首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
根据非线性规划研究的最新成果所设计的一种全新的震源破裂过程的反演方法, 用近场地震波观测资料反演了1999年9月21日发生在中国台湾省集集Mw7.6地震震源破裂过程.为了使反演中设置的断层模型与集集地震实际破裂面尽可能一致, 以尽可能减小由于断层模型设置的不确定性对震源破裂过程反演结果的影响, 设立的断层模型为与集集地震造成的主要地表破裂尽可能拟合的弯曲面模型.反演结果显示: (1) 集集地震震源的破裂大体持续了32 s, 其中主要破裂发生在第6~27 s间, 破裂主要集中发生在断层北段向东拐弯处.(2) 震源破裂以逆冲为主, 平均滑动角为64.5°, 与USGS, Harvard及CWB(台湾中央气象局)的结果相当.标量地震矩为7.76×1020牛顿米, 稍大于USGS和Harvard反演的标量地震矩.(3) 集集地震震源的破裂存在清晰的成核过程, 成核过程经历6 s后, 地震矩释放明显加速.起始破裂从断层南段开始, 10 s后破裂主要集中在断层北段发生.最后将反演结果与震后GPS观测结果进行了对照分析, 并对反演结果的科学意义进行了讨论.  相似文献   

2.
本文基于有限断层模型反演方法,利用区域宽频带数据反演了2021年5月云南漾濞MS6.4地震的震源破裂过程,结果显示:此次地震的发震断层走向为SE向,主要以右旋走滑为主.破裂主要发生在震源东南侧,最大错动量约为0.55 m,位于深度约9 km处,发生明显破裂的深度约达13 km.此次地震释放的标量地震矩为1.48×1018N·m,相当于矩震级MW6.05.地震能量主要在前11 s释放.在深度为6~8 km处破裂速度有明显的变快,可能加剧了地表的震动.  相似文献   

3.
本文基于有限断层模型反演方法,利用区域宽频带数据反演了2021年5月云南漾濞MS6.4地震的震源破裂过程,结果显示:此次地震的发震断层走向为SE向,主要以右旋走滑为主.破裂主要发生在震源东南侧,最大错动量约为0.55 m,位于深度约9 km处,发生明显破裂的深度约达13 km.此次地震释放的标量地震矩为1.48×1018N·m,相当于矩震级MW6.05.地震能量主要在前11 s释放.在深度为6~8 km处破裂速度有明显的变快,可能加剧了地表的震动.  相似文献   

4.
朱音杰  罗艳  赵里 《地震学报》2023,(5):781-796
基于有限断层模型反演方法,利用区域宽频带数据反演了2022年1月青海门源MS6.9地震的震源破裂过程,并结合地质构造与地震重定位结果判断发震断层走向.综合反演结果表明:此次地震的发震断层走向为WNW向,主要以走滑为主;破裂主要发生在震源两侧,可能存在着双侧破裂,在震后2 s和9 s出现破裂极大值,最大错动量约为1.5 m,位于深度约6km处,发生明显破裂的深度约为16 km,地表破裂长度约20 km;此次地震释放的标量地震矩为1.23×1019N·m,相当于矩震级MW6.7,地震能量主要在前15 s释放;发震断层面的倾角为84.6°,接近于垂直,由于破裂范围较大,所以发生明显错动分布的地表投影也长达34 km.  相似文献   

5.
2018年1月23日,在美国阿拉斯加湾海域发生了一次MW7.9地震.震源机制解表明这次地震以走滑为主,可能发生在近东西向或南北向的陡倾角断层上,早期余震并非线型展布.我们利用视震源时间函数分析确定了此次地震的总体破裂方向,并结合余震的空间展布特征构建了相互交叉的双断层模型,进而通过联合反演远场P波和SH波数据获得了此次地震的时空破裂过程.视震源时间函数分析表明总体破裂方向既非东西也非南北,而且反演结果表明,两个断层上都发生了错动,总体破裂时间~50 s,释放标量地震矩~8.11×1020 Nm.震源时间函数表现出多事件特征,且两个断层破裂的时间过程也不相同.破裂首先在南北向断层的南端开始,很快触发了东西向断层,最后终止于南北向断层的北端.每个断层都具有相当的时空复杂性,位错分布很不均匀.东西向断层具有三个凹凸体,一个位于震源附近,其他两个位于断层两端.南北向断层有两个凹凸体,均位于断层北段,最大滑动量~5.0 m就出现在这里.发生最大位错的南北向断层延伸至阿拉斯加海沟,增加了触发阿拉斯加海沟其他断层发生破裂的可能性.  相似文献   

