首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
During the last 50 years, an average of 30 persons per year was killed by avalanches in Austria. About one-third of all avalanche fatalities occurred as a result of so-called ‘catastrophic avalanches’. ‘Catastrophic avalanches’ are spontaneously released avalanches that affect villages and cause damage to property (buildings, roads and other infrastructure). The biggest avalanche events in Austria were in 1950/1951 (135 fatalities), in 1953/1954 (143 fatalities) and in February 1999, when 38 persons were killed in Galtür and Valzur. This article deals with an analysis of nine major avalanche cycles in the last 55 years. An avalanche cycle in this article is defined as 50 recorded avalanches of at least size 3 in two days and/or 5 persons killed in villages within two days. The basis of this study are the well-documented records from Fliri (1998), who analysed natural disasters in the western part of Austria and the Trentino, including floods, mudflows, earthquakes and avalanches. The meteorological data were taken from two relevant observation sites in the northern part of the Austrian Alps, from two sites in an intermediate and continental region, respectively and from one site in the southern part of the Austrian Alps. Atmospheric patterns were analysed by using weather charts for the relevant periods. Both the meteorological data and the weather charts were provided by the Central Institute for Meteorology and Geodynamics (ZAMG). It was found that there was a major cycle every 6 years (on average). Two-thirds of all investigated cycles were characterised by a continuous increase of snow depth over a period of at least three days. In only three periods (1975, 1986, 1988), daily extreme values could be observed. More than 40% of all the cycles occurred in January. In two-thirds, a north-westerly oriented frontal zone was responsible for the formation of a major cycle. The remaining cycles were released by low-pressure areas over Central Europe and the Mediterranean Sea, respectively.  相似文献   

2.
The occurrence of wet-snow avalanches is, in general, poorly understood. For 20 years (winters of 1975–1976 to 1994–1995), the avalanche activity has been observed in the Dischma valley near Davos (Eastern Swiss Alps). The study area comprises a large starting zone of north-easterly aspect (2,300 m a.s.l.) with several avalanche paths. We have analyzed the occurrence data in combination with meteorological and snowpack data collected at an elevation of 2,090 m a.s.l. During the 20-year observation period, almost 800 wet-snow avalanches were observed, about 4.5 times more loose snow avalanches than slab avalanches. Considering both types of avalanches jointly, snow depth, precipitation and air temperature showed the highest correlation with avalanche activity. Most loose snow avalanches occurred when air temperature was high and/or after a precipitation period. Slab avalanches occurrence was primarily related to warm air temperatures and snowpack properties such as the isothermal state and the existence of capillary barriers. Radiation did not show up as a significant variable. The results suggest that in a transitional snow climate wet-snow avalanches are, as dry snow avalanches, often related to precipitation events, and that wet slab instability strongly depends on snowpack properties in relation to warming of the snowpack and melt water production.  相似文献   

3.
D. M. McClung 《Natural Hazards》2011,59(3):1635-1645
In North America and Europe, most fatalities due to snow avalanches occur in the backcountry during recreational pursuits. Of these, more than 90% of the fatal avalanches are triggered by the victims themselves. This pattern suggests that the primary cause of avalanche fatalities for human-triggered avalanches is a failure in human perception. For the latter, people thought that the state of stability or instability of the snow cover was different than it actually was. In this paper, the strength and weight of evidence used to make decisions in backcountry travel are discussed from: (a) the perspective of the favored hypothesis to proceed for good recreational enjoyment based on stability evaluation and (b) the null hypothesis based on an assessment of instability. Based on the facts about snow slab avalanche release, it is argued that instability analysis is the best framework for avalanche forecasting, whereas human action is most closely related to the favored hypothesis (stability evaluation). Using scaling laws derived from: (a) fracture mechanics about the size of imperfections causing avalanches and (b) avalanche dimensions, it is suggested that a snow slab could show stability over more than 99% of the total area. From the concepts of Bayesian probability, it is shown that overconfidence about stability can arise when the weight of the likelihood is high and the weight of prior is low. Similarly, underconfidence (excessive conservatism) often results when the weight of the prior is high with little regard for the likelihood, which may be low. Overconfidence about stability is considered to be a prime source of accidents.  相似文献   

