首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
针对我国西部水利工程结构面临的地震安全问题,特别是混凝土高拱坝的抗震安全设计,以小湾水电站混凝土高拱坝为研究对象,进行了库水-淤砂层-坝体-坝基体系的耦合动力分析,同时考虑了复杂的坝基地形、正常蓄水位的库水以及常年运行而堆积的淤沙层的影响。主要内容有:(1)基于传递矩阵法及二维有限元,实现了复杂峡谷地形的自由场计算;(2)基于水-饱和多孔介质-固体的统一计算框架,实现了库水-淤沙层-坝体-坝基体系的三维地震响应分析算法。最后,分别以脉冲波和地震波作为输入,探讨了小湾拱坝的地震响应规律及库水淤沙层对拱坝地震响应的影响。结果表明:坝体顶部中心区域会承受较大的拉、压应力;而库水底部淤砂层对坝体的位移及应力影响并不显著。  相似文献   

2.
合理的设计反应谱是保证高拱坝动力分析和安全评价结果可靠的前提。为研究不同反应谱时程对拱坝非线性响应的影响,分别基于GB 51247—2018《水工建筑物抗震设计标准》设计反应谱、DL 5073—2000《水工建筑物抗震设计规范》设计反应谱、以及溪洛渡场地相关反应谱,拟合出地震动时程,采用溪洛渡拱坝-库水-地基系统非线性损伤开裂模型进行拱坝的非线性地震响应分析。结果表明:反应谱的选择对溪洛渡拱坝地震响应影响显著,相比于2000年标准反应谱,2018年标准反应谱使溪洛渡拱坝坝顶最大动相对位移增加、坝顶上游面横缝开度增大、孔口和坝踵位置损伤加深。并且,2018年标准下的坝体动力响应整体高于基于场地谱的计算结果,而2000年规范下的坝体动力响应低于场地谱的计算结果,说明2000年规范理应更新,2018年标准更符合当下的抗震设计需求。  相似文献   

3.
高毅超  徐艳杰  金峰  王翔 《地球物理学报》2013,56(12):4189-4196
高阶双渐近时域透射边界能够同时模拟行波和快衰波的传播,并且能够在全频范围内迅速逼近准确解,具有优良的收敛性能和计算效率.本文将动水压力波高阶双渐近透射边界直接嵌入到近场有限元方程中,建立了大坝-库水动力相互作用的直接耦合分析模型.该模型的整体控制方程保留了近场有限元方程系数矩阵对称稀疏的优势,可以方便地利用现有的通用有限元求解器求解.基于有限元开源软件框架体系OpenSees(Open System for Earthquake Engineering Simulation),编程实现了直接耦合分析模型,并将其应用于二维重力坝、三维拱坝与库水动力相互作用分析.数值算例表明,该直接耦合分析模型具有很高的精度和计算效率.  相似文献   

4.
在笔者已建立的流体饱和多孔介质动力分析的显式有限元法的基础上,提出了可分析任意形状的流体饱和多孔介质-单相弹性固体介质-理想流体介质耦联的复杂系统的动力响应的显式有限元方法.该方法建立的有限元方程列式具有解耦特征,不需求解联立方程组,因而极大地提高了计算效率.将这一方法用于分析了考虑库水、坝、淤泥层和基岩这一复杂系统动力相互作用问题的斜坝面的地震响应,并给出了一些计算结果.   相似文献   

5.
高拱坝伸缩横缝间布设阻尼器对坝体地震反应影响的研究   总被引:5,自引:0,他引:5  
对设置伸缩横缝的小湾高拱坝结构,应用子结构理论,分别就正常高水位与常遇低水位两种水位工况,考虑坝体伸缩横缝在地震交变荷载作用下反复开合引起的缝面间滑移、接触等效应的影响,坝体-库水的相互作用而产生的动水压力的影响,对坝体的抗震性能进行了地震反应分析。对伸缩缝间设置阻尼器这新的设计思想进行了可行性的研究,论证推导了阻尼器的计算模型,探讨了阻尼器对坝体抗震性能的影响。  相似文献   

6.
混凝土桥梁在工作过程中会产生裂缝,为分析移动荷载对开裂混凝土桥梁结构刚度的影响,对开裂梁动力响应进行分析。建立简支T梁桥有限元模型,并将移动荷载施加至有限元模型中。根据简支T梁桥破坏横向分布位置和强度的不同,研究不同工况下各梁荷载横向分布及不同移动速度对裂缝扩展宽度的影响。结果表明,数值模拟结果能较好地验证计算模型的准确性;在较大的移动荷载作用下,混凝土开裂,导致结构刚度减小、位移增大;随着移动荷载和速度的增加,开裂时间增加,结构刚度降低,持续时间增加,位移增大,使结构响应呈现明显非线性。  相似文献   

7.
加权余量法解部分吸收库底条件下水坝的动水压力   总被引:1,自引:0,他引:1  
本文用加权余量法-配点法方案研究刚性坝面的动水压力。所建议的方法对于任意形状的坝面、可压缩和不可压缩的库水、完全反射和部分吸收的库底条件,都可以采用统一的计算格式。这个方法不但具有较好的精度和收敛性,而且只需要很小的计算量,所以是一种有效而实用的挡水结构动水压力的解法。  相似文献   