6.
通过反演全球范围内20个地震台的宽频带波形资料,获得了2007年6月3日在云南宁洱发生的MS6.4地震的矩张量解、震源时间函数和断层面上滑动随时间和空间的变化过程.根据反演结果,这次地震的标量地震矩为5.51×1018Nm,相当于矩震级MW6.4.震源机制解中,最佳双力偶对应的节面Ⅰ的走向、倾角和滑动角分别为152°,54°和166°,节面Ⅱ的走向、倾角和滑动角分别为250°,79°和37°.结合震后考察得到的烈度等震线分布特征以及当地的地质构造,可以判定这次地震的发震断层的走向为152°,倾角为54°,滑动角为166°,是一次以右旋走滑为主的地震.从震源时间函数的形态来看,震源破裂持续时间为14s,地震矩的释放主要集中在前11s,在11~14s之间释放的地震矩很少.震源的时空破裂过程图像表明,破裂过程分为3个阶段,在前4s的时间段内,破裂主要沿着走向方向和朝深处发展;在4~7s间,破裂呈扇形向着深处扩展;在7s之后的时间段,破裂点比较零散.地震破裂总体上表现为双侧破裂方式,但在走向方向和深度方向上的滑动略占优势.破裂较强的区域呈菱形,长约为19km.地震断层面上最大滑动量为1.2m,平均滑动量为0.1m,最大滑动速率为0.4m/s,平均滑动速率为0.1m/s.由反演得到的静态位错模型计算的震中区地表位移场的特征与地震的烈度分布特征具有很好的一致性.  相似文献   

7.
2016年4月15日16时25分(UTC),日本熊本县发生MW7.1强烈地震,给当地人员、建筑及经济造成严重灾难和巨大损失.日本地震观测网F-net给出的震源机制解显示此次地震的震源位置为130.7630°E,32.7545°N,深度12.45 km,节面Ⅰ:走向N131°E、倾角53°、滑动角-7°;节面Ⅱ:走向N226°E、倾角84°、滑动角-142°.与此同时,余震的震中分布及其震源机制结果显示主震的震源机制在破裂过程中有可能发生了变化,单一的震源机制不足以充分解释观测数据.本文依据GNSS和InSAR地表形变反演结果为约束,并结合活动构造资料为参考,构建了震源机制变化的有限断层模型,采用水平层状介质模型,利用日本强震观测台网K-NET和KiK-net的近场加速度观测记录,通过多时间窗线性波形反演方法反演了此次地震的震源破裂过程.研究结果显示,这是一次沿Futagawa-Hinagu断层带发生的右旋走滑破裂事件,发震断层分为南北两段,其中北段走向N235°E、倾角60°,南段走向N205°E、倾角72°,断层深度范围和余震深度分布基本一致,断层面上滑动主要集中于断层北段,最大滑动量约7.9 m,整个断层的破裂过程持续约18 s,释放地震矩5.47×1019 N·m(MW7.1).  相似文献   

8.
应用中国数字地震台网(CDSN)记录的长周期体波波形数据,反演了1988年11月6日中国云南省澜沧-耿马MS7.6地震的矩张量,求得了其震源机制和震源时间过程.反演结果表明,断层面解的一个节面是右旋走滑断层,另一个节面是左旋走滑断层;震源时间过程较简单,持续时间约15 s;标量地震矩为6.41020 Nm.根据地质资料、区域构造、野外观测和余震震中分布,确认走向313的节面是地震断层面,主压应力轴位于几乎水平的南北向.   相似文献   

