首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rocks dredged from the forearc very close to the intersection of the Yap and Mariana trenches include a suite of highly depleted arc tholeiites, and several samples of transitional to slightly alkaline basalt. The tholeiites range from magnesian quartz tholeiites with 0.46–0.6% TiO2, to andesites with up to 62% SiO2 and 8.2% FeO*. All show pronounced LREE depletion and have very low contents of Ba and Sr. They are postulated to have been produced by partial melting of upper mantle peridotite residual after MORB extraction, following influx of hydrous fluids from the subducted slab. While these fluids were responsible for small enrichments in Ba, K, Rb and Sr in melts generated, LREE were not involved in the metasomatism, and the strong LREE depletion probably reflects the unmodified, depleted source peridotite.

The second lava suite includes slightly Ne-normative, Ti-augite-bearing basalts with convex-upward REE patterns, showing slight LREE depletion ((La/Sm)N = 0.76). The chemical features of these basalts support affinities with basalts erupted during the earliest stages of backarc basin opening. A KAr age on one sample(7.8 ± 1.3m.y.) is in good agreement with the initial opening of the Mariana Trough.

The tectonic significance of the dredged arc tholeiite suite is less obvious. A KAr age of10.8 ± 0.4 My on one andesite, and the occurrence of similar lavas in dredges from at least 300 km along the length of the Yap arc, suggest that subduction was occurring beneath the Yap arc in the Late Miocene, after overthrusting of the Yap greenschist allochthon, and while calc-alkaline arc magmatism was occurring further north on the West Mariana Ridge. We suggest that the depleted arc tholeiites in dredge 1438 were generated by abnormally shallow melting of upper mantle beneath the Yap forearc following subduction beneath this area of young, hot Sorol Trough crust. These arc tholeiites represent a magma type transitional between more typical arc tholeiites (e.g. Tongan) and high-Mg andesites and boninites.  相似文献   


2.
Abstract   The geological, geochemical and mineralogical data of dismembered ophiolites of various ages and genesis occurring in accretionary piles of the Eastern Peninsulas of Kamchatka enables us to discriminate three ophiolite complexes: (i) Aptian–Cenomanian complex: a fragment of ancient oceanic crust, composed of tholeiite basalts, pelagic sediments, and gabbroic rocks, presently occurring in a single tectonic slices (Afrika complex) and in olistoplaques in Pikezh complex of the Kamchatsky Mys Peninsula and probably in the mélange of the Kronotsky Peninsula; (ii) Upper Cretaceous complex, composed of highly depleted peridotite, gabbro and plagiogranite, associated with island arc tholeiite, boninite, and high-alumina tholeiitic basalt of supra-subduction origin; and (iii) Paleocene–Early Eocene complex of intra-island arc or back-arc origin, composed of gabbros, dolerites (sheeted dykes) and basalts produced from oceanic tholeiite melts, and back-arc basin-like dolerites. Formation of the various ophiolite complexes is related to the Kronotskaya intra-oceanic volcanic arc evolution. The first ophiolite complex is a fragment of ancient Aptian–Cenomanian oceanic crust on which the Kronotskaya arc originated. Ophiolites of the supra-subduction zone affinity were formed as a result of repeated partial melting of peridotites in the mantle wedge up to the subduction zone. This is accompanied by production of tholeiite basalts and boninites in the Kamchatsky Mys segment and plagioclase-bearing tholeiites in the Kronotsky segment of the Kronotskaya paleoarc. The ophiolite complex with intra-arc and mid-oceanic ridge basalt geochemical characteristics was formed in an extension regime during the last stage of Kronotskaya volcanic arc evolution.  相似文献   

3.
Ophiolites have been divided into two groups: high-Ti and low-Ti types. These can be discriminated by studying the fractionation trends of both gabbroic complexes (this work) and lavas and dykes [16], particularly in the TiO2/M.I. diagram. The first type typically shows MORB-like magmas whereas in the second the magma types have a spectrum of composition from mid-ocean ridge basalts to island arc tholeiites and boninite-like magmas often occur.High-Ti ophiolites are petrologically and geochemically similar to major oceanic and ensialic back-arc basin crusts as well as oceanic crust generated during the intermediate and late-stage opening of intraoceanic back-arc basins.Parental magmas and fractionation processes of low-Ti ophiolites fit with an hypothesis of their formation in the early stage of opening of intraoceanic back-arc basins.  相似文献   