8.
深厚库底回填料是影响面板堆石坝动力响应的重要因素之一。为深入研究深厚库底回填料对面板堆石坝动力响应的影响,基于某拟建抽水蓄能电站,采用三维动力有限元分析系统研究其上库面板坝的地震反应,主要包括坝体加速度、面板动力响应、接缝变位情况以及库底防渗土工膜的动应变等。计算结果表明:由于库底回填料的存在,坝体加速度放大效应被明显削弱;面板周边以受拉为主,中部大部分区域受压;垂直缝呈现出周边张开、中间闭合的趋势;土工膜的顺河向和坝轴向的动拉应变皆小于屈服应变,最大应变出现在库底材料分界处,为提高坝体渗透安全性,建议对主堆石区与连接板相接处的回填料进行适当范围换填的处理措施。研究成果可以为类似工程提供参考。  相似文献   

9.
为了研究地震作用下动水压力对深水桥墩的影响,以声波动理论为基础,通过对流体域边界条件的简化和流体域范围的探讨,建立了一种改进的墩-水耦合有限元模型,并提出了常用深水桥墩的理想流体域范围图。分别讨论了深水桥墩在简谐荷载、地震荷载作用下的动力响应,结果表明:动水压力增大了桥墩的动力响应,增幅在20%到50%之间,不可忽视;当桥墩基频越接近简谐荷载激励频率或地震波主频有效带宽区间时,动水压力的影响越大。  相似文献   

10.
在大坝地震响应分析中如何考虑淤砂层,以及淤砂层对大坝的地震响应影响如何,是目前混凝土坝抗震分析和设计中需要进一步研究的问题。将库水-淤砂层-坝体-坝基动力相互作用当做波动散射问题,采用广义饱和多孔介质统一计算框架分析库水(流体)、淤砂层(饱和多孔介质)、坝体与坝基(固体)间的耦合。研究了一种考虑库水可压缩性与淤砂层影响的库水-淤砂层-坝体-坝基动力相互作用的高效分析方法,并通过自编程序实现了该方法。以Koyna重力坝为对象,以脉冲P波和SV波为输入,给出了库水-坝体-坝基体系不同时刻的波场快照,分析了其波场特征。设计了不同淤砂层厚度的4种工况,对比分析了4种工况下坝体的位移、加速度和最大应力,研究结果表明:库底淤砂层对坝体位移影响很小,但对坝体各点加速度和最大应力有减小作用,并且随着淤砂层厚度的增加,作用会增强。  相似文献   

11.
Dynamic tests were conducted on a 50 m high intake tower at Wimbleball dam in the U.K. The results were compared against predictions from a corresponding numerical model. The aim of this work was to validate the assumption that the compressibility of the reservoir water is not a significant factor in the seismic analysis of intake towers. Three sets of tests were conducted on different occasions with different water levels in the reservoir. In the first two tests, modal characteristics of the tower were determined from the measured responses under ambient, hammer and human excitation. These results were used in planning the final set of tests where rotating eccentric mass exciters were used to vibrate the tower. Structural accelerations and hydrodynamic pressures were measured over the height of the tower for three important bending modes of vibration. The finite element method was used to develop a numerical model for Wimbleball tower. The tower was discretized with traditional solid elements and the reservoir with incompressible fluid elements. This model was analysed to predict the modal characteristics and harmonic responses of the tower and reservoir under the various conditions imposed during the dynamic tests. Theoretical predictions of the tower's accelerations and hydrodynamic pressures in the reservoir were compared against the test results. Excellent agreement was found for the natural frequencies and mode shapes while predictions of the harmonic responses were only fair. The observed responses of the tower and reservoir support the assumption that reservoir compressibility is not a significant factor in the seismic analysis of towers of this size.  相似文献   

12.
In this study, two different earthquake input models are introduced, i.e. massless foundation model and viscous-spring boundary input model considering radiation damping. Linear elastic and nonlinear contraction joint opening analyses of the 210 m high Dagangshan arch dam under construction in China are performed using the two different earthquake input models. First, the responses of the three-dimensional (3-D) canyon without the dam are analyzed, respectively, with massless-truncated foundation and with viscous-spring boundary; second, linear and nonlinear analyses of the dam–foundation system are performed and compared by using the two input models. Hydrodynamic effects are considered using finite element discretization for incompressible reservoir fluid. It is concluded that stresses and displacements and contraction joint opening in the dam are significantly reduced both in linear and nonlinear analyses when using viscous-spring boundary model. Interestingly, in the case of linear analysis of the Dagangshan, the massless foundation input model with a relatively higher damping ratio of 10% leads to a comparable response of the dam to that using viscous-spring boundary model. In addition, the maximum tensile stresses from nonlinear analysis are 10–25% larger than that of the corresponding linear cases due to a partial release of the arch action.  相似文献   