9.
王平川  张勇  冯万鹏 《地震学报》2021,43(2):137-151
利用远震资料、近场强震资料和合成孔径雷达干涉同震形变资料确定了2017年8月9日精河MS6.6地震的断层面参数及震源破裂细节。为得到可靠的断层几何参数,发展了一套基于InSAR数据滑动分布反演的三维格点搜索流程,对本次地震断层面的走向、倾角和震源深度进行了格点搜索。结果显示,地震断层面走向为95°,倾角为47°,震源深度为14 km。基于搜索得到的断层模型进行破裂过程联合反演的结果显示:精河MS6.6地震为一次单侧破裂事件,最大滑动量约为0.8 m,滑动区域集中在断层面上震源以西5—15 km,沿倾向15—25 km,破裂主要发生在10 km深度以下区域。断层面上的平均滑动角为106°。整个破裂过程释放的标量地震矩为3.6×1018 N·m,对应矩震级为MW6.3。破裂过程持续约9 s,期间的破裂速度约为2.1—2.6 km/s。由于地震破裂主要集中在10 km以下,未来可能需要关注该区域0—10 km发生潜在地震的可能性。   相似文献   

10.
2014年4月1日,智利北部Iquique地区近海发生MW8.1地震,地震发生之后,国际上一些著名的地震科研机构和学者采用不同的数据和方法计算得到此次地震的震源机制解,但这些结果存在较大差异.地球长周期自由振荡的振幅主要依赖于地震矩的大小及地震断层的破裂方式,可以很好地约束地震震源机制.因此,本文根据2014年Iquique地震现有的6个不同震源机制解模拟计算了该地震激发的自由振荡信号,并与全国连续重力台网中16个弹簧重力仪的观测结果进行比对,基于1.5~5.3mHz的球型简正模分析和约束了Iquique地震的震源机制解.研究发现,基于美国地质调查局WPhase Moment Tensor Solution反演的震源机制解的自由振荡模拟值与实际观测符合最好,其相应的震级能较好反映Iquique地震释放的总能量,而利用海啸数据反演的标量地震矩偏小,联合远场和近场长周期观测数据反演可显著改善震源机制解.另外,还基于格尔木重力台站的模拟值与观测值定量分析了不同震源机制解参数对自由振荡振幅的影响.结果表明地震的标量地震矩M0对自由振荡振幅的影响最大,而断层走向、倾角、滑动方向角和震源深度对自由振荡的振幅影响相对较小.  相似文献   

11.
根据中国和全球地震台网记录的波形记录,采用W震相矩张量反演、反投影分析及有限断层模型反演方法,研究了2016年3月2日印尼7.8级地震破裂过程,分析讨论印尼地震震源运动学特征.结果表明:此地震为一次对称的双侧破裂走滑型事件,北北东─南南西向的断层节面(走向5°/倾角85°)为发震断层面.标量地震矩约6.19×1020 Nm,矩震级为7.79,最大的滑动量约11 m,位于破裂起始点北东,沿着断层走向约30 km处.破裂平均速度2.0~2.2 km·s-1,破裂持续时间35 s,破裂在5~25 s内释放的能量,约占总能量的97%.最终形成了总长度90 km左右的断层.印尼地震具有破裂持续时间短、破裂速度慢、高滑动能量带相对集中等显著特点.本研究对进一步增进海洋岩石圈地震的震源特性认识有重要参考意义.  相似文献   