4.
The composition of basalts erupted at the earliest stages in the evolution of a back-arc basin permit unique insights into the composition and structure of the sub-arc mantle. We report major and trace element chemical data and O-, Sr-, Nd-, and Pb- isotopic analyses for basalts recovered from four dredge hauls and one ALVIN dive in the northern Mariana Trough near 22°N. The petrography and major element chemistry of these basalts (MTB-22) are similar to tholeiites from the widest part of the Trough, near 18°N (MTB-18), except that MTB-22 have slightly more K2O and slightly less TiO2. The trace element data exhibit a very strong arc signature in MTB-22, including elevated K, Rb, Sr, Ba, and LREE contents; relatively lowK/Ba and highBa/La andSr/Nd. The Sr- and Nd- isotopic data plot in a field displaced from that of MTB-18 towards Mariana arc lavas, and the Pb-isotopic composition of MTB-22 is indistinguishable from Mariana arc lavas and much more homogeneous than MTB-18. Mixing of 50–90% Mariana arc component with a MORB component is hypothesized. We cannot determine whether this resulted from physical mixing of arc mantle and MORB mantle, or whether the arc component is introduced by metasomatism of MORB-like mantle by fluids released from the subducted lithosphere. The strong arc signature in back-arc melts from the Mariana Trough at 22°N, where the back-arc basin is narrow, supports general models for back-arc basin evolution whereby early back-arc basin basalts have a strong arc component which diminishes in importance relative to MORB as the back-arc basin widens.  相似文献   

5.
A model is proposed for the origin of hot spots that depends on the existence of major-element heterogeneities in the mantle. Generation of basaltic crust at spreading centers produces a layer of residual peridotite ~20–25 km thick directly beneath the crust which is depleted in Fe/Mg, TiO2, CaO, Al2O3, Na2O and K2O, and which has a slightly lower density than undepleted peridotite beneath it. Upon recycling of this depleted peridotite back into the deep mantle at subduction zones, it becomes gravitationally unstable, and tends to rise as diapirs through undepleted peridotite. For a density contrast of 0.05 g cm?3, a diapir 60 km in diameter would rise at roughly 8 cm y?1, and could transport enough heat to the base of the lithosphere to cause melting and volcanism at the surface. Hot spots are thus viewed as a passive consequence of mantle convection and fractionation at spreading centers rather than a plate-driving force.It is suggested that depleted diapirs exist with varying amounts of depletion, diameters, upward velocities and source volumes. Such variations could explain the occurrence of hot spots with widely varying lifetimes and rates of lava production. For highly depleted diapirs with very low Fe/Mg, the diapir would act as a heat source and the asthenosphere and lower lithosphere drifting across the diapir would serve as the source region of magmas erupted at the surface. For mildly depleted diapirs with Fe/Mg only slightly less than in normal undepleted mantle, the diapir could provide not only the source of heat but also most or all of the source material for the erupted magmas. The model is consistent with isotopic data that require two separate and ancient source regions for mid-ocean ridge and oceanic island basalts. The source for mid-ocean ridge basalts is considered to be material upwelling at spreading centers from the deep mantle. This material forms the oceanic lithosphere. Oceanic island basalts are considered to be derived from varying mixtures of sublithospheric and lower lithospheric material and the rising diapir itself.  相似文献   

