricolocapsa conexa, Stylocapsa(?) spiralis, Hsuum maxwelli, Pseudodictyomitra primitiva, Pseudodictyomitra carpatica, Cecrops sep-temporatus, and Acanthocircus carinatus zones. Preliminary age assignments for these zones are presented.  相似文献   

10.
Structural control of the deposition of endogenic ores, among which the ores of volcanic affinity play an important role, has been studied by the author in several regions of four continents. Correlation of the results has revealed that generally there is a repetition of four sets of ore-controlling basement fracture zones. All the four sets of basement fracture zones are not always well developed in the sub-surface level and in the morphology of a region, and some of them usually play a dominant role depending on the geological development of the territory (Table 1). The strike of the ore-controlling basement fractures and their distribution have shown similarities with the pattern of fractures distribution in the floor of the adjoining oceans in three of the studied areas. The most important feature is the joint development of east-west trending fracture zones in both the oceanic areas and the basement of continental areas. One of these zones, defined as the «Fourty-north Fracture Zone » has been traced for a considerable distance on a global scale, the Mendocino fracture zone being considered as its prolongation. The results do not exclude the possibility of a continental drift in some areas, but require the presence of a rigid layer with a rather uniform global fracture pattern existing in the period before rifting and drifting apart of the plates.  相似文献   

11.
Old, cold oceanic lithosphere is denser and therefore gravitationally more unstable than younger, hotter oceanic lithosphere. Hence, whereas old lithosphere will sink under its own weight, subduction of young lithosphere may require an additional force. Interarc spreading occurs or occurred recently in the western Pacific, in the southern Atlantic, and possibly in the Mediterranean, where the subducted sea floor appears to be more than 50 m.y. old, and in many cases, is more than 100 m.y. old. In most of these regions, the ease with which the old dense lithosphere sinks may have contributed to a seaward migration of the trenches, which led to interarc spreading. Cordilleran tectonics, including high mountains and broad zones of deformation, are present on the margins of the eastern Pacific where the subducted oceanic lithosphere is younger than about 50 m.y. An extra force, which we presume to be necessary to cause subduction of the young lithosphere, may be responsible for the deformation and mountains just as an extra force seems necessary to drive continental collision in Asia. The extensive early Tertiary deformation across a broad zone of western North America may be related to the long-term, continuous subduction of young lithosphere of the Farallon and Kula plates.  相似文献   

12.
13.
The geology of Alaska has long been recognized as very complex. Recent paleomagnetic data, combined with paleogeographic reconstructions based on the concepts of plate tectonics, indicate that at least the southern parts of Alaska may be made up of a number of slivers of continental material rafted up along the western edge of North America.If a model of this sort is real, the implications are far reaching. Thus, the first part of this survey explains in some detail the techniques and assumptions used, namely the paleomagnetic technique, the use of the geomagnetic field reversal pattern as seen in marine magnetic anomalies, the use of both local (Alaskan) and global seismicity patterns, and the concept of sea-mount chains generated by hot spots as indicators of past movement of the ocean floor.By combining information derived from these different methods, an internally consistent picture of the development of the Alaska Peninsula and Gulf of Alaska has been assembled. This model involves the region that is now the Alaska Peninsula area, having been located at approximately the latitude of Oregon/california in early Mesozoic times, and looking much like Baja California looks today. Baja Alaska was then rafted north on the ancient Pacific plate, and rotated into its present position as a result of changes in the relative Pacific-North American plate motion.  相似文献   

14.
Statistically significant (at the 95% significance level) changes in daily cloud cover are found to occur globally over land coincident with extreme increases in ‘fair-weather’ measurements of vertical electric field (Ez) measured at Vostok, Antarctica. Using global cloud products from the International Satellite Cloud Climatology Project (ISCCP) D1 data series, superposed epoch analyses were made of both increases and decreases in Ez. Field significance testing revealed that, both before and after extreme increases in Ez, significant absolute cloud cover changes (of 13–15%) occur in the tropics and high latitudes. While the linkages in the tropics may reflect changes in the main convective cloud generators of current flow in the global circuit, the linkages at high latitudes appear to represent responses of clouds to the current flow. This linkage offers a possible explanation of a possible solar–terrestrial climate amplification mechanism.  相似文献   

15.
Volcanic activity is the main process for heat-material exchange and circulation for differentiated planets. All terrestrial planets in the Solar System, the Moon, the satellites of giant planets, and the dwarf planets once experienced or are currently experiencing volcanic activities. This paper summarized the volcanism(main volcanic features and their formation) on the Moon, Mars, Venus, and Mercury in the inner Solar System, volcanism and cryovolcanism on satellites(Io, Europa,Enceladus) of g...  相似文献   

