首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetsuzo  Fukunari  Simon R.  Wallis 《Island Arc》2007,16(2):243-261
Abstract   The Median Tectonic Line (MTL) is a first-order tectonic boundary that separates the Sanbagawa and Ryoke Metamorphic Belts. Strike-slip movements on the MTL have been well documented by many workers. New field based structural studies in the Sanbagawa Belt close to the MTL reveal a large number of secondary faults and semibrittle shear bands indicating a top-to-the-north normal sense of displacement. The strikes of these shear zones and their spatial distributions suggest that development of these structures is related to movements on the MTL. These results imply that the MTL has a large-scale normal shear component on a regional scale that can help account for the exhumation of the Sanbagawa Belt. Our proposed history of the MTL can also account for changes in the geometry of folds in the Sanbagawa Belt.  相似文献   

2.
Hideo  Takagi 《Island Arc》1992,1(1):92-102
Abstract Mylonites along the Median Tectonic Line, southwest Japan commonly contain shear bands comprising S(-C)-Ss fabrics. This paper stresses the lithologic control on the orientation, dimension and development of shear bands by comparing the microstructure of the shear bands in different rock types (P mylonites, F mylonites, micaceous phyllonite and quartzose phyllonite). There is no significant change of the α angles (average 21–24°) between Ss and S toward the centre of the shear zone (viz. increasing the intensity of mylonitization) and it is different from the S-C relationship in a narrow sense.
The generation of the composite planar fabric can be classified into four different strain partitioning models: S only type without any slip surface (model A); S-C type (model B); S-Ss type with Ss-slip precedence (model C), and S-Ss type with S-slip precedence (model D). Model C is proposed in this paper and is similar to the model for the generation of Riedel shears in brittle shear zones. An unstable slip between porphyroclasts and the matrix during ductile flow can easily initiate shear bands. Formation of a composite planar fabric is initiated according to model A, followed by model C in conditions of increasing strain, and then model D when the angle between S and the shear zone boundary becomes small enough (α/2 = 10°) to produce S-slip. Thus the generation of the shear bands probably begins in the early stages of shear deformation and continues until the latest stages.  相似文献   

3.
The Median Tectonic Line (MTL) is a first‐order tectonic boundary that separates the Sanbagawa and Ryoke metamorphic belts. Documented large‐scale top‐to‐the‐north normal displacements along this fault zone have the potential to contribute to the exhumation of the Sanbagawa high‐pressure metamorphic belt. Fluid inclusion analyses of vein material formed associated with secondary faults within the Sanbagawa belt affected by movement on the MTL show normal movement was initially induced under temperatures greater than around 250°C. Microstructures of quartz and K‐feldspar comprising the vein material suggest a deformation temperature of around 300°C, supporting the results of fluid inclusion analyses and suggesting deformation at depths of around 10 km. The retrograde P–T path of the Sanbagawa metamorphic rocks and the estimated isochore of the fluid inclusions do not intersect. The semi‐ductile structures of surrounding rocks and lack of evidence for hydrothermal metamorphism around the veins imply the temperature of the rocks was similar to that of the fluid. These observations suggest fluid pressure of the veins was lower than lithostatic pressure close to the MTL.  相似文献   

4.
The relationship between the slip activity and occurrence of historical earthquakes along the Median Tectonic Line (MTL), together with that of the fault systems extending eastward has been examined. The MTL is divided into three segments, each containing diagnostic active faults. No historical earthquakes have been recorded along the central segment, although the segment has faster Quaternary slip rates compared with the other segments that have generated historical earthquakes. This discrepancy between earthquake generation and slip rate can be explained by a microplate model of southwest Japan. The microplate model also provides spatial and temporal coupling of slip on adjacent fault systems. In the context of this model, slip on adjacent faults reduces the normal stress on the MTL. Historical data and paleoseismic evidence indicate that slip on this segment occurs without significant strong ground motion. We interpret this as indicating anomalously slow seismic slip or aseismic slip. Slip on the central segment of the MTL creates transpressional regions at the eastern and western segments where historical earthquakes were recorded. Alternatively, the earthquakes at the eastern and western segments were triggered and concentrated shear stress at the edge of the segments resulted in postseismic slip along the central segment. The sequence of historical events suggests that the MTL characteristically does not produce great earthquakes. The microplate model also provides a tectonic framework for coupling of events among the MTL, the adjacent fault systems and the Nankai trough.  相似文献   

