首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
雷暴云底部正电荷区对闪电类型影响的数值模拟   总被引:2,自引:0,他引:2  
在经典的雷暴云三极电荷结构的假定下结合已有的随机放电参数化方案,进行了二维高分辨率闪电放电的模拟实验,定量的探讨了雷暴云底部正电荷对闪电类型的影响.结果表明:(1)雷暴云底部正电荷对负地闪和反极性云闪的产生起了关键作用,随着底部正电荷区的电荷密度大小或分布范围的增大,闪电类型依次从正极性云闪向负地闪再向反极性云闪变化;(2)相对于电荷区分布范围而言,底部正电荷区的电荷密度大小对闪电类型的影响起主导作用.只有当雷暴云底部正电荷区的最大电荷密度取值在一定范围内时,才会出现负地闪,并且负地闪的发生概率相对固定;(3)在该范围内,负地闪的发生由底部正电荷区的电荷密度大小以及分布范围共同决定,且其与云闪触发条件之间存在一个线性边界;(4)底部正电荷区的电荷密度大小以及分布范围的共同效果是改变底部正位势阱的分布,当闪电启动参考电位接近0MV时生成反极性云闪,而当其远小于0MV时则更容易形成负地闪.  相似文献   

2.

2016年夏季在青海大通地区获得一次局地雷暴云内的电场探空资料,结合雷达、地闪定位资料,详细分析了该雷暴的地闪活动特征及云内的电荷结构.结果显示,该雷暴过程的负地闪在时间上呈间歇性发生,在空间分布上表现为不连续,且所有的正地闪都发生于雷暴的成熟阶段.在雷暴成熟阶段与消散阶段过渡期获得云内的垂直电场廓线表明,雷暴内的电荷结构在探空阶段呈四极性,最下部为处于暖云区内负电荷区,往上依次改变极性.最上部的正电荷区由于数据丢失无法判断其上边界外,其余3个电荷区的海拔高度分别为:5.5~5.7 km(3.4~2.3℃)、5.7~6.2 km(2.3~-0.4℃)和6.2~6.6 km(-0.9~-1.7℃),对应的电荷密度为-1.81 nC·m-3、2.47 nC·m-3和-1.76 nC·m-3.其中,下部正电荷区的强度最大,其次为上部的负电荷区.通过分析电荷区分布与正地闪活动的关系,认为暖云区内负电荷区的形成有利于诱发下部正电荷区的对地放电.

  相似文献   

3.

本文自主研制性能稳定的双金属球三维电场探空仪,并结合气象探空仪等构建了雷暴电场-气象综合探空系统,实现了雷暴云内三维电场及温度、湿度的同步测量.2019年夏季对华北平原地区雷暴开展穿云观测,并结合地面大气电场、雷达回波、变分多普勒雷达分析系统(VDRAS)反演的动力场等资料进行综合研究,首次给出该地区雷暴云内的电场和电荷结构分布特征.对2019年8月7日发生的一次中尺度对流系统电场探空发现,在雷暴减弱阶段,其弱回波区内存在5个极性交替的电荷区:4.4~5.6 km之间的上部正电荷区(0℃附近)、3.6~4.4 km之间的中部负电荷区和1.0~3.6 km之间的下部正电荷区,此外在1 km下方有一个负极性电荷区,雷暴云顶附近5.7~6.9 km之间为一个弱负极性屏蔽电荷区.其中,中部负电荷区和下部正电荷区由多个不同强度、不同厚度的电荷层构成.此外,电场探空系统在中部负电荷区高度范围内经历的上升—下沉—再次上升的往返探空数据表明,雷暴云内动力环境复杂,电荷结构分布相似但又有所差异,反映了实际雷暴云内电荷分布的时空不均匀性和复杂性.