4.
Snow avalanches affect recreation, transportation, resource industries and property. During the 1990s an average of 12.5 persons per year were killed in avalanches in Canada. The snow avalanche hazard has affected people and facilities in B.C, Alberta, Yukon, NWT, Nunavut, Ontario, Quebec and Newfoundland. Avalanche risk may be voluntary, for example skiing and snowmobiling, or involuntary, for example public transportation corridors. A worst-case avalanche scenario is most likely to occur in the Western Cordillera, resulting from a single large-scale weather pattern, where a cold period resulting in the development of a weak layer in the snowpack is followed by a series of major mid-winter storms. Emergency preparedness for avalanches is most advanced in western Canada. New education and information initiatives in Quebec and Newfoundland are aimed at improving preparedness there. Current research is focused on avalanche forecasting, weather forecasting for avalanche prediction, avalanche failure characteristics, forestry and avalanches and geomorphology and avalanches. An important area of future research is the impact of climate change on avalanches, particularly in northern Canada.  相似文献   

5.
In the field of natural hazards, risk is usually expressed as a function of probability of occurrence and damage potential. A key factor in the development of avalanche risk is a change in damage potential. In this paper, the development of damage potential and losses is analysed for settlements in the canton of Grisons, Switzerland for the period between 1950 and 2000. The spatial development patterns of the residential population and the insured value of buildings on a municipal level are described. These patterns are overlain by an accentuated occurrence of avalanches that caused damage to buildings. Extensive results from areas threatened by avalanches in the municipality of Davos are presented. Although the natural avalanche activity remained constant during the last decades, the total amount of damage decreased due to mitigation measures. The example of the municipality of Davos shows that mitigation measures are able to compensate an increase of tangible assets which leads to a reduced avalanche risk compared to earlier decades.  相似文献   

6.
Automated detection of snow avalanches is an important tool for avalanche forecasting and for assessing the effectiveness of avalanche control measures at bad visibility. Avalanche detection systems are usually based on infrasound, seismic, or radar signals. Within this study, we compared three different types of avalanche detection systems: one avalanche radar, one infrasound array system consisting of four infrasound sensors, and a newly developed single sensor infrasound system. A special focus is given to the new single sensor system, which is a low cost, easy to install system, originally designed for the detection of debris flows and debris floods. Within this work, we analysed how this single sensor system could be adapted to detect also snow avalanches. All three systems were installed close to a road near Ischgl (Tyrol, Austria) at the avalanche-exposed Paznaun Valley. The valley is endangered by two avalanche paths which are controlled by several avalanche towers. The radar system detected avalanches accurately and reliably but was limited to the particular avalanche path towards which the radar beam was directed. The infrasound array could detect avalanches from all surrounding avalanche paths, however, with a higher effort for installation. The newly tested single infrasound sensor system was significantly cheaper and easier to install than the other two systems. It could also detect avalanches form all directions, although without information about the direction. In summary, each of the three different systems was able to successfully detect avalanches and had its particular strengths and weaknesses, which should be considered according to the specific requirements of a particular practical application.  相似文献   