12.
通过反演全球范围内20个地震台的宽频带波形资料,获得了2007年6月3日在云南宁洱发生的Ms6.4地震的矩张量解、震源时间函数和断层面上滑动随时间和空间的变化过程.根据反演结果,这次地震的标量地震矩为5.51×10^18 Nm,相当于矩震级Mw6.4.震源机制解中,最佳双力偶对应的节面Ⅰ的走向、倾角和滑动角分别为152°,54°和166°,节面Ⅱ的走向、倾角和滑动角分别为250°,79°和37°.结合震后考察得到的烈度等震线分布特征以及当地的地质构造,可以判定这次地震的发震断层的走向为152°,倾角为54°,滑动角为166°,是一次以右旋走滑为主的地震.从震源时间函数的形态来看,震源破裂持续时间为14s,地震矩的释放主要集中在前11s,在11-14s之间释放的地震矩很少.震源的时空破裂过程图像表明,破裂过程分为3个阶段,在前4S的时间段内,破裂主要沿着走向方向和朝深处发展;在4~7s间,破裂呈扇形向着深处扩展;在7s之后的时间段,破裂点比较零散.地震破裂总体上表现为双侧破裂方式,但在走向方向和深度方向上的滑动略占优势.破裂较强的区域呈菱形,长约为19km.地震断层面上最大滑动量为1.2m,平均滑动量为0.1m,最大滑动速率为0.4m/s,平均滑动速率为0.1m/s.由反演得到的静态位错模型计算的震中区地表位移场的特征与地震的烈度分布特征具有很好的一致性.  相似文献   

13.
用近震源波形资料拟合反演地震的震源破裂过程,所包含的一些不确定因素将对反演结果的精度及可靠性产生影响,文中的数值实验分析了所假定的反演断层模型参数的某些不确定性对反演结果的影响程度,并对观测波形的截取长度对反演精度的影响进行了讨论.结果表明:(1)近震源地震波形资料能较好地分辨断层浅部的破裂过程.然而对断层深部的位错分布的约束和反演能力较差.联合使用近、远场地震波资料进行反演,能反演出一个更为完全的整个断层破裂过程的图像.(2)用近震源地震波资料反演时,反演结果对所假定的反演断层的走向和倾角非常敏感.断层走向偏离真实值2°或倾角偏离真实值5°都会导致一个虚假的反演结果.(3)反演中所使用的介质速度结构模型的不确定性,也会对反演结果产生影响.  相似文献   

14.
利用Harvard和USGS矩张量反演的震源参数,计算1999年3月28日西藏6.6级地震体波波形并与记录到的波形对比。结果显示Harvard CMT得出的震源参数比较合理。  相似文献   

15.
利用重力观测约束2011日本Tohoku大地震的震源机制   总被引:3,自引:2,他引:1       下载免费PDF全文
2011年3月11日,日本东北部(Tohoku)太平洋海域发生Mw9.0特大地震.一些国际学术机构用不同的震相和反演方法,计算了大地震的震源机制解.但这些结果存在一定的差异.地球长周期自由振荡的振幅主要依赖于地震矩的大小及地震断层的破裂方式,可以约束地震的震源机制、地震大小及持续时间.本文利用地球自由振荡0S0简正模对Tohoku大地震的震源机制解进行分析和约束.0S0振幅大小与地震断层的倾角(dip)、滑动方向角(slip)、震源深度及地震断层的破裂时间有关.我们利用震源机制解得到大地震后自由振荡模拟值,利用超导重力仪得到自由振荡的高精度重力观测值.二者比较后的结果显示:由GCMT震源机制解得到的0S0振幅与观测值符合较好,而由USGS CMT震源机制解模拟的结果明显大于观测值.2011 Tohoku地震为逆冲型浅源大地震.进一步的分析表明:逆冲型浅源大地震的断层倾角对0S0振幅的影响很大,而滑动方向角以及震源深度对0S0振幅的影响较小.USGS CMT震源机制解中较大的断层倾角是导致其0S0振幅显著偏离观测值的主要原因.  相似文献   