16.
The West Pacific Seamount Province (WPSP) represents a series of short-lived Cretaceous hotspot tracks. However, no intraplate volcanoes in advance of petit-spot volcanism erupted near a trench have been identified after the formation of the WPSP on the western Pacific Plate. This study reports new ages for Paleogene volcanic edifices within the northern WPSP, specifically the Ogasawara Plateau and related ridges, and Minamitorishima Island. These Paleogene ages are the first reported for basaltic rocks on western Pacific seamounts, in an area that has previously only yielded Cretaceous ages. The newly found Paleogene volcanisms overprint the Early–middle Cretaceous volcanic edifices, because the seamount or paleo-island material-covered reefal limestone caps on these edifices are uniformly older than the Paleogene volcanism identified in this study. This study outlines several possible causative factors for the Paleogene volcanism overprinting onto existing Cretaceous seamounts, including volcanism related to lithospheric stress, or a younger hotspot track within the northern part of the WPSP that records magmatism from ~60 Ma.  相似文献   

17.
The Mt. Stuart Batholith is a composite pluton of Late Cretaceous age that intrudes the crystalline North Cascades terrane of northwestern Washington. Its paleomagnetic direction (D=10.0°, I=45.5°; α95=4.9°) is markedly different from the direction expected for Cretaceous rocks from northwestern Washington (D=330.5°, I=73.0°), which means that the Mt. Stuart Batholith either has moved relative to the North American interior, or has been tilted through a substantial angle, or both, since it acquired its magnetism. Either tilt or translation are possible, geometrically, but translation is more likely, because: (1) local geology apparently does not support tilt in the required direction; (2) it probably is not possible for a panel of rock the size of the Mt. Stuart Batholith to tilt through the necessary angle (ca. 35°) after its deeper parts have cooled sufficiently to retain remanent magnetization; (3) the sense of paleomagnetic discordance found in the Mt. Stuart Batholith (clockwise-rotation of declination, flattened inclination) is identical to that found in nearly every other allochthonous terrane in the western North American Cordillera, including every other Cretaceous batholith studied except the Sierra Nevada.  相似文献   

18.

对四川盆地东北部巴中地区和西部雅安地区早白垩世红层分别采集9块手标本,进行了详细的古地磁学研究.系统退磁获得两地的特征剩磁,其中巴中地区平均方向为,倾斜校正之前:Dg/Ig=25.3°/19.0°,k=18.6,α95=8.8°;倾斜校正之后:Ds/Is=25.8°/18.9°,k=24.3,α95=7.6°.雅安地区平均方向为,倾斜校正之前:Dg/Ig=24.5°/45.0°,k=15.7,α95=9.0°;倾斜校正之后:Ds/Is=356.7°/35.6°,k=28.5,α95=6.6°.磁化率各向异性实验结果显示两地均未受到显著的构造应力影响.等温剩磁各向异性(AIR)实验结果,巴中地区IRMz/IRMx平均值为0.8194,表明18%的压实率;雅安地区IRMz/IRMx平均值为0.8909,表明11%的压实率,计算得到巴中和雅安地区校正后的磁倾角分别为22.7°和38.8°.根据等温剩磁各向异性(AIR)实验和Tauxe and Kent(2004)提出的EI校正法得到的结果表明,四川盆地早白垩世陆相碎屑岩层中存在沉积压实作用造成的磁倾角偏低现象,而且川东北巴中地区的偏低程度强于川西雅安地区.

  相似文献   

19.
Yuzuru  Yamamoto  Shunsuke  Kawakami 《Island Arc》2005,14(2):178-198
Abstract   The structure, paleomagnetism and biostratigraphy of the Nishizaki and Kagamigaura formations on the southern Boso Peninsula, central Japan, were investigated to determine the chronographic constraints on the accretion, post-Late Miocene rotation and regional tectonics in the Izu–Bonin island arc collision zone. The geological structures on the southern Boso Peninsula are characterized by an east–west trending and south-verging fold and thrust belt that curves toward the northwest–southeast in the northwest extent of the Nishizaki Formation. Two stages of tectonic rotation were revealed by paleomagnetic and structural studies. The first is believed to have occurred after the accretion of the Nishizaki Formation and before the deposition of the Kagamigaura Formation, while the second is confidently correlated with the 1 Ma Izu block collision. The northwest extent of the Nishizaki Formation was rotated clockwise by approximately 65–80°, whereas the rotation was only 25–30° in the east, and 11–13° in the overlying Kagamigaura Formation. Radiolarian biostratigraphy suggests a depositional age of 9.9–6.8 Ma (Upper Miocene period) for the Nishizaki Formation and 4.19-3.75 Ma (Pliocene period) for the lower Kagamigaura Formation. These results indicate that the age of accretion and first-stage rotation of the Nishizaki Formation can be constrained to the interval of 6.80–3.75 Ma. This structure most likely represents the northward bending caused by collisions of the Tanzawa and Izu blocks with the Honshu island arc, and suggests rapid processes of accretion, collision, uplift and the formation of new sedimentary basins within a relatively short period of time (2.61–3.05 my).  相似文献   

20.
Available data on halogenated molecules in the stratosphere will be reviewed. Presently vertical profiles of CFCl3 and CF2Cl2 in the stratosphere exist to 50 km altitude. Only measurements in the lower stratosphere are reported for the other major halocarbons, CCl4 and CH3Cl. Profiles of the product species ClO, Cl, HCl, and HF exist to about 35 km.Comparison with theoretical profiles from 1-D models shows generally good agreement except for ClO where the earliest measured concentrations exceed the calculated ones considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号