首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although many consequences of climate change on marine and terrestrial ecosystems are well documented, the characterisation of estuarine ecosystems specific responses and the drivers of the changes are less understood. In this study, we considered the biggest Southwestern European estuary, the Gironde, as a model of a macrotidal estuary to assess the effects of both large- (i.e., North Atlantic basin-scale) and regional-scale climate changes. Using a unique set of data on climatic, physical, chemical and biological parameters for the period 1978–2009, we examined relations between changes in both the physical and chemical environments and pelagic communities (plankton and fish) via an end-to-end approach. Our results show that the estuary experienced two abrupt shifts (~1987 and ~2000) over the last three decades, which altered the whole system. The timing of these abrupt shifts are in accordance with abrupt shifts reported in both marine (e.g., in the North Sea, the Mediterranean Sea and along the Atlantic) and terrestrial (e.g., in European lakes) realms. Although this work does not allow a full understanding of the dynamical processes through which climate effects propagate along the different compartments of the ecosystem, it provides evidence that the dynamics of the largest estuary of Southwest Europe is strongly modulated by climate change at both regional and global scales.  相似文献   

2.
Phytoplankton plays a dominant role in shelf biogeochemistry by producing the major part of organic matter. Part of the organic matter will reach the sediment where diagenetic processes like denitrification, apatite formation or burial will remove nutrients from the biogeochemical cycle. In this article current knowledge on the decadal plankton variability in the North Sea is summarized and possible implications of these changes for the biogeochemistry of the North Sea are discussed. Most of the observed interdecadal dynamics seem to be linked to large-scale oceanographic and atmospheric processes. Prominent changes in the North Sea ecosystem have taken place around 1979 and 1988. In general, the phytoplankton color (CPRS indicator of phytoplankton biomass) reached minimum values during the end of the 1970s and has increased especially since the mid 1980s. Changes with a similar timing have been identified in many time series from the North Sea through the entire ecosystem and are sometimes referred to as regime shifts. It is suggested that the impact of global change on the local biogeochemistry is largely driven by the phyto- and zooplankton dynamics during spring and early summer. At that time the extent of zooplankton–phytoplankton interaction either allows that a large part of the new production is settling to the sediment, or that a significant part of the new production including the fixed nutrients is kept within the pelagic system. The origin of the extent of the phytoplankton–zooplankton interaction in spring is probably set in the previous autumn and winter. In coastal areas, both large-scale atmospheric and oceanographic changes as well as anthropogenic factors influence the long-term dynamics. Due to eutrophication, local primary production nowadays still is up to five times higher than during pre-industrial conditions, despite a decreasing trend. Recently, introduced species have strengthened the filter feeder component of coastal ecosystems. Especially in shallow coastal seas like the Wadden Sea, this will enhance particle retention, shift organic matter degradation to the benthic compartment and enhance nutrient removal from the biogeochemical cycle by denitrification or apatite formation.  相似文献   

3.
Phytoplankton are finely tuned to the seasonality of their environment, and shifts in the timing of phytoplankton phenology provide some of the most compelling evidence that species and ecosystems are being influenced by global climate change. Evaluation of a 50-year dataset of climatic parameters, a 12-year dataset of nutrients, and a 15-year dataset of phytoplankton biomass and composition in Gyeonggi Bay of the Yellow Sea revealed that the climate has shifted from a cold to a warm phase in the last few decades and that recent warm climatic and eutrophication trends are affecting phytoplankton biomass, phenology, and structure. In Gyeonggi Bay, climatic and ecological regime shifts were detected during the 1990s and 2000s, respectively. The asymmetric relationship between climate and ecological regime shift probably depends on macrotidal system configurations that are more resistant to environmental perturbation. The spring diatom blooms observed in the 1990s have moved forward to winter blooms in the 2000s because early winter warming has been induced by higher light and precipitation, which has removed prior light limitation and control of diatom blooms. Summer blooms are triggered by enhanced nutrients, which leads to frequent and recurring dominance of dinoflagellates and diatoms, supporting the hypothesis that summer phenology might be brought about by local processes such as eutrophication, as well as by climate change. Overall, differences in phenological trends can be brought about by differences in the underlying drivers of seasonality. Based on the results of this study, perspectives are drawn regarding the utility of phenology as an organizing principle for analysis of pelagic ecosystems.  相似文献   