16.
1997年中国西藏玛尼Mem>Ssub>7.9地震的时空破裂过程l   总被引:40,自引:7,他引:33       下载免费PDF全文
许力生  陈运泰 《地震学报》1999,21(5):449-459
用中国数字地震台网(CDSN)的长周期波形资料反演了1997年11月8日中国西藏玛尼地区MS7.9地震的地震矩张量,用频率域里反褶积方法从P波和S波震相中分别提取了震源时间函数,并经反演依赖于方位的震源时间函数获取了断层面上破裂随时空变化的图象.矩张量反演结果表明:玛尼地震发震应力场的P轴和T轴均接近于水平,P轴在NNE方向(方位角29,倾角7),T轴在SEE方向(方位角122,倾角23),断层错动以走滑为主;标量地震矩为3.41020 Nm,矩震级MW=7.6.由矩张量反演得到的震源时间函数显示,这次地震是由一次较小事件和较大事件组成的,较小事件大约持续5 s,较大事件持续约10 s.由余震分布可推断出玛尼地震的发震断层是走向为250、以走滑为主的左旋-逆断层,断层面的倾角比较陡,约88.根据反演结果计算了理论格林函数,然后用反褶积方法提取了震源时间函数.从不同台站的P波和S波中分别提取的震源时间函数一致表明这次地震破裂的时间历史比较简单,可用一宽度约10 s的正弦形的函数近似表示.进一步反演从不同台站上得到的、依赖于方位的P波和S波震源时间函数,获得了断层面上滑动的时空分布图象.从破裂的记忆式快照看,破裂开始于断层的西端,然后向东向下发展,总体上具有单侧破裂的特征.破裂面由3个破裂子区构成.一个在断层西端,深度约10 km(西区);另一个距断层西端约55 km,深度约35 km(东区);第3个距断层西端约30 km,深度约40 km(中区).3个破裂子区构成约长70 km,宽60 km的破裂面.从破裂的遗忘式快照看,这次地震的破裂过程是相当复杂的,在不同时刻断层面上发生错动的地点并不相同,显示出这次地震的破裂过程具有愈合脉冲的特征,而且在断层面上的某些部位发生了多次错动;另一特征是最先和最后破裂的部位都不是主要的破裂区.根据标量地震矩计算了断层面上静态位错的分布,位错最高的3处(西区、东区和中区)的位错值分别为956 cm,743 cm和1 060 cm.由断层面上位错的分布推知,破裂主要集中在震中以东长约70 km的断层上;从余震的分布看,震中以西余震稀疏而震中以东余震密集.这些都表明这次玛尼MS7.9地震是北东东-南西西向至近东-西向断层向东扩展的结果.   相似文献   

17.
孟国杰  苏小宁  王振  廖华 《地震》2018,38(2):11-27
联合近场GPS测站1-Hz运动学位移、 强震仪加速度波形和全球台站P震相波形作为约束, 以时空滑动分布约束条件和ABIC模型参数选择方法, 结合先验的滑动方向变化范围, 反演2008年汶川MS8.0地震的震源时空破裂过程, 给出了能够综合反映震源破裂过程的统一模型。 结果表明, 汶川地震总体上存在4个主要的破裂区, 最主要的一个破裂区位于震源东北40~120 km, 断层面上的最大位错量约为10 m, 主体滑动分布在2~20 km深度范围, 破裂达到地表; 第二个主体破裂区位于断层破裂带南段, 最大滑动量达到6 m; 另外2个主体滑动区位于断层破裂带北段, 但滑动破裂量小于断层南段破裂区的滑动量, 滑动破裂值最大值为4 m, 超过1 m的区域在走向上超过70 km。 反演得到的断层滑动模型的地震矩为9.5×1021 Nm, 相应的矩震级为MW7.95。 汶川地震破裂表现为单侧破裂, 起始破裂在汶川下方16 km深度, 向东北方向一致性地传播, 过程持续~120 s。 在地震发生后0~10 s内, 破裂集中在震源起始破裂区, 滑动破裂值为~1.0 m, 之后破裂向东北方向扩展, 震后20~40 s是主要的破裂时段。 在40~60 s, 破裂跨越断层南段和北段。 在80~90 s破裂最大值开始下降, 在100~110 s时, 下降为~0.5 m, 在110~120 s时, 下降为~0.1 m。 加入近场GPS测站1-Hz 波形数据与近场强震仪波形和远场长周期体波联合反演, 提高了震源破裂模型的空间分辨率, 特别是浅部滑动破裂区的分辨率, 反演的最大滑动破裂值比不用1-Hz 波形数据反演的结果增大, 表明近场1-Hz GPS波形数据对于揭示汶川地震的时空破裂过程具有重要的作用。  相似文献   