6.
Primitive lava and hyaloclastite with unusual, highly refractory compositions, form part of the Early Ordovician Balcreuchan Group within the ophiolitic Ballantrae Complex, southwestern Scotland. They are identified as likely high-Ca boninites on the basis of new XRF and INAA results and are the first unambiguous boninites to be discovered in the British Isles. The boninites are interbedded with low-Ti tholeiitic lavas with which they share some distinctive geochemical characteristics suggestive of a close petrogenetic relationship. The low-Ti tholeiite lavas have been interpreted as island-arc tholeiites but they also resemble back-arc basin basalts. The newly discovered boninites confirm an intra-oceanic environment of eruption; their distinctive features include relatively high SiO2, MgO, Cr and Ni but low Al2O3 and HFSE abundances, U-shaped REE patterns, low Ti/Zr and high Zr/Hf ratios. Bulk geochemical trends are indicative of low-temperature, seawater-dominated alteration of the lavas but these alteration conditions apparently had little effect on the distribution of critical diagnostic elements such as Zr, Ti, Sc, Ta and the mid-heavy rare earths. We suggest that the Ballantrae boninites and low-Ti tholeiites represent different batch melts derived from a common, depleted mantle source region variably modified compositionally (i.e., made “streaky”) by fluids and/or melts during slab interaction (subduction metasomatism). A contribution from slab-derived pelagic sediments and/or a carbonatite melt is necessary to account for the fractionated, non-chondritic Zr/Hf ratios in the boninites. In view of the close compositional similarity of the Ballantrae lavas to Cenozoic boninite suites, we believe that these interpretations may have wider application to the petrogenesis of boninites in general.  相似文献   

7.
The Pleistocene-Recent volcanism of this arc extends nearly linearly NNE from northern New Zealand for some 2800 km. Along its western margin lies an active marginal basin (Lau Basin and Havre Trough) which has its southern termination in the Taupo volcanic zone (TVZ, New Zealand). The New Zealand arc segment is developed within a continental crust, whereas the Tonga-Kermadec segments are developed on a ridge system within the oceanic basin. Submarine morphology suggests that the Kermadec volcanoes represent a less advanced stage of evolution relative to those of Tonga.Magmas erupted within the TVZ are dominantly rhyolitic (≈16,000 km3) with subordinate andesites and rare high-alumina tholeiites and dacites. The Kermadec Islands are dominated by tholeiites and basaltic andesites, with subordinate andesites and dacites. The Tongan Islands are dominated by basaltic andesites, with locally developed andesites and dacites. These Tonga-Kermadec lavas are characterised by subcalcic groundmass clinopyroxenes, whereas the younger group of TVZ andesites contain groundmass hypersthene and augite.Geochemically, the TVZ andesites are systematically enriched (relative to those of Tonga-Kermadec) in “incompatible” elements (e.g. K, Rb, Cs, Ba, light REE, U, Th, Zr, Pb), are less Fe-enriched, and contain more radiogenic Sr and Pb (excepting certain 207Pb/204Pb compositions). The evidence points to crustal equilibration of the TVZ andesites prior to eruption.A complete overlap of major and trace element chemistry (including TiO2) is observed between the Kermadec-TVZ tholeiites and basaltic andesites, and the ocean floor tholeiites of the Lau Basin. Compared to the Tongan lavas, those of the Kermadecs exhibit a greater degree of chemical variability, also reflected in the greater heterogeneity in their Pb isotopic compositions. Moreover, many of the Tonga-Kermadec basaltic andesites exhibit more depleted “incompatible” trace element abundances than the Kermadec and TVZ tholeiites.The “primary” magmas of this arc are interpreted to be of basaltic andesite type, derived from Benioff zone melting (essentially anhydrous), but extensively modified by low-pressure crystal fractionation processes. The Kermadec tholeiites are explained as products of relatively shallow upper mantle partial fusion induced during the earlier stages of diapiric rise of Benioff zone-derived magmas, which are sufficiently hot to intersect the peridotite solidus. This should result in the production and intermixing of a series of magmas extending from olivine tholeiite to basaltic andesite composition. The voluminous rhyolites of TVZ are interpreted as the products of crustal fusion involving Mesozoic sediments.  相似文献   