  相似文献   

4.
雷暴云内闪电双层、分枝结构的数值模拟   总被引:2,自引:0,他引:2  
试验了一种逃逸启动、双向随机发展的放电参数化改进方案, 并进行了12.5 m的高分辨率、二维雷暴云数值模拟试验, 模拟再现的雷暴云内闪电特征在通道扩展范围和双层、分枝结构以及与位势阱位置的相互配合等方面与实际VHF源定位观测资料分析结果是一致的. 进一步发现: (1) 闪电在雷暴云内相邻的正、负电荷区边界附近触发后, 负先导向正电荷区发展、正先导向负电荷区发展. 存在正负两种极性的云闪, 他们的极性由云中相邻正、负电荷累积区位置的上下配置决定. (2) 电荷累积区的空间分布制约着闪电的空间范围. 云闪几乎遍及其所传播的电荷堆, 遭遇到局域性、与通道极性相同的电荷堆时, 通道将转向、绕开该电荷堆. (3) 电位的空间分布形态同样制约着闪电通道传播方向和几何结构: 先导通道进入正或负位势阱之前沿着最大电位梯度方向传播; 当先导通道穿过它们的中心之后通道更趋于电位变化缓慢的地方发展. (4) 云闪通道在穿过电荷累积区中心以前, 有较好的分形特征, 幂指数约为1.45; 而其后向低电荷浓度地区延伸时, 幂指数随着半径增加而减小. (5) 放电结束后通道感应生成的异极性电荷沉积在正、负先导通道经过的区域, 形成新的、复杂的云内电荷空间分布, 位势极值可由200下降到20 MV.  相似文献   

5.
上行地闪是一种始发于超高建筑物(高度至少在100m以上)顶端的大气放电现象,目前对其的认知主要通过地面观测,而相应的理论模式研究较为缺乏.本文在已有的双向先导随机模型的基础上,创建上行地闪随机放电参数化方案,并耦合到雷暴云起、放电模式中,进行了二维高分辨率上行地闪放电的模拟实验,得到的上行闪电与观测结果具有较好的一致性.通过分析雷暴云电荷结构给出了常规地闪起始的有利云内环境特征,并分析了正、负上行地闪一些特征的异同,结果表明:模拟得到的上行正地闪多为诱导触发的上行地闪,通常是三极电荷结构下次正电荷区与地面之间的一种放电现象,前次云闪过程对空间环境电场的影响为其起始提供了有利条件,整个放电过程延伸范围有限、分叉少、放电不充分;上行负地闪多为偶极电荷结构中主负电荷区与地面之间的放电过程,温度层结的高度低以及降水粒子的下沉使电荷区高度降低是其起始的根本原因,上行负地闪发展旺盛,分支较多;诱导触发的上行地闪主要发生于雷暴成熟期,而自行触发的上行地闪则更容易在雷暴消散期起始.  相似文献   

6.
青藏高原那曲地区雷电特征初步分析   总被引:32,自引:3,他引:29       下载免费PDF全文
通过对2002年夏季青藏高原那曲地区雷暴过程及闪电观测资料的初步分析,发现该地区雷暴电荷结构具有多样性和复杂性,地闪明显偏少. 对高原地闪的一些基本特征参量的统计分析表明,无论正地闪还是负地闪梯级先导前都具有持续时间较长的云内放电过程,地闪以单次回击为主. 与中低纬度地区相比,高原地闪中正地闪比例明显要高,为33髎;负地闪为67髎;正、负地闪回击后常常伴随短时间的连续电流.  相似文献   

7.
为了进一步认识强雷暴中正地闪偏多的原因,本文利用三维雷暴云动力-电耦合数值模式,通过模拟一次强雷暴过程,讨论了正地闪频发需要的条件.结果表明,云闪的发生需要较强的上升气流,而正地闪的发生不仅需要更强的上升气流,还需要云低层存在强的下沉气流,即正地闪发生在强雷暴云成熟阶段后期,对应固态降水强度最大时段.此时,云内主上升气流区内的各电荷区被强上升气流抬升,短暂地呈现反三极性结构,非感应起电机制作用使大量的霰粒子带正电荷,形成了中部电荷密度较大、范围较深厚的正电荷区.而下沉气流区比上升气流区电荷结构更复杂,呈正、负交替的多层结构.由于雷暴云上部负电荷区中部分带负电荷的霰和雹粒子被下沉气流输送到低层,及低层区域感应起电机制的共同作用,使上升气流区外围的对流降水区中的霰和雹粒带上负电荷,在近地面形成一个较强的、范围较大的负电荷区.强雷暴云中下部存在的这个偶极性电荷结构为正地闪的发生提供了有利条件.正地闪发生阶段对应着上升气流、雹粒子体积和总闪的快速增强阶段.因此,强雷暴中正地闪的发生可作为雷暴强度及冰雹形成的一个指示因子.  相似文献   

