首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This review describes significant developments in trace element determination using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) that were reported in 2004 and 2005. It focuses on the application of ICP techniques to geological and environmental samples; fundamental studies in ICP-MS and ICP-AES instrumentation are not included. The literature reviewed indicated that the majority of new publications concerned advances in ICP-MS analysis rather than ICP-AES. However, ICP-AES developments are still being published, particularly in the areas of sample preconcentration and sample introduction. The trend in increasing publication of developments in hyphenated speciation techniques looks set to persist as knowledge of elemental speciation becomes critical for many environmental studies. Collision or reactions cells were the most reported technique for spectral interference removal in ICP-MS, probably reflecting the growing adoption of cell instruments in laboratories during the last few years.  相似文献   

2.
Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS.  相似文献   

3.
This GGR biennial critical review covers developments and innovations in key analytical methods published since January 2014, relevant to the chemical, isotopic and crystallographic characterisation of geological and environmental materials. In nine selected analytical fields, publications considered to be of wide significance are summarised, background information is provided and their importance evaluated. In addition to instrumental technologies, this review also presents a summary of new developments in the preparation and characterisation of rock, microanalytical and isotopic reference materials, including a précis of recent changes and revisions to ISO guidelines for reference material characterisation and reporting. Selected reports are provided of isotope ratio determinations by both solution nebulisation MC‐ICP‐MS and laser ablation‐ICP‐MS, as well as of radioactive isotope geochronology by LA‐ICP‐MS. Most of the analytical techniques elaborated continue to provide new applications for geochemical analysis; however, it is noted that instrumental neutron activation analysis has become less popular in recent years, mostly due to the reduced availability of nuclear reactors to act as a neutron source. Many of the newer applications reported here provide analysis at increasingly finer resolution. Examples include atom probe tomography, a very sensitive method providing atomic scale information, nanoscale SIMS, for isotopic imaging of geological and biological samples, and micro‐XRF, which has a spatial resolution many orders of magnitude smaller than conventional XRF.  相似文献   

4.
Elemental and isotopic ratio analyses of U ore concentrate samples, from the 3 operating U mining facilities in Australia, were carried out to determine if significant variations exist between their products, thereby allowing the U ore concentrate’s origin to be identified. Elemental analyses were conducted using inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence spectrometry (XRF). Lead isotope ratios were measured using ICP-MS and U isotope analyses were conducted using thermal ionisation mass spectrometry (TIMS). Minute quantities of sample, such as that obtained from a swipe, were also examined for elemental concentrations using secondary ion mass spectrometry (SIMS). The results of multivariate statistical analysis show clear patterns in the trace elemental composition of the processed U ores, indicating that it is possible to use this feature as a unique identifier of an Australian U ore concentrate’s source. Secondary ion mass spectrometry analyses also allow individual particles to be differentiated using this ‘fingerprinting’ technique. Isotope ratios determined using TIMS reveal that there is a significant difference in the n(234U)/n(238U) isotope ratio between the U ore concentrate from each mine.  相似文献   

5.
激光剥蚀电感耦合(LA-ICP-MS)等离子体以其高空间分辨率、高灵敏度、多元素同时测定并可提供同位素比值信息的检测能力在原位微区分析中已得到广泛应用。现从仪器的发展、基础研究等方面评述了近年来LA-ICP-MS微区分析的进展,重点介绍了与等离子体质谱(ICP-MS)联用的激光器(纳秒和飞秒激光器)的发展、校正方法、分馏效应及其在地球科学微量元素、同位素、包裹体分析中的应用。并简要地阐述了LA-ICP-MS分析技术存在的局限和发展趋势。  相似文献   