13.
The need for full‐scale dynamic tests, which are recognized as the most reliable method to evaluate a structure's vibration properties, is increasing as new analysis techniques are developed that take into account the complex interaction phenomenons that occur in dam–reservoir–foundation systems. They are extremely useful to obtain reliable data for the calibration of newly developed numerical methods. The Earthquake Engineering and Structural Dynamics Research Center (CRGP) at the University of Sherbrooke has been developing and applying dynamic testing methods for large structures in the past 10 years. This paper presents the experimental evaluation of the effects of the varying water level on the dynamic response of the 180 m Emosson arch dam in Switzerland. Repeated forced‐vibration tests were carried out on the dam during four different periods of the reservoir's filling cycle during a one‐year span. Acceleration and hydrodynamic pressure frequency responses were obtained at several locations while the dam was subjected to horizontal harmonic loading. The variation of the resonant frequencies as a function of the reservoir level is investigated. A summary of the ongoing numerical correlation phase with a three‐dimensional finite element model for the dam–reservoir–foundation system is also presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
A nonlinear finite element model for earthquake response analysis of arch dam–water–foundation rock systems is proposed in this paper. The model includes dynamic dam–water and dam–foundation rock interactions, the opening of contraction joints, the radiation damping of semi‐unbounded foundation rock, the compressibility of impounded water, and the upstream energy propagating along the semi‐unbounded reservoir. Meanwhile, a new equivalent force scheme is suggested to achieve free‐field input in the model. The effects of the earthquake input mechanism, joint opening, water compressibility, and radiation damping on the earthquake response of the Ertan arch dam (240 m high) in China are investigated using the proposed model. The results show that these factors significantly affect the earthquake response of the Ertan arch dam. Such factors should therefore be considered in the earthquake response analysis and earthquake safety evaluation of high arch dams. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The arch dam–foundation rock dynamic interaction and the nonlinear opening and closing effects of contact joints on arch dam are important to the seismic response analysis of arch dams. Up to date, there is not yet a reasonable and rigorous procedure including the two factors in seismic response analysis. The methods for the analysis of arch dam–foundation rock dynamic interaction in frequency domain are not suitable to the problem with nonlinear behaviors, in this paper, so an analysis method in time domain is proposed by combining the explicit finite element method and the transmitting boundary, and the dynamic relaxation technique is adopted to obtain the initial static response for dynamic analysis. Moreover, the influence of arch dam–foundation dynamic interaction with energy dispersion on seismic response of designed Xiaowan arch dam in China is studied by comparing the results of the proposed method and the conventional method with the massless foundation, and the local material nonlinear and nonhomogeneous behaviors of foundation rock are also considered. The reservoir water effect is assumed as Westergaard added mass model in calculation. The influence of the closing–opening effects of contact joints of arch dam on the seismic response will be studied in another paper.  相似文献   

16.
In this paper,an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium,elastic single-phase medium and ideal fluid medium.This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling,and which does not need to solve sys-tem of linear equations.The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water,dam,sediment and basement rock.The vertical displacement at the top point of the dam is calculated and some conclusions are given.  相似文献   

17.
A simple mapping finite element method is used to calculate the coupled natural frequencies and mode shapes of realistic arch dam reservoir systems in which the dam is circular cylindrical with non-uniform cross-section. This method, in which both the dam and the reservoir domains are mapped into geometrically simpler shapes using cylindrical-polar transformations, is found to give accurate results, achieved simply and economically. Results of analysis show that hydrodynamic interaction has a substantial effect on the coupled natural frequencies and mode shapes; also that the effect of water compressibility in the type of dams considered can be ignored without significant loss of accuracy. A simple method is also presented for predicting the water compressibility effect before undertaking detailed response analysis.  相似文献   

18.
An efficient procedure is developed for the hydrodynamic analysis of dam–reservoir systems. The governing equations of hydrodynamic pressure in the frequency as well as time domain are derived in the framework of the scaled boundary finite element method. The water compressibility and absorption of reservoir sediments can be conveniently taken into consideration. By extending the reservoir to infinity with uniform cross-section, only the dam–reservoir interface needs to be discretized to model the fluid domain, and the hydrodynamic pressure in the stream direction is solved analytically. Several numerical examples including a gravity dam with an inclined upstream face and an arch dam with a reservoir of arbitrary cross-section are provided to demonstrate the computational efficiency and accuracy of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
An analysis procedure in the frequency domain is developed for determining the earthquake response of two-dimensional concrete gravity and embankment dams including hydrodynamic effects; responses of the elastic dams and compressible water are assumed linear. The dam and fluid domain are treated as substructures and modelled with finite elements. The only geometric restriction is that an infinite fluid domain must maintain a constant depth beyond some point in the upstream direction. For such an infinite uniform region, a finite element discretization over the depth is combined with a continuum representation in the upstream direction. The fluid domain model approximately accounts for interaction between the fluid and underlying foundation medium through a damping boundary condition applied along the reservoir bottom, while the dam foundation is assumed rigid. Several examples are presented to demonstrate the accuracy of the fluid domain model and to illustrate dam responses obtained from the analysis procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号