8.
青藏高原一次地闪放电过程的分析   总被引:3,自引:2,他引:1       下载免费PDF全文
利用成像率为1000 幅/s的高速摄像系统和快、慢电场变化仪以及宽带干涉仪系统等探测仪器在青藏高原那曲地区所观测的地闪资料,对一次地闪回击及其之前的持续时间较长的云内放电过程进行了分析.结果表明:地闪先导前的云内放电过程发生于雷暴云下部正电荷区和中部负电荷区之间;云中部负电荷区距离地面的高度为2.8~4.5 km;闪电的起始放电发生区域距离地面的高度为1.0~1.7 km;初始流光在云外发展时具有很大的水平分量和较多的分支;梯级先导的速度为1×105 m/s,在向地面发展时出现较大的弯曲;首次回击放电过程与低海拔地区没有差异,通道中的峰值电流有24.1 kA;继后回击相对较弱.  相似文献   

9.
系统介绍了自行研制的基于GPS同步和时差法定位技术的闪电VHF辐射源三维定位系统以及山东北部地区闪电过程同步观测分析,成功获得了雷暴中闪电通道辐射源三维时空发展物理图像.并结合地面的快电场变化资料,对典型负地闪、正地闪和云闪放电通道的三维时空演变过程进行了分析,结果表明,正、负地闪激发传输过程不同,典型负地闪的预击穿过程发展速度约为5.2×104m/s,被初始负击穿引发的向下梯级先导传输过程发展速度约为1.3×105m/s;正地闪初始阶段也是激发负流光传输,以优势水平方向在正电荷区内传输,并为始发点积累正电荷,从而触发向下正流光传输.重点分析了一次由双极性窄脉冲事件(NBP)引发的云内闪电三维放电过程,该脉冲发生在约10.5km的高度上即上部正电荷区域内,同时引发云内放电通道水平向周围扩展,产生大量击穿辐射源,双极性窄脉冲辐射峰值强度值高达16.7kW,而普通闪电辐射源功率一般在100mW~500W范围内.与经典云闪完全不同,此类新型云闪及其三维传输过程在国内第一次被发现.文章还讨论了其可能的触发机制.  相似文献   

10.
沿海地区一次多单体雷暴电荷结构时空演变   总被引:3,自引:0,他引:3       下载免费PDF全文
利用闪电放电辐射源三维时空分布测量,分析了山东低海拔地区一次多单体雷暴过程的电荷结构演变以及与回波强度的关系.结果表明对流云区电荷结构是典型的上正下负电偶极结构,且随着雷暴发展正负电荷层强度增大,高度抬升.负电荷区处在40 dBz以上的强回波区域中,正电荷层处在约40 dBz区域中.层状云区也有类似结构,只是强度弱,高度低.观测到的四层电荷结构是出现在对流区消散阶段,此时,由于云体不同部位的不同消散程度,电荷结构发生断裂,云体前部正负电荷区下沉,云体中部正负电荷区高度变化不大,但负电荷区域变薄,呈现出四层电荷结构.从本例结果说明,雷暴优势起电机制通常能形成电偶极或三极性结构,多极结构可能不是起电形成.本文还分析了一次负地闪传输过程,和宏观电荷结构很好吻合,说明利用三维定位系统观测,可以较好地描述雷暴宏观电荷结构.  相似文献   

11.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges.A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