6.
High precision isotope ratio and trace element determination can be achieved with modern quadrupole ICP-MS provided that short and long-term instrument performance is accurately monitored. Here we present results for the isotope ratios 6Li/7Li, 147Sm/149Sm, 160Dy/161Dy, 207Pb/206Pb, 208Pb/206Pb, 206Pb/204Pb and 235U/238U with which we determined long-term isotope ratio stability of relevance to both trace element and isotope determination. With respect to trace element determination, we first present long-term observations regarding oxide formation rates of Ba and Nd on light REE and heavy REE, as well as Zr on Ag. These showed good correlations and could be used to correct effectively the interference. The efficacy of this correction was demonstrated with analyses of the rock reference material BHVO-2 at both low and high oxide formation rates. Next, we studied the long-term reproducibility of a Dy isotope ratio that was measured to correct for the isobaric interference on Gd. It was found that, regardless of tuning condition, the ratio reproduced very well (0.58% RSD, 1s) and that the estimate of the Gd concentration did not suffer from the large correction (> 10%) caused by the Dy isobar. Long-term reproducibilities of Li, Sm and U isotope ratios, required for accurate mass bias correction when isotopically enriched internal standards of these elements are employed, were measured in the rock reference materials AGV-2 and JA-3 over a time period of up to 3 years. As expected, the Li isotope ratio showed the largest variability (RSD = 7%), but the other two ratios had relative external reproducibilities of only 1.01% (1s, U) and 0.67% (Sm). The mass bias-induced scatter in measurements for Sm and U was so small that the internal standard correction was effective, even for samples with high concentrations of these elements. With regard to Pb-isotope ratio determination, we also present long-term reproducibility for NIST SRM 982, run as an unknown and two accuracy tests for Pb separated from granitoids and from meteorites. It is demonstrated that the obtained ratios, including those involving 204Pb, are accurate relative to MC-ICP-MS determinations and of comparable precision to conventional TIMS analysis. The excellent agreement between all data sets shows the potential of modern quadrupole ICP-MS instrumentation for Pb-isotope determination, particularly for samples with very low Pb content.  相似文献   

7.
激光剥蚀-等离子体质谱(LA-ICPMS)已成为地球化学、宇宙化学和环境研究领域元素和同位素原位分析最重要的技术之一。文章介绍了多种类型的质谱仪及其使用的激光器。用途最广的LA-ICPMS仪器之一是单接收器扇形磁场质谱仪,配有Nd:YAG激光剥蚀系统(激光波长分为193 nm和213 nm两种),MPI Mainz实验室使用的就是这套系统,文章对此作一详细介绍。文中阐述了数据优化技术及其多种校正过程;介绍LA-ICPMS在痕量元素和同位素分析领域的一些应用,包括参考物质的研制,Hawaiian玄武岩、Martian陨石、生物骨针和珊瑚虫中痕量元素分析及熔融包裹体和富钙-铝碳质球粒陨石中的铅和锶同位素测量。  相似文献   

8.
Inductively coupled plasma mass spectrometry (ICP-MS) is a technique that provides rapid and sensitive multielement and isotope analysis of various environmental materials. This technique has developed into a valuable tool for data acquisition in geochemistry. Quadrupole and magnetic sector mass analysers are the most important types of mass filters that are commercially available with these instruments. Magnetic sector instruments are more expensive than quadrupole-based instruments, but provide enhanced sensitivity and higher mass resolution. This paper reviews applications of single- and multiple-collector magnetic sector ICP-MS in different fields of geochemistry and shows where the use of magnetic sector ICP-MS is advantageous.  相似文献   

9.
辉光放电质谱(GDMS)是利用辉光放电源作为离子源的一种无机质谱方法。GDMS采用固体进样,样品准备过程简单、分析速度快、基体效应小、线性范围宽,是痕量分析的一种重要分析手段,在国外已经成为高纯金属和半导体分析的行业标准方法。GDMS可以进行深度分析,选择合适的放电条件,可以在样品表面获得平底坑,深度分辨率可以满足对微米量级的层状样品进行测量。目前商业化的GDMS都是直流放电源,这些仪器需要用第二阴极法或混合法才能对非导电材料进行测量,从而限制了GDMS在非导体材料分析方面的应用。GDMS放电源和单接收方式并不能满足同位素丰度精确测量的要求,在精确度要求不高的情况下,GDMS在固体样品同位素丰度的快速测量方面还是有一定的应用价值。文章总结了近几年国内外GDMS在各领域的应用进展和定量分析技术发展方向。GDMS已经成为一种高纯导电材料分析的重要方法;在深度分析、非导电材料分析、固体同位素丰度快速测量中有一定的应用前景。在定量测量方面,由于受到基体、测量条件等影响因素较多,缺乏合适的基体匹配的标准物质用于校正,GDMS主要停留在定性和半定量分析阶段。目前,国外已有关于GDMS定量分析的报道,采用掺杂的方法合成校正样品,利用一系列校正样品获得的标准曲线实现定量分析,这种方法过程较为复杂,但可以获得较好的定量分析结果,是一种不错的校正方法。  相似文献   