4.
Paleoenvironmental reconstructions are important for understanding the influence of long-term climate variability on ecosystems and landscape disturbance dynamics. In this paper we explore the linkages among past climate, vegetation, and fire regimes using a high-resolution pollen and charcoal reconstruction from Morris Pond located on the Markagunt Plateau in southwestern Utah, USA. A regime shift detection algorithm was applied to background charcoal accumulation to define where statistically significant shifts in fire regimes occurred. The early Holocene was characterized by greater amounts of summer precipitation and less winter precipitation than modern. Ample forest fuel and warm summer temperatures allowed for large fires to occur. The middle Holocene was a transitional period between vegetation conditions and fire disturbance. The late Holocene climate is characterized as cool and wet reflecting an increase in snow cover, which reduced opportunities for fire despite increased availability of fuels. Similarities between modern forest fuel availability and those of the early Holocene suggest that warmer summers projected for the 21st century may yield substantial increases in the recurrence and ecological impacts of fire when compared to the fire regime of the last millennium.  相似文献   

5.
ABSTRACT Palaeoceanographic reconstructions from the North Atlantic indicate massive ice breakouts from East Greenland near the onset of cold Dansgaard–Oeschger (D–O) stadials. In contrast to these coolings in the North Atlantic area, a new sea-surface temperature record reveals concomitant warm spells in the northern North Pacific. A sensitivity experiment with an atmospheric general circulation model is used to test the potential impact of sea-surface warmings by 3.5 °C in the North Pacific, on top of otherwise cold stadial climate conditions, on the precipitation regime over the Northern Hemisphere ice sheets. The model predicts a maximum response over East Greenland and the Greenland Sea, where a 40% increase in net annual snow accumulation occurs. This remote effect of North Pacific warm spells on the East Greenland snow-accumulation rate may play an important role in generating D–O cycles by rebuilding the ice lost during ice breakouts. In addition, the increased precipitation over the Greenland Sea may help to sustain the D–O stadial climate state.  相似文献   

6.
Phytoplankton variability is a primary driver of chemical and biological dynamics in the coastal zone because it directly affects water quality, biogeochemical cycling of reactive elements, and food supply to consumer organisms. Much has been learned about patterns of phytoplankton variability within individual ecosystems, but patterns have not been compared across the diversity of ecosystem types where marine waters are influenced by connectivity to land. We extracted patterns from chlorophyll-a series measured at 84 estuarine–coastal sites, using a model that decomposes time series into an annual effect, mean seasonal pattern, and residual “events.” Comparisons across sites revealed a large range of variability patterns, with some dominated by a recurrent seasonal pattern, others dominated by annual (i.e., year-to-year) variability as trends or regime shifts and others dominated by the residual component, which includes exceptional bloom events such as red tides. Why is the partitioning of phytoplankton variability at these three scales so diverse? We propose a hypothesis to guide next steps of comparative analysis: large year-to-year variability is a response to disturbance from human activities or shifts in the climate system; strong seasonal patterns develop where the governing processes are linked to the annual climate cycle; and large event-scale variability occurs at sites highly enriched with nutrients. Patterns of phytoplankton variability are therefore shaped by the site-specific relative importance of disturbance, annual climatology, and nutrient enrichment.  相似文献   

7.
Storm surges in the North Sea are one of the threats for coastal infrastructure and human safety. Under an anthropogenic climate change, the threat of extreme storm surges may be enlarged due to changes in the wind climate. Possible future storm surge climates based on transient simulations (1961–2100) are investigated with a hydrodynamical model for the North Sea. The climate change scenarios are based on regionalized meteorological conditions with the regional climate model CCLM which is forced by AR4 climate simulations with the general circulation model ECHAM5/MPIOM under two IPCC emission scenarios (SRES A1B and B1) and two initial conditions. Possible sea level rise in the North Sea is not taken into account. The analysis of future wind-induced changes of the water levels is focused on extreme values. Special emphasis is given to the southeastern North Sea (German Bight). Comparing the 30-year averages of the annual 99 percentiles of the wind-induced water levels between the four climate realizations and the respective control climates, a small tendency toward an increase is inferred for all climate change realizations toward the end of the twenty-first century. Concerning the German Bight, the climate change signals are higher for the North Frisian coastal areas than for the East Frisian ones. This is consistent with an increase in frequency of strong westerly winds. Considering the whole time series (1961–2100) for selected areas, this tendency is superimposed with strong decadal fluctuations. It is found that uncertainties are related not only to the used models and emission scenarios but also to the initial conditions pointing to the internal natural variability.  相似文献   