8.
The results of a controlled source seismic reflection–refraction experiment carried out in 1992 reveal the following characteristics of the northern Izu–Bonin (Ogasawara) oceanic island arc–trench system. (1) The crust rapidly thickens from the Shikoku back-arc basin to the arc, is thickest beneath the active rifts, and then gradually thins to the forearc. The thickness of the crust beneath the arc rift zone and the back-arc basin are ∼ 20 km and 8 km, respectively. (2) The Moho vanishes beneath the forearc. Velocities rapidly decrease eastwards beneath the inner trench wall. (3) The velocity of the lower crust of the arc and the back-arc basin is 7.1–7.3 km/s. This velocity is higher than the typical oceanic lower crust whose velocity is ∼ 6.7 km/s. (4) The velocity of the middle crust of the arc is ∼ 6 km/s. This layer does not exist beneath the back-arc basin. (5) A slight difference in the velocity gradient of the middle crust exists between the arc rift zone and the forearc. Based on these findings and previous studies, it is inferred that: (i) the middle crust is probably granitic rock and formed in more than two episodes; (ii) the lower crust formed by igneous underplating which may also have affected part of the back-arc basin; and (iii) the root of the serpentinite diapir on the inner trench wall is a low-velocity mantle wedge that was probably caused by large amounts of water released from the subducting Pacific plate at depths shallower than 30 km.  相似文献   

9.
Source depletion and extent of melting in the Tongan sub-arc mantle   总被引:3,自引:0,他引:3  
The fluid immobile High Field Strength Elements (HFSE) Nb and Ta can be used to distinguish between the effects of variable extents of melting and prior source depletion of the Tongan sub-arc mantle. Melting of spinel lherzolite beneath the Lau Basin back-arc spreading centres has the ability to fractionate Nb from Ta due to the greater compatibility of the latter in clinopyroxene. The identified spatial variation in plate velocities and separation of melt extraction zones, combined with extremely depleted lavas make Tonga an ideal setting in which to test models for arc melt generation and the role of back-arc magmatism.We present new data acquired by laser ablation-ICPMS of fused sample glasses produced without the use of a melt fluxing agent. The results show an arc trend towards strongly sub-chondritic Nb/Ta (< 17) with values as low as 7.2. Melting models show that large degree melts of depleted MORB mantle fail to reproduce the observed Nb/Ta. Alternatively, incorporation of residual back-arc mantle that has undergone less than 1% melting into the sub-arc melting regime reproduces arc values. However, the extent of partial melting required to produce the composition of the Lau Basin back-arc basalts averages 7%. This apparent discrepancy can be explained if only the lowermost 4 km of the residua from the mantle melt column beneath the back-arc is added to the source of arc magmas. We have identified that the degree of arc/back-arc coupling displayed in the rock record provides an index of the depth of hydrous melting beneath the arc. In this case, this would imply a depth of ~ 75 km for generation of arc magmas, indicating that hydrous melting in the mantle wedge is triggered by the breakdown of hydrous phases in the subducting slab.  相似文献   

10.
Taupor volcanic zone (TVZ) is the currently active volcanic arc and back-arc basin of the Taupo-Hikurangi arc-trench system, North Island, New Zealand. The volcanic arc is best developed at the southern (Tongariro volcanic centre) end of the TVZ, while on the eastern side of the TVZ it is represented mainly by dacite volcanoes, and in the Bay of Plenty andesite/dacite volcanoes occur on either side of the Whakatane graben. The back-arc basin is best developed in the central part of the TVZ and comprises bimodal rhyolite and high-alumina basalt volcanism. Widespread ignimbrite eruptions have occurred from this area in the past 0.6 Ma. Normal faults occur in both arc and back-arc basin. They are generally steeply dipping (>40°) and strike between 040° and 080°. In the back-arc basin, fault zones are en echelon and have the same trend as alignments of rhyolite domes and basalt vents. Open fissures have formed during historic earthquakes along some of the faults, and geodetic measurements on the north side of Lake Taupo suggest extension of 14±4 mm/year. In the Bay of Plenty and ML=6.3 earthquake occurred on 2 March 1987. Modelling of known structure in the area together with data derived from this earthquake suggests block faulting with faults dipping 45°±10° NW and a similar dip is suggested by seismic profiling of faults offshore of the Bay of Plenty where extension is estimated to be 5±2 mm/year. To the east of the TVZ, the North Island shear belt (NISB) is a zone of reverse-dextral, strike-slip faults, the surface expression of which terminates at the eastern end of the TVZ. On the opposite side of the TVZ in the offshore western Bay of Plenty and on line with the NISB is the Mayor Island fault belt. If the two fault belts were once continuous, as seems likely, strike-slip faults probably extend through the basement of the TVZ. When extension associated with the arc and back-arc basin is combined with these strike-slip faults, the resulting transtension provides a suitable tectonic environment for caldera formation and voluminous ignimbrite eruptions in the back-arc basin. The types of volcano in the TVZ are considered to be related to the source of magma and overlying crustal structure. Lavas of the arc are probably formed by a multistage process involving (1) subsolidus slab dehydration, (2) anatexis of the mantle wedge, (3) fractionation and minor crustal assimilation and (4) magma mixing. High-alumina basalts of the back-arc basin may be derived by partial melting of peridotite at the top of the mantle wedge, while rhyolitic magmas are thought to come from partial melting of lavas and subvolcanic reservoirs associated with the southern end of the Coromandel volcanic zone. Extreme thinning associated with transtension in the back-arc basin will favour the eruption of large-volume, gas-rich ignimbrites accompanied by caldera formation.  相似文献   