7.
Hao J.  Li L. 《冰川冻土》2022,(3):722-770
Snow avalanches are a major natural hazard in the cryosphere. It seriously threatens transportation corridors, energy transmission and communication lines, mining and touristic areas in the cold mountainous regions and often causes the destruction of infrastructure and human casualties, hindering the sustainable development of society and economy in mountainous areas. Under climate change and the expansion of human activities to alpine mountains, more population and infrastructure will expose to the risk of avalanches. In order to ensure the sustainable development in mountainous areas, the demand for the prevention and management of avalanche disasters is increasing. Based on the review of the main avalanche research progress in China since 1960 and the avalanche research results all over the world, this paper summarized the progress on the influencing factors and regional distribution of avalanche activities, avalanche formation and movement mechanism, avalanche monitoring and early warning, avalanche risk assessment and engineering prevention, as well as the frontier problems and scientific difficulties that need to be studied. In addition, the impact of climate change on avalanche activities and the interaction between human activities and avalanche activities are discussed. By looking forward to the future needs of avalanche disaster prevention and reduction, including the countermeasures, the research on avalanche in China is promoted. © 2022 by the Author(s).  相似文献   

8.
Snow avalanches are a major natural hazard for road users and infrastructure in northern Gaspésie. Over the past 11 years, the occurrence of nearly 500 snow avalanches on the two major roads servicing the area was reported. No management program is currently operational. In this study, we analyze the weather patterns promoting snow avalanche initiation and use logistic regression (LR) to calculate the probability of avalanche occurrence on a daily basis. We then test the best LR models over the 2012–2013 season in an operational forecasting perspective: Each day, the probability of occurrence (0–100%) determined by the model was classified into five classes avalanche danger scale. Our results show that avalanche occurrence along the coast is best predicted by 2 days of accrued snowfall [in water equivalent (WE)], daily rainfall, and wind speed. In the valley, the most significant predictive variables are 3 days of accrued snowfall (WE), daily rainfall, and the preceding 2 days of thermal amplitude. The large scree slopes located along the coast and exposed to strong winds tend to be more reactive to direct snow accumulation than the inner-valley slopes. Therefore, the probability of avalanche occurrence increases rapidly during a snowfall. The slopes located in the valley are less responsive to snow loading. The LR models developed prove to be an efficient tool to forecast days with high levels of snow avalanche activity. Finally, we discuss how road maintenance managers can use this forecasting tool to improve decision making and risk rendering on a daily basis.  相似文献   

9.
P. Höller 《Natural Hazards》2014,71(3):1259-1288
Snow gliding is a downhill motion of snow on the ground; it is able to affect afforestation (uprooting of plants) and to cause soil erosion. Once the glide motion turns into an avalanche movement, the process is called a glide avalanche. Winters with continuing snow gliding and a high activity of glide avalanches might be called ‘glide winters’. The most recent ‘glide winter’ in the European Alps was 2011/2012. Glide avalanches have the ability to cause damage to buildings and infrastructure. This review describes the progress in research, from basic snow glide measurements via the design of sophisticated models through to comprehensive investigations concerning glide avalanche formation. However, despite the great progress made in this field of research, there are still some unsolved problems, such as the influence of soil conditions on snow gliding or the prediction of glide avalanches.  相似文献   

10.
Due to its geographical location, geology and topography, Turkey mainly undergoes three different types of natural disasters related to gravity flows. They are floods, landslides and snow avalanches.The heavy snow falls during winter pose the hazard of snow avalanches. According to statistics, 800 people were killed in snow avalanches during the period of 1960–1997. Within the program of the International Decade of Natural Disaster Reduction (1990–2000), an international cooperation has been initiated among SFISAR (Swiss Federal Institute for Snow and Avalanche Research), CEMAGREF (Centre National du Machinisme Agricole du Génie Rural des Eaux at des Forets) and AFET (Turkish Ministry of Public Works and Settlement, General Directorate of Disaster Affairs). This three-year project started in 1994 as a development project on avalanche forecasting, mapping, zoning and paravalanche construction technologies. For the pilot project area, the Soanli Mountains located in north-eastern Turkey were chosen, covering an area of approximately 40 by 30 km. After training the Turkish engineers, the basic technologies in avalanche forecasting and avalanche mapping were transferred from Switzerland and France to Turkey with the necessary infrastructure. The difficulties faced in meteorological data collection with the help of local observers and the limited data available caused some delay in avalanche forecasting. If automatic weather stations could take the place of manual work, the realization of a prognosis would be quicker. At present, avalanche-hit houses are rebuilt in new disaster-free zones by AFET. With this project, the idea of using paravalanche structures for protection is promoted. The physico-sociological impacts of avalanche disasters, avalanche mapping and zoning of disaster areas on local people are also studied.  相似文献   