8.
李玉霞  林振山 《第四纪研究》2015,35(6):1437-1449
过去1000年的气候变化是最近数十年人类活动影响加强情况下全球气候变化的自然背景, 其变化规律和驱动机制的研究对预测未来气候变化有着重要意义。非线性统计-动力反演方法结合了统计模型和动力模型的优点, 能充分利用观测数据反演系统各因子之间的相互关系。本文尝试应用非线性统计-动力反演方法建立印度夏季风的动力方程, 为研究印度夏季风的驱动机制提供量化参考。经研究发现:近千年印度夏季风系统是复杂非线性动力系统; 工业革命前印度夏季风变化的主要驱动力是北大西洋海表温, 其次是温室气体(N2O和CO2)浓度与阿拉伯海海表温、ENSO及太阳辐照度等的相互作用; 在工业革命后期, 温室气体(CH4、N2O和CO2)浓度及其与北大西洋海表温、太阳辐照度、ENSO及北极温度等的相互作用成为印度夏季风的主要驱动力; 单因子甲烷和N2O是印度夏季风的驱动力, 而它们的非线性相互作用(两个因子的交叉项)却是稳定作用力。总体来说, 工业革命前, 北大西洋海表温度是印度夏季风的主要驱动因子; 工业革命后, 温室气体则成为主要的驱动因子。  相似文献   

9.
Across North and South America, the final millennia of the Pleistocene saw dramatic changes in climate, vegetation, fauna, fire regime, and other local and regional paleo-environmental characteristics. Rapid climate shifts following the Last Glacial Maximum (LGM) exerted a first-order influence, but abrupt post-glacial shifts in vegetation composition, vegetation structure, and fire regime also coincided with human arrival and transformative faunal extinctions in the Americas. We propose a model of post-glacial vegetation change in response to climatic drivers, punctuated by local fire regime shifts in response to megaherbivore-driven fuel changes and anthropogenic ignitions. The abrupt appearance of humans, disappearance of megaherbivores, and resulting changes in New World fire systems were transformative events that should not be dismissed in favor of climate-only interpretations of post-glacial paleo-environmental shifts in the Americas. Fire is a mechanism by which small human populations can have broad impacts, and growing evidence suggests that early anthropogenic influences on regional, even global, paleo-environments should be tested alongside other potential causal mechanisms.  相似文献   

10.
Framed into a robust stratigraphic context, multivariate analyses on the Holocene palaeobiological record (pollen, benthic foraminifers, ostracods) of the Po coastal plain (NE Italy) allowed the investigation of microtidal ecosystems variability and driving parameters along a 35-km-long land–sea transect. Millennial-scale ecosystem shifts are documented by coeval changes in the meiofauna, reflecting variations in organic matter–water depth (shallow-marine environments) and degree of confinement-salinity (back-barrier settings). In-phase shifts of vegetation communities track unsteady water-table levels and river dynamics in freshwater palustrine areas. Five environmental–ecological stages followed one another crossing four tipping points that mark changes in relative sea level (RSL), climate and/or fluvial regime. At the culmination of Mediterranean RSL rise, after the 8200 event, remarkable growth of peatlands took place in the Po estuary, while low accumulation rates typified the shelf. At the transgressive–regressive turnaround (~7000 cal a bp ), the estuary turned into a delta plain with tidally influenced interdistributary embayments. River flow regime oscillations after the Climate Optimum (post-5000 cal a bp ) favoured isolation of the bays and the development of brackish wetlands surrounded by wooded peatlands. The youngest threshold (~800 cal a bp ), which led to the establishment of the modern delta, reflects a major avulsion of the Po River.  相似文献   

11.
The early Holocene climate of the North Atlantic region was influenced by two boundary conditions that were fundamentally different from the present: the presence of the decaying Laurentide Ice Sheet (LIS) and higher than present summer solar insolation. In order to assess spatial and temporal patterns of Holocene climate evolution across this region, we collated quantitative paleotemperature records at sub-millennial resolution and synthesized their temporal variability using principal components analysis (PCA). The analysis reveals considerable spatial variability, most notably in the time-transgressive expression of the Holocene thermal maximum (HTM). Most of the region, but especially areas peripheral to the Labrador Sea and hence closest to the locus of LIS disintegration, experienced maximum Holocene temperatures that lagged peak summer insolation by 1000-3000 years. Many sites from the northeastern North Atlantic sector, including the Nordic Seas and Scandinavia, either warmed in phase with maximum summer insolation (11,000-9000 years ago) or were less strongly lagged than the Baffin Bay-Labrador Sea region. These spatially complex patterns of Holocene climate development, which are defined by the PCA, resulted from the interplay between final decay of the LIS and solar insolation forcing.  相似文献   