11.
Abstract Volcanism in the back-arc side region of Central Luzon, Philippines, with respect to the Manila Trench is characterized by fewer and smaller volume volcanic centers compared to the adjacent forearc side-main volcanic arc igneous rocks. The back-arc side volcanic rocks which include basalts, basaltic andesites, andesites and dacites also contain more hydrous minerals (ie, hornblende and biotite). Adakite-like geochemical characteristics of these back-arc lavas, including elevated Sr, depleted heavy rare earth elements and high Sr/Y ratios, are unlikely to have formed by slab melting, be related to incipient subduction, slab window magmatism or plagioclase accumulation. Field and geochemical evidence show that these adakitic lavas were most probably formed by the partial melting of a garnet-bearing amphibolitic lower crust. Adakitic lavas are not necessarily arc–trench gap region slab melts.  相似文献   

12.
Recent, fresh, volcanic rocks of the intra-oceanic Mariana and Volcano Arcs were analyzed for O and Sr isotopic compositions in order to determine the source of these magmas. Fresh, non-arc, volcanic rocks from the regions surrounding the Mariana-Volcano Arcs and some DSDP sediments were also analyzed for comparison. The oxygen isotopic ratios of the arc lavas (5.5–6.8‰) exhibited a small inter-island variation that cannot be entirely explained by fractional crystallization. The Sr isotopic composition of the arc lavas is remarkably uniform (0.70332–0.70394 for the Marianas). Three models are considered in order to explain the observed isotopic characteristics: (1) bulk mixing and melting of MORB-type mantle with (a) subducted sediments, and (b) subducted oceanic crust (excluding sediments); (2) melting of a mixture of sediment-derived fluids and MORB-type mantle; and (3) melting of a mixture of sediment-derived fluids and oceanic island or “hot-spot” type mantle. The last model fits the data best. The conclusion that very small, and variable, amounts of sediment-derived fluid ( 1%) are required to explain the observed inter-island O isotopic variation, is consistent with that of other workers who used different isotopic and trace element methods. The generation of magmas in the Mariana-Volcano Arcs involves very little sediment and the source region of Mariana lavas is isotopically indistinguishable from that of hot-spot basalts.  相似文献   