10.
Eleven synthetic silicate and phosphate glasses were prepared to serve as reference materials for in situ microanalysis of clinopyroxenes, apatite and titanite, and other phosphate and titanite phases. Analytical results using different micro-analytical techniques showed that the glass fragments were homogeneous in major and trace elements down to the micrometre scale. Trace element determinations using inductively coupled plasma-mass spectrometry (ICP-MS), multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) and secondary ionisation mass spectrometry (SIMS) showed good agreement for most elements (Li, Be, B, Cs, Rb, Ba, Sr, Ga, Pb, U, Th, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Er, Tm, Yb, Lu, Zr, Hf, Ta, Nb) studied and provide provisional recommended values.  相似文献   

11.
The applications of inductively coupled plasma -mass spectrometry (ICP-MS) to geoanalysis are reviewed. This technique offers the ability to determine elemental abundances and isotope ratios; it has proven to be sensitive, precise and accurate, and represents a significant advance in instrumentation suitable for rock analysis. This review deals principally with the application of ICP-MS to elemental analysis. Literature citations are complete as of December 31, 1987; particular attention has been paid to data reported for certified reference materials. Although most current ICP-MS analysis employs conventional nebulization of solution samples, there is considerable effort being made to develop viable alternative sample introduction schemes that can be applied to rock analysis. The lack of adequately defined certified reference rock materials is apparent for ICP-MS and other techniques that are capable of routine determinations in the ng/g (ppb) range.  相似文献   

12.
Data on thirty-four minor and trace elements including all rare earth elements (REE) are reported for two kimberlitic international reference materials (SARM-39, MINTEK, RSA and MY-4, IGEM, Russia) by inductively coupled plasma-mass spectrometry (ICP-MS), some of them for the first time. Four digestion techniques (open acid, closed vessel acid, microwave and lithium metaborate fusion digestion) were used for the decomposition of samples for analysis by ICP-MS. Three other reference materials (USGS BHVO-1, CRPG BR-1 and ANRT UB-N) were analysed simultaneously using the same analytical methodology to assess the precision and accuracy of the determinations. The data obtained in this study compare well with working values wherever such values are available for comparison. Though open acid digestion was found to be very rapid, effective and convenient for the determination of several trace elements in kimberlitic samples, recoveries for heavy rare earth elements (HREE) were lower than the respective recoveries obtained by the other decomposition techniques used. The precision obtained was better than ± 6% RSD in the majority of cases with comparable accuracy. Chondrite-normalised plots of each RM for all the digestion techniques were smooth. The new data reported on the two kimberlitic reference materials make these samples useful for future geochemical studies of kimberlitic rocks.  相似文献   

13.
In 2005 Geostandards and Geoanalytical Research embarked upon a new initiative for its readers. Key researchers in various fields of geoanalytical technique development and their application were identified and invited to provide reviews pertinent to their expertise. As noted in the first of these publications "…instead of revisiting the historical context or decades of development in each analytical technique, the goal here has been to capture a snapshot of "hot topics" across a range of fields as represented in the… literature" (Hergt et al . 2005). Rather than prepare an annual review, a decision was taken earlier this year to provide a biennial summary of progress and accomplishments, in this case for the years 2004–2005. The principal techniques employed in Earth and environmental sciences are covered here, and include laser ablation and multicollector ICP-MS, ICP-AES, thermal ionisation and secondary ion mass spectrometry, as well as neutron activation analysis, X-ray fluorescence and atomic absorption spectrometry. A comprehensive review of the development of reference materials, often essential to these techniques, is also provided. The contributions assembled serve both to keep readers informed of advances they may be unfamiliar with, but also as a means of showcasing examples of the breadth and depth of work being conducted in these fields.  相似文献   

14.
The technique of multiple collector ICP-MS (MC-ICP-MS) has recently attracted much attention, because it permits the precise measurement of isotope compositions for a wide range of elements. This review article discusses the particular advantages of this mass spectrometric technique and provides an overview of the instrumentation. The performance characteristics of MC-ICP-MS instruments and procedures for the correction of instrumental mass discrimination are covered. The strategies that are employed to avoid analytical artefacts from spectral interferences and matrix effects are also considered. A range of applications are then discussed, to provide an overview of the versatility of this mass spectrometric technique. The diversity of applications, which include the measurement of radiogenic and stable isotope ratios, the determination of trace element concentrations by isotope dilution and in situ isotopic measurements using a laser ablation system, highlight the great relevance of MC-ICP-MS to present and future research in various Earth science disciplines.  相似文献   