12.
区域海气耦合模式研究进展   总被引:4,自引:0,他引:4  
区域海气耦合模式是进行区域尺度气候模拟和预估的重要工具,近年来得到快速发展。在阐述区域海气耦合过程重要性的基础上,对当今国内外主要的区域海气耦合模式研究进展进行总结,归纳区域海气耦合模拟所关注的核心科学问题,介绍区域海气耦合模式的技术特点。发展基于耦合器且无通量订正的区域海气耦合模式是区域海气耦合模式发展的主流方向。当前国际上区域海气耦合模拟所关注的主要科学问题,包括区域海气耦合模式对区域海洋过程的模拟、区域海气耦合模式对区域大气过程的模拟、亚洲—西北太平洋季风模拟及其耦合模拟海表面温度(SST)冷偏差问题、热带海气相互作用过程模拟,以及区域海气耦合模式对未来气候变化的预估研究等。对上述5个方面科学问题的研究思路和主要科学结论进行总结,重点关注针对亚洲—西北太平洋季风区的区域海气耦合模拟研究,对区域海气耦合过程改进亚洲—西北太平洋地区降水模拟的物理机制,及在该区域模拟SST冷偏差的成因亦进行相关归纳和总结。最后提出当前区域海气耦合模拟亟待解决的关键科学问题。  相似文献   

13.
Estuarine and coastal ecosystems respond strongly to proximate climate forcing. In this study, we present a regional, synoptic climatology as an approach to classify weather patterns that generate interannual variability in coastal and estuarine ecosystems. Synoptic climatology is a method that classifies sea level pressure data into distinct patterns representing common weather features for a specified region. A synoptic climatology was developed for the eastern United States and used to quantify surface conditions affecting Chesapeake Bay during wet and dry years. In a synthesis analysis, several mechanisms were identified that explained the link between weather patterns and ecosystem structure, principal among them is the delivery of freshwater to the Bay during spring. Wet and dry years were characterized by shifts in biogeography of the Chesapeake Bay. The shifts resulted from habitat changes and trophic interactions and included the timing and magnitude of the spring phytoplankton bloom, the distribution/abundance of mesozooplankton and gelatinous zooplankton, and juvenile indices of fish. Synoptic climatology resolved regional weather variability at a spatial scale not strongly controlled by larger-scale climate indices and explained ecosystem responses in Chesapeake Bay.  相似文献   

14.
《Earth》2009,92(1-4):77-92
The hypoxic zone in the Baltic Sea has increased in area about four times since 1960 and widespread oxygen deficiency has severely reduced macro benthic communities below the halocline in the Baltic Proper and the Gulf of Finland, which in turn has affected food chain dynamics, fish habitats and fisheries in the entire Baltic Sea. The cause of increased hypoxia is believed to be enhanced eutrophication through increased anthropogenic input of nutrients, such as nitrogen and phosphorus. However, the spatial variability of hypoxia on long time-scales is poorly known: and so are the driving mechanisms. We review the occurrence of hypoxia in modern time (last c. 50 years), modern historical time (AD 1950–1800) and during the more distant past (the last c. 10 000 years) and explore the role of climate variability, environmental change and human impact. We present a compilation of proxy records of hypoxia (laminated sediments) based on long sediment cores from the Baltic Sea. The cumulated results show that the deeper depressions of the Baltic Sea have experienced intermittent hypoxia during most of the Holocene and that regular laminations started to form c. 8500–7800 cal. yr BP ago, in association with the formation of a permanent halocline at the transition between the Early Littorina Sea and the Littorina Sea s. str. Laminated sediments were deposited during three main periods (i.e. between c. 8000–4000, 2000–800 cal. yr BP and subsequent to AD 1800) which overlap the Holocene Thermal Maximum (c. 9000–5000 cal. yr BP), the Medieval Warm Period (c. AD 750–1200) and the modern historical period (AD 1800 to present) and coincide with intervals of high surface salinity (at least during the Littorina s. str.) and high total organic carbon content. This study implies that there may be a correlation between climate variability in the past and the state of the marine environment, where milder and dryer periods with less freshwater run-off correspond to increased salinities and higher accumulation of organic carbon resulting in amplified hypoxia and enlarged distribution of laminated sediments. We suggest that hydrology changes in the drainage area on long time-scales have, as well as the inflow of saltier North Sea waters, controlled the deep oxic conditions in the Baltic Sea and that such changes have followed the general Holocene climate development in Northwest Europe. Increased hypoxia during the Medieval Warm Period also correlates with large-scale changes in land use that occurred in much of the Baltic Sea watershed during the early-medieval expansion. We suggest that hypoxia during this period in the Baltic Sea was not only caused by climate, but increased human impact was most likely an additional trigger. Large areas of the Baltic Sea have experienced intermittent hypoxic from at least AD 1900 with laminated sediments present in the Gotland Basin in the Baltic Proper since then and up to present time. This period coincides with the industrial revolution in Northwestern Europe which started around AD 1850, when population grew, cutting of drainage ditches intensified, and agricultural and forest industry expanded extensively.  相似文献   