13.
The study of the geochemical compositions and K-Ar or Ar-Ar ages of ca. 350 Neogene and Quaternary lavas from Baja California, the Gulf of California and Sonora allows us to discuss the nature of their mantle or crustal sources, the conditions of their melting and the tectonic regime prevailing during their genesis and emplacement. Nine petrographic/geochemical groups are distinguished: ??regular?? calc-alkaline lavas; adakites; magnesian andesites and related basalts and basaltic andesites; niobium-enriched basalts; alkali basalts and trachybasalts; oceanic (MORB-type) basalts; tholeiitic/transitional basalts and basaltic andesites; peralkaline rhyolites (comendites); and icelandites. We show that the spatial and temporal distribution of these lava types provides constraints on their sources and the geodynamic setting controlling their partial melting. Three successive stages are distinguished. Between 23 and 13 Ma, calc-alkaline lavas linked to the subduction of the Pacific-Farallon plate formed the Comondú and central coast of the Sonora volcanic arc. In the extensional domain of western Sonora, lithospheric mantle-derived tholeiitic to transitional basalts and basaltic andesites were emplaced within the southern extension of the Basin and Range province. The end of the Farallon subduction was marked by the emplacement of much more complex Middle to Late Miocene volcanic associations, between 13 and 7 Ma. Calc-alkaline activity became sporadic and was replaced by unusual post-subduction magma types including adakites, niobium-enriched basalts, magnesian andesites, comendites and icelandites. The spatial and temporal distribution of these lavas is consistent with the development of a slab tear, evolving into a 200-km-wide slab window sub-parallel to the trench, and extending from the Pacific coast of Baja California to coastal Sonora. Tholeiitic, transitional and alkali basalts of subslab origin ascended through this window, and adakites derived from the partial melting of its upper lip, relatively close to the trench. Calc-alkaline lavas, magnesian andesites and niobium-enriched basalts formed from hydrous melting of the supraslab mantle triggered by the uprise of hot Pacific asthenosphere through the window. During the Plio-Quaternary, the ??no-slab?? regime following the sinking of the old part of the Farallon plate within the deep mantle allowed the emplacement of alkali and tholeiitic/transitional basalts of deep asthenospheric origin in Baja California and Sonora. The lithospheric rupture connected with the opening of the Gulf of California generated a high thermal regime associated to asthenospheric uprise and emplaced Quaternary depleted MORB-type tholeiites. This thermal regime also induced partial melting of the thinned lithospheric mantle of the Gulf area, generating calc-alkaline lavas as well as adakites derived from slivers of oceanic crust incorporated within this mantle.  相似文献   

14.
Stratigraphic and geochronological data show that the late Cenozoic Ueno Basalts and related Nomugi-Toge and Hida volcanic suites of the Norikura Volcanic Chain, Japan, were active for ~ 1 million years. Temporal and spatial variations of the volcanic activity and chemistry of the volcanic products suggest that it was induced by a common mantle diapir. The Ueno Basalts are small monogenetic volcanoes scattered over an area 50 km in diameter, and comprise a small volcanic province. The Ueno Basalts are almost all subalkalic basalt to basaltic andesite, erupted through the late Pliocene to the earliest Pleistocene (2.7–1.5 Ma). Andesite to dacite of the Nomugi-Toge volcanic rocks were concurrently active in the back arc side, and two eruption stages (2.6–2.2 and 2.1–1.7 Ma) are recognizable. Two voluminous dacite and rhyolite ignimbrites, the Hida Volcanic Rocks, were erupted deeper in the back-arc region, at ca 1.75 and 1.7 Ma. Both the Nomugi-Toge and Hida suites are also subalkalic, except for the last ignimbrite. In the Ueno Basalts, alkali olivine basalt was erupted in the earliest stage, and was followed by subalkalic basalt, showing that the magma segregation depth ascended with time. This coincided with uplift of the volcanic province and with quasi-concentric expansion of the eruption centers, suggesting that an upwelling mantle diapir was the cause of the volcanism. The Nomugi-Toge andesite–dacite lavas and the Hida dacite and rhyolite ignimbrites are considered to have originated from the same mantle diapir, because of their close proximity to the Ueno Basalts and their near-contemporaneous activity. Mantle diapirs have a significant role in the origin of subalkalic volcanic rocks in the island arcs.  相似文献   