5.
Field, hand specimen, and microscopic investigations alongside X-ray diffraction analyses revealed four types of hydrothermal alteration (Type-A, -B, -C, and -D) based on the mode of occurrence of altered rocks and alteration mineral assemblage at Hakusui-kyo and Horai-kyo along the Arima-Takatsuki Tectonic Line (ATTL) in western Japan. Type-A alteration locally occurred as gray alteration halos with sulfide minerals. Type-B and -C alterations were confined to fault gouge veins and occurred as greenish-gray veins and brown veins, respectively. Type-C alteration crosscut Type-B alteration. These alterations were associated with a number of granitic fragments including cohesive breccia and micrographic facies. Type-D alteration occurred locally in brown sediments. Different mineralogical features in the four alterations are summarized as (Type-A) illite; (Type-B) chlorite; (Type-C) limonite (Fe3+ hydroxides and goethite) and calcite; and (Type-D) limonite. We propose that the alterations can be broadly divided into Paleocene hydrothermal alteration (Type-A) and post-Late Miocene hydrothermal alteration (Type-B, -C, and -D): Type-A alteration occurred at approximately 200 °C during hydrothermal activity after a granitic intrusion in Late Cretaceous; Type-B, -C and -D alterations occurred under hydrothermal activity accompanying deep fluids with repeated ascents invoked by the seismicity of the ATTL after the Late Miocene. The fluids may have been the “Arima-type thermal waters” (i.e., mixtures of convective groundwater and Na-Ca-Cl-HCO3-type fluids). Type-B alteration occurred in fractures at depths where the temperature was ≥150 °C. Type-C alteration overprinted Type-B alteration as a result of mixing of new deep fluids and descending oxidized meteoric water near the surface. Fe3+ hydroxides and calcite precipitated from the fluids due to the oxidation of Fe2+ and the degassing of CO2, respectively, at ambient to near-boiling temperatures. When the ascending fluids gushed out from the fractures, they generated Type-D alteration at the surface under similar temperature conditions due to the oxidation of Fe2+.  相似文献   

6.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

7.
We describe an orthopyroxene–cordierite mafic gneiss from the Nomamisaki metamorphic rocks in the Noma Peninsula, southern Kyushu, Japan. The mineral assemblage of the gneiss is orthopyroxene, cordierite, biotite, plagioclase, and ilmenite. Thermometry based on the Fe–Mg exchange reaction between orthopyroxene and biotite yields a peak metamorphic temperature of 680°C. The stability of cordierite relative to garnet, quartz, and sillimanite defines the upper limit of the peak metamorphic pressure as 4.4 kbar. These features indicate that the Nomamisaki metamorphic rocks underwent low‐pressure high‐temperature type metamorphism. Although a chronological problem still remains, the Nomamisaki metamorphic rocks can be regarded as a western continuation of the Higo Belt. The Usuki–Yatsushiro Tectonic Line, which delineates the southern border of the Higo Belt, is therefore located on the east of the Nomamisaki metamorphic rocks in southern Kyushu.  相似文献   

8.
Hideki  Mukoyoshi  Tetsuro  Hirono  Hidetoshi  Hara  Kotaro  Sekine  Noriyoshi  Tsuchiya  Arito  Sakaguchi  Wonn  Soh 《Island Arc》2009,18(2):333-351
To understand the characteristics of deformation of an out-of-sequence thrust (OST) and the style of fluid flow along it, we investigated the Nobeoka Tectonic Line, which has been interpreted as a deep OST (7–9 km), in the Shimanto accretionary complex, Southwest Japan. The shear zone in the footwall differs significantly in the along-strike direction not only in thickness, which varied from 100 to 300 m, but also in lithology and mineral vein development. These variations might reflect primarily differences in lithology; that is, the sandstone-dominant shear zone with a large amount of mineral veins precipitated in microcracks is relatively thick, whereas the shale-dominant shear zone with a small amount of veins and with textures indicating highly pressurized pore fluid, is thinner. By comparison with characteristics of a shallow OST (3–5 km), we conclude that the shallow OST has experienced repeated brittle failure with rapid slip and focused fluid flow whereas the deep OST has experienced both brittle and ductile deformation, followed by fluid flow of various styles, depending on the lithology.  相似文献   