15.
《Quaternary Science Reviews》2007,26(17-18):2042-2066
A review of seven outstanding issues on Mediterranean palaeoenvironments is presented. These are related to the dominant orbital pacing of climate variability, the length of the interglacial vegetation succession, the influence of the African summer monsoon, the seasonality of precipitation during boreal insolation maxima, the moisture balance during glacial maxima and the appearance of the mediterranean-type climate rhythm and evolution of mediterranean sclerophyllous plants. What emerges is that (1) marine δ18Oplanktonic and SST records show that precession has been a fundamental tempo of Mediterranean climate change, representing both a low-latitude signal (runoff from North Africa) and the direct influence of insolation at Mediterranean latitudes, but high-latitude glacial effects (41-kyr and 100-kyr cycles) became superimposed after 2.8 Ma. Sapropel and dust deposition patterns in marine cores reveal that obliquity also has an effect on Mediterranean climate through dry–wet oscillations, which are independent of glacial–interglacial variability. (2) The temperate part of interglacial vegetation succession has a duration of approximately half a precession cycle. This persisted during the interval of obliquity-dominated glacial cycles (∼2.8–1 Ma), with distinct forest successions following the precessional cycles. However, these are not always separated by an open vegetation phase because of minimal ice growth, producing an impression of a prolonged interglacial forest interval. (3) The effect of an enhanced African monsoon during summer insolation maxima has been mainly indirect, in terms of Nile discharge and runoff along the North African coast, leading to increased freshwater input into the Mediterranean Sea, reduced deep-water ventilation and sapropel deposition. (4) The notion of an accentuated summer rain regime in the northern Mediterranean borderlands also contributing to a freshening of the Mediterranean Sea during boreal insolation maxima is not supported by the available evidence, which suggests increased summer aridity. (5) Recent improvements in chronological precision and data resolution point to an increase in aridity and decreased temperatures during the Last Glacial Maximum (21±2 ka), but suggest an increase in effective moisture during the immediately preceding interval of 24–27 ka. (6) The mediterranean-type climate is not exclusively a post-3.6 Ma phenomenon, but may have appeared intermittently during the course of the Tertiary (or before). (7) If that is the case, then the paradigm that the sclerophyllous evergreen habit represents a pre-adaptation to summer drought may need re-evaluation.  相似文献   

16.
Millennial to submillennial marine oscillations that are linked with the North Atlantic's Heinrich events and Dansgaard–Oeschger cycles have been reported recently from the Alboran Sea, revealing a close ocean-atmosphere coupling in the Mediterranean region. We present a high-resolution record of lithogenic fraction variability along IMAGES Core MD 95-2043 from the Alboran Sea that we use to infer fluctuations of fluvial and eolian inputs to the core site during periods of rapid climate change, between 28,000 and 48,000 cal yr B.P. Comparison with geochemical and pollen records from the same core enables end-member compositions to be determined and to document fluctuations of fluvial and eolian inputs on millennial and faster timescales. Our data document increases in northward Saharan dust transports during periods of strengthened atmospheric circulation in high northern latitudes. From this we derive two atmospheric scenarios which are linked with the intensity of meridional atmospheric pressure gradients in the North Atlantic region.  相似文献   