15.
Measurements of chlorine concentrations in matrix glasses from 18 primitive (>6 wt% MgO) and eight evolved lavas from active spreading centers in the Lau Basin back-arc system provide insight into the processes which control chlorine concentrations in subduction-related magmas, and can be used to investigate chlorine enrichment related to fluids derived from the underlying subducted slab. Chlorine contents of the glasses are highly variable (0.008-0.835 wt%) and generally high with respect to uncontaminated mid-ocean ridge basalt. Chlorine contents are highest in fractionated lavas from propagating ridge tips and lowest in more primitive basaltic lavas. Two different styles of enrichment in chlorine (relative to other incompatible elements) are recognized. Glasses from the Central Lau Spreading and Eastern Lau Spreading Center typically have low Ba/Nb ratios indicating minimal input of slab-derived components, and high to very high ratios of chlorine relative to K2O, H2O, and TiO2. This style of chlorine enrichment is highest in the most fractionated samples and is consistent with crustal assimilation of chlorine-rich altered ocean crust material. Data from the literature suggest that contamination by chlorine-rich seawater-derived components also characterizes the Woodlark Basin and North Fiji Basin back-arc systems. The second style of chlorine enrichment reflects input from slab-derived fluid(s) to the mantle wedge from the adjacent Tonga subduction zone. Basaltic glasses from the Valu Fa Ridge and Mangatolu Triple Junction show correlations between ratios of chlorine and K2O, H2O, and TiO2 and indices of slab-derived fluid input such as Ba/Nb, Ba/Th and U/Th, consistent with chlorine in these lavas originating from a saline fluid added to the mantle wedge. Within the Valu Fa Ridge the measured range of chlorine contents equates to a chlorine flux of 224-1120 kg/m/yr to the back-arc crust. Using a simple melting model and additional data from other back-arc and arc sample suites we conclude that chlorine is a major component within the slab fluids that contribute to many arc and back-arc melting systems, and probably plays an important role in regulating trace element transport by slab fluids in the mantle wedge. For the back-arc suites we have examined the estimated Cl/H2O and Cl/K2O ratios in the slab fluid component correlate with proximity to the arc front, suggesting that progressive dehydration of the slab and/or re-equilibration and transport within the mantle wedge may influence the overall degree of chlorine enrichment within the slab fluid component. The degree of chlorine enrichment observed in most back-arc lavas also appears too great to be explained solely by melting of amphibole, phlogopite or apatite within the mantle source and suggests that chlorine must be present in another phase, possibly a chlorine-rich fluid.  相似文献   

16.
The southernmost Mariana forearc stretched to accommodate opening of the Mariana Trough backarc basin in late Neogene time, erupting basalts at 3.7–2.7 Ma that are now exposed in the Southeast Mariana Forearc Rift (SEMFR). Today, SEMFR is a broad zone of extension that formed on hydrated, forearc lithosphere and overlies the shallow subducting slab (slab depth ≤ 30–50 km). It comprises NW–SE trending subparallel deeps, 3–16 km wide, that can be traced ≥ ∼30 km from the trench almost to the backarc spreading center, the Malaguana‐Gadao Ridge (MGR). While forearcs are usually underlain by serpentinized harzburgites too cold to melt, SEMFR crust is mostly composed of Pliocene, low‐K basaltic to basaltic andesite lavas that are compositionally similar to arc lavas and backarc basin (BAB) lavas, and thus defines a forearc region that recently witnessed abundant igneous activity in the form of seafloor spreading. SEMFR igneous rocks have low Na8, Ti8, and Fe8, consistent with extensive melting, at ∼23 ± 6.6 km depth and 1239 ± 40°C, by adiabatic decompression of depleted asthenospheric mantle metasomatized by slab‐derived fluids. Stretching of pre‐existing forearc lithosphere allowed BAB‐like mantle to flow along the SEMFR and melt, forming new oceanic crust. Melts interacted with pre‐existing forearc lithosphere during ascent. The SEMFR is no longer magmatically active and post‐magmatic tectonic activity dominates the rift.  相似文献   

17.
A geochemical and isotopic study of lavas from Pichincha, Antisana and Sumaco volcanoes in the Northern Volcanic Zone (NVZ) in Ecuador shows their magma genesis to be strongly influenced by slab melts. Pichincha lavas (in fore arc position) display all the characteristics of adakites (or slab melts) and were found in association with magnesian andesites. In the main arc, adakite-like lavas from Antisana volcano could be produced by the destabilization of pargasite in a garnet-rich mantle. In the back arc, high-niobium basalts found at Sumaco volcano could be produced in a phlogopite-rich mantle. The strikingly homogeneous isotopic signatures of all the lavas suggest that continental crust assimilation is limited and confirm that magmas from the three volcanic centers are closely related. The following magma genesis model is proposed in the NVZ in Ecuador: in fore arc position beneath Pichincha volcano, oceanic crust is able to melt and produces adakites. En route to the surface, part of these magmas metasomatize the mantle wedge inducing the crystallization of pargasite, phlogopite and garnet. In counterpart, they are enriched in magnesium and are placed at the surface as magnesian andesites. Dragged down by convection, the modified mantle undergoes a first partial melting event by the destabilization of pargasite and produces the adakite-like lavas from Antisana volcano. Lastly, dragged down deeper beneath the Sumaco volcano, the mantle melts a second time by the destabilization of phlogopite and produces high-niobium basalts. The obvious variation in spatial distribution (and geochemical characteristics) of the volcanism in the NVZ between Colombia and Ecuador clearly indicates that the subduction of the Carnegie Ridge beneath the Ecuadorian margin strongly influences the subduction-related volcanism. It is proposed that the flattening of the subducted slab induced by the recent subduction (<5 Ma?) of the Carnegie Ridge has permitted the progressive warming of the oceanic crust and its partial melting since ca. 1.5 Ma. Since then, the production of adakites in fore arc position has deeply transformed the magma genesis in the overall arc changing from ‘typical’ calc-alkaline magmatism induced by hydrous fluid metasomatism, to the space- and time-associated lithology adakite/high-Mg andesite/adakite-like andesite/high-Nb basalts characteristic of slab melt metasomatism.  相似文献   