15.
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine K, Sc, Ti, V, Cr, Mn, Co, Ni and Zn in geological samples. Because the isotopes of these elements and the internal standard element (Ca) often have interferences from molecular ions when determined using quadrupole or sector-field ICP-MS in low mass resolution mode, ion intensities were measured at a high mass resolution of 4000. We investigated dynamic element fractionation, type and abundance of molecular ions using different geological reference materials. Highly resolved mass spectra were especially important for accurate low-abundance measurements. As a result, maximum "critical" concentration limits for each isotope were obtained, where a mass resolution of 4000 was necessary for reliable LA-ICP-MS analysis. To test the LA-ICP-MS technique, different international reference material glasses and powdered rock reference materials were analysed. Rock powders were fused to glass beads using an Ir-strip heater. Nearly all concentration values for the reference materials agreed with the reference values at the 95% confidence level. To demonstrate routine LA-ICP-MS analysis at a mass resolution of 4000, trace element data for Hawaiian basalts are also presented.  相似文献   

16.
李延河 《地球学报》2020,41(5):583-589
同位素定年和示踪技术已渗透到地球科学的各个方面, 成为确定地质事件时代和成岩成矿年龄、示踪成岩成矿物质来源和形成环境条件的重要手段, 推动地球科学发展的重要动力。随着分析技术的不断发展, 微区/微量同位素、非传统同位素、高维度同位素已成为当前国际同位素地球化学研究的前沿和重点领域, 近年来我国在该领域也取得长足发展和一系列重大成果。本“同位素分析新技术与地质应用研究新进展”专辑集中刊发了13篇这方面的文章, 主要涵盖了两个方向的研究成果: (1)同位素地质分析新方法及标准物质研制; (2)同位素地球化学研究新进展, 主要包括同位素示踪技术在矿床和海洋沉积环境中应用研究。本文将对收录本专辑论文的研究工作做一简要介绍, 对深入了解我国同位素地质分析技术及应用研究最新进展具有一定参考价值。  相似文献   

17.
The stable isotope dilution technique using solid source mass spectrometry is described. The method is capable of high sensitivity, and can yield accurate determinations of elements in trace quantities. The method enjoys freedom from interference effects and systematic errors, and because of its high absolute accuracy it is ideal for the determination of trace elements in geochemical reference samples. A compilation of isotope dilution analyses on ten trace elements in a number of international standard rock samples carried out at the Western Australian Institute of Technology is presented.  相似文献   

18.
This annual review documents developments and applications in the field of isotope ratio determination, as reflected in the literature for the Earth and environmental sciences for the year 2003. Particular emphasis is placed upon the relationship between the two dominant analytical techniques-thermal ionisation mass spectrometry (TIMS) and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS)-and the rapidly changing nature of their roles in isotope analysis. Additionally, the review covers developments in single-collector ICP-MS and TOF technologies, new sample preparation procedures and the characterisation of isotopic reference materials, together with fundamental investigations of mass spectrometer performance.  相似文献   

19.
We report new data on the trace element concentrations of Mg, Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, La, Ce, Nd, Pb and U in USGS carbonate reference materials (MACS-1 and MACS-2) and compare solution ICP-MS and LA-ICP-MS trace element determinations on landfill calcites using calibration to different reference materials (MACS-1 and MACS-2 carbonate and NIST SRM 612 glass). Very good agreement (differences below 10% relative) was found between laser ablation and solution ICP-MS data for MACS-1 with higher concentrations of trace elements (values between 100 and 150 μg g−1), with the exception of Cu and Zn. Similarly good agreement was found for MACS-2 with lower trace element concentrations (units to tens of μg g−1), with the exception of Cr, Co and Zn. The MACS-1 reference material for calibration of LA-ICP-MS was found to be extremely useful for in situ determination of trace elements in real-world carbonate samples (landfill calcites), especially those present in calcite in higher concentrations (Mn, Sr, Ba; < 5% RSD). Less accurate determinations were generally obtained for trace elements present at low concentrations (∼ units of μg g−1). In addition, good agreement was observed between the instrument calibration to MACS and NIST SRM 612 glass for in situ measurements of trace elements in landfill calcites K-2, K-3 and K-4 (differences below 15% relative for most elements). Thus, the application of MACS carbonate reference materials is promising and points to the need for the development of new carbonate reference materials for laser ablation ICP-MS.  相似文献   

20.
采用双带测量方式,法拉第杯和离子计数器同时接收与跳峰接收相结合,建立了超微量钐同位素的热表面电离质谱的测量方法。优化了制样程序和质谱测量程序,研究了蒸发带电流对离子流强度的影响,考察了从纳克至微克不同样品用量的测量效果及其中Nd、Eu干扰核素的情况。对4 ng~2μg的天然丰度钐样品进行了同位素比值分析,相对标准偏差均小于1.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号