12.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges. A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

13.
The upward lightning (UL) initiated from the top of tall buildings (at least above 100 m) is a type of atmospheric discharge. Currently, we understand the nature of the UL from ground observations, but the corresponding theoretical research is lacking. Based on an existing bidirectional leader stochastic model, a stochastic parameterization scheme for the UL has been built and embedded in an existing two-dimensional thundercloud charge/discharge model. The ULs simulated from the experiments with two-dimensional high resolution agree generally with the observation results. By analyzing the charge structure of thunderstorm clouds, we determined the in-cloud environmental characteristics that favor the initiation of conventional cloud-to-ground (CG) flashes and analyzed the differences and similarities of some characteristics of the positive and the negative UL. Simulation results indicate that the positive ULs are typically other-lightning-triggered ULs (OLTUL) and are usually a discharge phenomenon between the ground and the lower positive charge region appearing below the main middle negative charge region. The effect of the previous in-cloud lightning (IC) process of space electrical field provides favorable conditions for the initiation of a positive UL. Its entire discharge process is limited, and the branches of the leader are fewer in number as its discharge is not sufficient. A negative UL is generally a discharge phenomenon of the dipole charge structure between the ground and the main negative charge region. The lower temperature stratification and the sinking of the hydrometeors typically initiate a negative UL. Negative ULs develop strongly and have more branches. The OLTUL is initiated mainly during the development stage of a thunderstorm, while the self-triggered UL (STUL) is initiated mainly during the dissipation stage of a thunderstorm.  相似文献   

14.
Combined with the existing stochastic lightning parameterization scheme, a classic tripole charge structure in thunderstorms is assumed in the paper, and then 2-dimensional fine-resolution lighting discharge simulations are performed to quantitatively investigate the effect of lower positive charge (LPC) on different types of lightning. The results show: (1) The LPC plays a key role in generating negative cloud-to-ground (CG) flashes and inverted intra-cloud (IC) lightning, and with the increase of charge density or distribution range of LPC region, lightning type changes from positive polarity IC lightning to negative CG flashes and then to inverted IC lightning. (2) Relative to distribution range of charge regions, the magnitude of charge density of the LPC region plays a dominant role in lightning type. Only when the maximal charge density value of LPC region is within a certain range, can negative CG flashes occur, and the occurrence probability is relatively fixed. (3) In this range, the charge density and distribution range of LPC region jointly determine the occurrence of negative CG flashes, which has a linear boundary with the trigger condition of IC lightning. (4) The common effect of charge density and distribution range of the LPC region is to change the distribution of positive potential well of bottom part of thunderstorms, and inverted IC lightning occurs when the initial reference potential is close to 0 MV, and negative CG flashes occur when the initial reference potential is far less than 0 MV.  相似文献   

15.
The negative CG lightning discharges neutralizing negative charges in cloud usually dominate for most of thunderstorms. However, a lot of positive CG light-ning discharges often occur in the disappearing stage of thunderstorms, in the stratiform region of mesoscale convective systems and some supercells producing hail and tornado. Because the positive CG lightning discharges produce larger current of the return stroke and neutralize more charges due to the continuing currents with longer las…  相似文献   

16.
模型,计算了雷暴云电荷突然对地放电后QE场大小 在0~90km高度上的分布. 对200C的正电荷对地放电后的计算表明,在放电1ms后,在65~78km的区域内,QE场大于大气的雪崩电场,而0.5s后,该电场迅速衰减到很低的水平. 在电 离层高度上,由于电子的热化时标和电离时标极短,在QE场的作用下,夜间局部低电离层会 有比较大的响应. 对Boltzmann方程数值求解的结果表明,在某些高度上,电子分布函数有 明显的高能尾巴;在63~83km的高度上,电子平均能量为3eV<ε<6eV;计算的电子数 密度 的峰值扰动表明,在65~78km的高度上,电子的数密度增加,最大的电离峰值约在74km处, 大约增加了3个数量级,比电磁脉冲(EMP)的电离效果大得多.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号