17.
《Quaternary Science Reviews》2007,26(13-14):1713-1724
Continuous high-resolution pollen data for the past 225 ka from sediments in Bear Lake, Utah–Idaho reflect changes in vegetation and climate that correlate well with variations in summer insolation and global ice-volume during MIS 1 through 7. Spectral analysis of the pollen data identified peaks at 21–22 and 100 ka corresponding to periodicities in Earth's precession and eccentricity orbital cycles. Suborbital climatic fluctuations recorded in the pollen data, denoted by 6 and 5 ka cyclicities, are similar to Greenland atmospheric temperatures and North Atlantic ice-rafting Heinrich events. Our results show that millennial-scale climate variability is also evident during MIS 5, 6 and 7, including the occurrence of Heinrich-like events in MIS 6, showing the long-term feature of such climate variability. This study provides clear evidence of a highly interconnected ocean–atmosphere system during the last two glacial/interglacial cycles that extended its influence as far as continental western North America. Our study also contributes to a greater understanding of the impact of long-term climate change on vegetation of western North America. Such high-resolution studies are particularly important in efforts of the scientific community to predict the consequences of future climate change.  相似文献   

18.
Ecological (poleward) regime shifts are a predicted response to climate change and have been well documented in terrestrial and more recently ocean species. Coastal zones are amongst the most susceptible ecosystems to the impacts of climate change, yet studies particularly focused on mangroves are lacking. Recent studies have highlighted the critical ecosystem services mangroves provide, yet there is a lack of data on temporal global population response. This study tests the notion that mangroves are migrating poleward at their biogeographical limits across the globe in line with climate change. A coupled systematic approach utilising literature and land surface and air temperature data was used to determine and validate the global poleward extent of the mangrove population. Our findings indicate that whilst temperature (land and air) have both increased across the analysed time periods, the data we located showed that mangroves were not consistently extending their latitudinal range across the globe. Mangroves, unlike other marine and terrestrial taxa, do not appear to be experiencing a poleward range expansion despite warming occurring at the present distributional limits. Understanding failure for mangroves to realise the global expansion facilitated by climate warming may require a focus on local constraints, including local anthropogenic pressures and impacts, oceanographic, hydrological, and topographical conditions.  相似文献   

19.
研究目的】在末次冰期,全球气候变化以千年尺度的快速、大幅度温度波动旋回为特征,这种波动变化在两极冰芯、深海沉积、中国黄土和洞穴石笋等诸多地质样品中均有记录。黑海位于北大西洋与东亚季风区过渡带,具有极有代表性的沉积记录。本文旨在通过对黑海沉积序列的研究,建立起其区域环境变化与北大西洋及东亚季风气候域气候变化的联系。【研究方法】研究对取自黑海西北部罗马尼亚陆坡区多瑙河峡谷北侧GAS-CS12钻孔的长22.0 m的岩芯样品,进行了粒度、矿物成分、主量元素、有机碳、总氮及碳氮同位素等分析。【研究结果】揭示出该段岩芯沉积于末次冰期中后期“Neoeuxine”湖相阶段,可划分为5个沉积单元,对应于北大西洋H4、H3、H1气候变化事件、末次冰盛期(LGM)及Bolling-Allerod气候变暖事件。【结论】建立起了其沉积序列及区域环境变化与北大西洋及东亚季风气候域气候变化的联系,印证了末次冰期千年尺度的气候变化事件在北大西洋、东亚季风区及两者过渡带上具有高度的一致性。创新点:建立了黑海西北沉积序列与区域环境变化的关系;补充了北大西洋与东亚季风区两者过渡带上气候波动事件的可靠时标。  相似文献   

20.
The effects of climate change during the Terminal Pleistocene–Early Holocene transition on ecosystems and early Prearchaic hunter-gatherers in the central Great Basin of North America are not well understood. We present a palynological reconstruction of regional vegetation and fire history in Grass Valley, central Nevada, from ~14 to ~7.5k cal a BP showing that Pinus-dominated woodlands were replaced by dry-adapted steppe and desert vegetation accompanied by an increase in regional fire activity at the beginning of the Holocene, in response to summer warming and a drying climate. Following a severe drought period peaking ~10.2–9.3k cal a BP, Pinus woodlands partially recovered contemporaneously with the 8.2k cal a BP climate anomaly. Local wetlands provided important resource patches for human foraging societies, and periodic declines of wetlands in response to changing local hydrological conditions may have necessitated adjustments in subsistence and settlement practices and technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号