18.
Characteristic geochemical features of the ophiolite suite from the Bay of Islands Complex have been determined by major and trace element analyses of 13 rocks. Based on elements, such as rare earth elements (REE), whose abundances are relatively immobile during alteration and metamorphism, we find that (1) the pillow lavas and diabases are relatively depleted in light REE similar to most tholeiites occurring along spreading oceanic ridges, in back-arc basins and comprising the early phases of volcanism in island arcs; (2) the gabbros, composed of cumulate plagioclase and olivine with poikilitic clinopyroxene, have REE contents consistent with formation as cumulates precipitated from magmas represented by the overlying pillow lavas and diabases; (3) as in most harzburgites from ophiolites, the Bay of Islands harzburgite and dunite have relative REE abundances inconsistent with a genetic relationship to the overlying basic rocks — this inconsistency may be primary or it may result from late-stage alteration, contamination and/or metamorphism; (4) some Bay of Islands lherzolites have major and trace element abundances expected in the mantle source of the overlying basic rocks. Overall, the geochemical features of this Bay of Islands ophiolite suite are similar to those from Troodos and Vourinos, but these data are not sufficient to distinguish between different tectonic environments such as deep ocean ridge, small ocean basin or young island arc.  相似文献   

19.
New inductively coupled plasma mass spectrometry (ICP-MS) trace element data are presented on a suite of arc lavas from the northern Mariana and southern Bonin island arcs. The samples were dredged from seamounts in the Central Island Province (CIP), the Northern Seamount Province (NSP) and the Volcano Arc (VA), and they range in composition from low-K tholeiites to shoshonites. Previous studies on these samples concluded that the primary compositional control was two-component mixing between a fluid-metasomatized mid-ocean ridge basalt (MORB) source and an enriched, ocean island basalt (OIB)-like, mantle component, with subducted sediment material playing a secondary role. However, the new trace element data suggest that the compositional variations along the Mariana arc can be better explained by the addition of spatially varying subduction components to a spatially varying mantle source. The data suggest that the subduction component in the CIP and VA is dominated by aqueous fluids derived from altered oceanic crust and a pelagic sediment component, while the subduction component in the NSP is dominated by more silicic fluids derived from volcanogenic sediments as well as from pelagic sediment and altered oceanic crust. The mantle wedge in the CIP and VA is depleted relative to a normal mid-ocean ridge basalt source by loss of a small melt fraction, while the mantle wedge in the NSP is enriched either by possible gain of a small melt fraction or addition of a sediment-derived melt. Because the subduction of seamounts controls the arc and back-arc geometries, so the concomitant variation between subducted material and mantle composition may be no coincidence. The high field strength element (HFSE) data indicate a high degree of melting (∼ 25–30%) throughout the arc, ∼ 10% of which may be attributed to decompression and ∼ 20% to fluid addition.  相似文献   

20.
Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, SmNd and RbSr internal isochrons yield Pan African dates for felsic and basic granulites collected 500–600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined RbSr and SmNd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the SmNd and RbSr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the RbSr isotopic system of the mafic granulite. The initial143Nd/144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite diapir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号