11.
Snow avalanches represent an undeniable reality in the Southern Carpathians both as a geomorphic process and as a type of hazard. Before the 1990s, few researchers focused on avalanches in Romania. However, after 1990, avalanches became an increasingly important topic of Romanian research including research on their management implications. This study focuses on the Făgăraş massif, a representative mountain unit in the Southern Carpathians that is dominant due to its glacial and periglacial relief, high altitudes and high occurrence of avalanche hazards. Three main research issues are considered. First, types of avalanches are delineated along with affected areas of the Balea glacial valley (on the northern slope) and the Capra glacial valley (on the southern slope) using data from a research centre for snow and avalanche monitoring that was created in the Balea glacial cirque in 2003. Second, the impact of avalanches on human activities is considered including transportation use of the Transfăgărăşan Highway that traverses the highest elevations in Romania and winter recreation activities such as skiing, snowboarding, climbing and hiking. The impacts on forests are also considered. Third, the needs and gaps of avalanche management are considered, specifically in the Făgăraş massif and also more generally in the mountains of Romania.  相似文献   

12.
郝建盛  李兰海 《冰川冻土》2022,44(3):762-770
雪崩是冰冻圈内主要的自然灾害之一,严重威胁高寒山区内的交通廊道、能源输送和通信干线、矿区、牧区、旅游区等安全并造成基础设施毁坏和人畜死伤,阻碍山区社会经济的可持续发展。随着气候变化和人类活动不断向高寒山区扩展,暴露在雪崩危险之下的人口及基础设施日趋增多,雪崩的风险显著增强。为保障山区的社会经济可持续发展,对雪崩灾害防治管理需求不断增加。在梳理我国1960年以来主要雪崩研究进展基础上,结合世界各地雪崩研究成果,总结了雪崩的影响因素和区域规律、雪崩的形成与运动机理、雪崩监测预警、雪崩风险评估和雪崩工程防治等方面的进展和亟须研究的前沿问题以及科学难点。同时本文论述了气候变化对雪崩活动的影响,以及人类活动与雪崩活动之间的相互影响,展望了未来雪崩防灾减灾的需求并提出对策,推动雪崩防灾减灾研究。  相似文献   

13.
青藏高原东缘是全球重要的活动构造区,高原峡谷区斜坡陡峻,高位崩滑灾害多发。采用遥感解译、地面调查、钻孔勘探及测年分析等方法,研究了西藏洛隆察达沟和易贡扎木弄沟两处高位崩滑堆积体的多动力多期次演化特征。研究结果表明:(1)沿陡峻沟道发生的高位崩滑灾害多为复合成因,兼具内动力和外动力作用交替促发特征;(2)洛隆察达沟晚更新世以来的堆积物形成序列可分为4期,分别经历了以冰川作用为主的冰碛物堆积、古地震引发的高位崩滑-碎屑流堆积、气候变暖背景下的冰-岩崩滑堆积及近代重力崩滑堆积;(3)易贡扎木弄沟在过去5500年中,先后发生了8次以上较大规模崩滑堆积,测年结果显示了巨型崩滑事件存在百年数量级的复发周期,由于不同期次巨型崩滑体的成因不同,复发周期可能存在长、中、短的差异;(4)近年来受全球气候变化影响,冰-岩崩滑灾害频现,可能成为高原峡谷区高位远程地质灾害研究的焦点。本文关于高位崩滑灾害多期次演化过程的认识对于高原峡谷区重大地质灾害防灾减灾具有一定启示意义。  相似文献   