18.
赵旭  黄志斌  房立华 《中国地震》2014,30(3):462-473
利用中国数字地震台网记录的区域宽频带波形,通过频率域和时间域多步反演,研究了2014年云南盈江Ms6.1地震基于点源模型的震源机制解和有限断层模型.考虑到使用不同的波形资料类型和简化的一维速度模型等因素对震源参数反演结果的影响,进行了大量的测试比较.结果表明,使用近震波形和本区域简化一维速度模型M1,波形拟合误差最小.基于点源模型的震源机制解显示此次地震发震断层面参数分别为:走向176°/倾角84°/滑动角-173°,表现为一次右旋走滑错动为主的事件.矩心在水平方向上位于震中(24.99°N,97.84.E)北东向约7km,最佳波形拟合矩心深度7km.平均总标量地震矩M0为7.56×1017N·m,计算成矩震级为Mw5.8.进一步模拟高达0.5Hz的高频波形,获得了盈江地震的有限断层模型,结果显示此次地震未表现出明显的破裂方向性.破裂半径约10km,整个破裂面积为267.2km2,平均滑动量约0.05m,破裂在5 s内释放了大多数能量.震后0~2s内,破裂以孕震点为中心向四周同时扩展,在深度7~ 17km内释放了部分能量.2s后,破裂朝断层面顶部和沿走向两侧进一步延伸,约5s后破裂基本停止.  相似文献   

19.
利用InSAR同震形变升、降轨数据和远场地震波数据,基于均方根最小与标量地震矩最小双重约束下的模拟退火方法,联合反演2008年11月10日大柴旦MW6.3地震震源破裂过程.结果表明,2008年大柴旦地震震源破裂过程整体表现为沿倾向方向从深部破裂起始点处向上往地表传播,且破裂未到达地表;在前7 s内,滑动沿西北和东南两个方向传播,7 s后主要沿东南方向传播,破裂过程时间持续约为11 s,同震滑动分布主要集中在地下10~20 km范围内,最大滑动量达-0.71 m;反演结果揭示本次地震为西南倾高角度兼具微量走滑分量的逆冲破裂事件,反演矩张量为3.96×1018N·m,矩震级约MW6.37.通过大柴旦地震发震断层和破裂机制综合分析,初步判断发震断层为西南倾向的大柴旦—宗务隆山断裂.  相似文献   

20.
1999年台湾集集地震震源破裂过程   总被引:21,自引:5,他引:16       下载免费PDF全文
使用GPS同震位移资料和远场P波记录,研究了1999年台湾集集地震震源破裂过程.根据地质构造和余震分布引入了一个由弯曲断层面构造的三段“铲状”断层模型.在使用静态GPS位移资料反演集集地震的断层破裂滑动分布时,由于集集地震断层北部近地表破裂的复杂性,在位错模型中考虑拉张分量对地表同震位移的贡献,可更好地同时拟合GPS观测资料的水平和垂向分量.而纯剪切位错弹性半空间模型和分层地壳模型都无法同时拟合水平和垂向GPS观测资料.在此基础上,同时使用静力学同震位移资料和远场地震波形记录,反演集集地震的震源破裂过程.结果表明,一种垂直于断层面的“挤压性”(负)拉张分量几乎集中分布于地震断层的浅部和北部转折处,而这一带地表破裂远较没有(负)拉张分量出现的南部断层复杂.“冒起构造”的数字模拟表明,这种在集集地震破裂转折处及北部断裂带广为出现的典型破裂造成的地表位移可以用具有负拉张分量(挤压)的逆冲断层更好地模拟.而这种负拉张分量(挤压)的分布正是地震破裂性质和几何复杂性的综合反映,震源破裂过程也显示北部转折处破裂在空间和时间上的复杂性.高滑区域与余震分布表现为负相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号