14.
高速远程冰-岩碎屑流研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
冰-岩碎屑流是高寒山区陡峭山体斜坡区冰崩、岩崩或滑坡解体后形成的冰屑、岩块和土颗粒混合体高速流动现象.由于裹挟了冰屑,冰-岩碎屑流具有超强的运动性,屡屡引发震惊世人的灾难性事件,是全球气候变暖大背景下地质灾害研究的热点与前沿问题.通过对近40余年来的研究进展进行梳理和评述,指出了冰-岩碎屑流的概念由来和主流定义方法,阐述了其成因机制的气候敏感性,结合典型实例论述了区域发育特征,重点分析了运动特征、减阻机理和冰屑影响机制.冰-岩碎屑流的超强运动性被认为与低摩擦冰减阻机理、摩擦热融减阻机理、侧限约束减阻机理密切相关.冰屑作为材料组分和融水来源,能够降低界面摩擦、改变冰-水-岩相互作用,进而形成复杂的热-水-力耦合作用.今后应加强研究冰-岩碎屑流事件的成因机制和时空分布规律、运动特性和冰屑影响机制、过程演化观测与预警评估技术,以期揭示冰-岩碎屑流运动机理,为冰-岩碎屑流及链生灾害的科学减灾提供有力支撑.   相似文献   

15.
Snow Avalanche Hazards and Management in Canada: Challenges and Progress   总被引:2,自引:1,他引:2  
Jamieson  Bruce  Stethem  Chris 《Natural Hazards》2002,26(1):35-53
Avalanche impacts in Canada, including fatalities, are summarized for residential and public areas, as well as roads, ski areas, backcountry recreation, and resource industries. Methods for managing avalanche hazard, which include defence structures, zoning, forecasting and explosive control, are outlined. Problems with current avalanche hazard management are identified and progress at solving these problems is identified with an emphasis on residential areas, backcountry recreation and resource industries.  相似文献   

16.
梅里雪山雪崩多发,但缺乏系统监测和研究。1991年1月3日梅里雪山发生了造成中日联合登山队17名队员遇难的巨大雪崩事件。2019年安装在明永冰川末端附近的物候相机拍摄到临近梅里雪山明永冰川的一次雪崩事件。两次事件类型不同,这对我们进行雪崩预测预警有良好的指示作用。本研究以RAMMS(Rapid Mass Movement System)模型为手段,利用经验值和经验公式确定影响模拟结果的主要模型参数和积雪可能断裂深度,在优化分析的基础上,对两次雪崩事件进行重建,定量分析雪崩堆积量、堆积范围等。结果显示:1991年雪崩共持续了192s,雪崩体从海拔5730m处断裂,沿坡面崩塌而下最终堆积在海拔约5000m的冰川粒雪盆地区,形成面积为0.6km^(2),体积约67×10^(4)m^(3)的堆积体。2019年雪崩共持续了158s,雪崩流最大高度35.91m,最大速度79.34m·s,堆积量76.2×10^(4)m^(3),雪崩堆积范围与野外观测到的一致。两次雪崩事件发生地位于雪崩极高危险区和高危险区,在一定程度上验证了风险评估的准确性。研究结果可为梅里雪山地区未来潜在雪崩灾害的风险评估提供依据,为雪崩预测预警提供良好的参考。  相似文献   

17.
Snow avalanche hazards in mountainous areas of developing countries have received scant attention in the scientific literature. The purpose of this paper is to describe this hazard and mitigative measures in Kaghan Valley, Pakistan Himalaya, and to review alternatives for future reduction of this hazard. Snow avalanches have long posed a hazard and risk to indigenous populations of the Himalaya and Trans-Himalaya mountains. Land use intensification due to population growth, new transportation routes, military activity and tourism is raising levels of risk. The history of land use in the study area is such that investigations of avalanche hazard must rely on different theoretical bases and data than in most industrialised countries. Despite the intensive use of valley-bottom land which is affected by avalanches, a number of simple measures are currently employed by the indigenous population to mitigate the hazard. Out-migration during the winter months is the most important one. During the intensive use period of summer avalanche-transported snow provides numerous resources for the population. In Kaghan the avalanche hazard is increasing primarily as a result of poorly located new buildings and other construction projects. The large scale of avalanche activity there rules out any significant improvement or protection of the currently difficult winter access. Instead, future mitigation of the hazard should focus on protecting the small number of winter inhabitants and minimising property damage.  相似文献   

18.
Avalanche hazard and risk mapping is of utmost importance in mountain areas in Europe and elsewhere. Advanced methods have been developed to describe several aspects of avalanche hazard assessment, such as the dynamics of snow avalanches or the intensity of snowfall to assume as a reference meteorological forcing. However, relatively little research has been conducted on the identification of potential avalanche release areas. In this paper, we present a probabilistic assessment of potential avalanche release areas in the Italian Autonomous Province of Bolzano, eastern Alps, using the Weights of Evidence and Logistic Regression methods with commonly available GIS datasets. We show that a data-driven statistical model performs better than simple, although widely adopted, screening criteria that were proposed in the past, although the complexity of observed release areas is only partly captured by the model. In the best case, the model enables predicting about 70 % of avalanches in the 20 % of area classified at highest hazard. Based on our results, we suggest that probabilistic identification of potential release areas could provide a useful aid in the screening of sites for subsequent, more detailed hazard assessment.  相似文献   

19.
Many parts of our planet are exposed to natural disasters such as snow avalanches, floods and earthquakes. Detailed knowledge on these natural disasters is crucial for human safety. On December 25–26, 1992, two avalanches occurred at Kayaarkası-Kastamonu in northern Turkey. The first avalanche took place at night of 25–26 December and caused no damage. The second avalanche took place at morning of 26 December, killed four people and did damage to properties. The purpose of the present study is to determine the effects of the snow avalanches on tree rings and to investigate the boundaries and velocities of the avalanches using a numerical simulation model and the tree-ring data. Increment cores from 71 trees in the avalanche-impacted area and the control site were sampled to obtain individual standard chronologies. In the analyses, trees were grouped as (1) heavily damaged by the avalanche, showing a decrease in tree-ring widths since the event, (2) trees heavily damaged by the avalanche, showing an increase in tree-ring widths a couple of years later the event and (3) trees that were not damaged by the avalanche. In this study, one of the most important results is the precise determination of the temporal and spatial patterns of the undocumented avalanche (the first avalanche) event. Avalanches were numerically simulated using dynamical avalanche simulation software ELBA+. Comparison of the simulation model with tree-ring analysis revealed valuable results about the boundaries of the zone of influence of the avalanches.  相似文献   

20.
Tsunamis generated by a sudden entry of debris avalanches into the sea have caused some of the worst natural disasters in historic times. The evolution of the Soufrière Hill volcano's activity in Montserrat, Lesser Antilles, could lead to a dome collapse generating a tsunami. Two scenarios have been simulated here. In the first case, the potential entry into the sea of a debris mass of 40 millions of m3 at the mouth of the Tar River Valley, towards the East has been considered. In this case, the debris avalanche is approximated as a fluid entering the sea with a given front height and a given velocity. Sensitivity tests have shown that the simulated water wave is very sensitive to the imposed initial conditions. In order to have a more accurate source term in the tsunami model, we have developed here a numerical debris avalanche model. This model takes into account a Coulomb-type friction law and solves the vertically integrated long wave equations. A first application of this model has been made to simulate the 26th December 1997 debris avalanche with an estimated volume of 60 millions of m3 that occurred in the White River valley, South of Montserrat. Preliminary results show that the debris avalanche path is very sensitive to the considered value of the friction angle 5. An empirical value of 5 lower than 15∘ i. e. less than the value expected for debris avalanches, is required to reproduce the great mobility of this avalanche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号