9.
The regional geologic and geomorphic observations show that an active arcuate normal fault constitutes the main boundary fault of the Haba-Yulong Snow Mountains (HYSM). This fault is called eastern piedmont fault of Haba-Yulong Snow Mountains (HYPF). The fault consists of two segments with differential trend; the northern segment is NW-trending and NE-dipping and the southern section is S-N trending and E-dipping. Three sets of fault scarps cutting late Quaternary landforms and their dating results indicate...  相似文献   

10.
We present the results of a multidisciplinary study of the Ms = 6.2, 1995, June 15, Aigion earthquake (Gulf of Corinth, Greece). In order to constrain the rupture geometry, we used all available data from seismology (local, regional and teleseismic records of the mainshock and of aftershocks), geodesy (GPS and SAR interferometry), and tectonics. Part of these data were obtained during a postseismic field study consisting of the surveying of 24 GPS points, the temporary installation of 20 digital seismometers, and a detailed field investigation for surface fault break. The Aigion fault was the only fault onland which showed detectable breaks (< 4 cm). We relocated the mainshock hypocenter at 10 km in depth, 38 ° 21.7 N, 22 ° 12.0 E, about 15 km NNE to the damaged city of Aigion. The modeling of teleseismic P and SH waves provides a seismic moment Mo = 3.4 1018 N.m, a well constrained focal mechanism (strike 277 °, dip 33 °, rake – 77°), at a centroidal depth of 7.2 km, consistent with the NEIC and the revised Harvard determinations. It thus involved almost pure normal faulting in agreement with the tectonics of the Gulf. The horizontal GPS displacements corrected for the opening of the gulf (1.5 cm/year) show a well-resolved 7 cm northward motion above the hypocenter, which eliminates the possibility of a steep, south-dipping fault plane. Fitting the S-wave polarization at SERG, 10 km from the epicenter, with a 33° northward dipping plane implies a hypocentral depth greater than 10 km. The north dipping fault plane provides a poor fit to the GPS data at the southern points when a homogeneous elastic half-space is considered: the best fit geodetic model is obtained for a fault shallower by 2 km, assuming the same dip. We show with a two-dimensional model that this depth difference is probably due to the distorting effect of the shallow, low-rigidity sediments of the gulf and of its edges. The best-fit fault model, with dimensions 9 km E–W and 15 km along dip, and a 0.87 m uniform slip, fits InSAR data covering the time of the earthquake. The fault is located about 10 km east-northeast to the Aigion fault, whose surface breaks thus appears as secondary features. The rupture lasted 4 to 5 s, propagating southward and upward on a fault probably outcropping offshore, near the southern edge of the gulf. In the shallowest 4 km, the slip – if any – has not exceeded about 30 cm. This geometry implies a large directivity effect in Aigion, in agreement with the accelerogram aig which shows a short duration (2 s) and a large amplitude (0.5 g) of the direct S acceleration. This unusual low-angle normal faulting may have been favoured by a low-friction, high pore pressure fault zone, or by a rotation of the stress directions due to the possible dip towards the south of the brittle-ductile transition zone. This fault cannot be responsible for the long term topography of the rift, which is controlled by larger normal faults with larger dip angles, implying either a seldom, or a more recently started activity of such low angle faults in the central part of the rift.  相似文献   

11.
Volcanic history and tectonics of the Southwest Japan Arc   总被引:1,自引:0,他引:1  
Abstract Remarkable changes in volcanism and tectonism have occurred in a synchronous manner since 1.5–2 Ma at the junction of the Southwest Japan Arc and the Ryukyu Arc. Although extensive volcanism occurred in Kyushu before 2 Ma, the subduction-related volcanism started at ca 1.5 Ma, forming a NE–SW trend volcanic front, preceded by significant changes in whole-rock chemistry and mode of eruptions at ca 2 Ma. The Median Tectonic Line has intensified dextral motion since 2 Ma, with a northward shift of its active trace of as much as 10 km, accompanied by the formation of rhomboidal basins in Central Kyushu. Crustal rotation and incipient rifting has also occurred in South Kyushu and the northern Okinawa Trough over the past 2 million years. We emphasize that the commencement age of these events coincides with that of the transition to the westward convergence of the Philippine Sea plate, which we interpret as a primary cause of these synchronous episodes. We assume that the shift in subduction direction led to an increase of fluid component contamination from subducted oceanic slab, which then produced island-arc type volcanism along the volcanic front. Accelerated trench retreat along the Ryukyu Trench may have caused rifting and crustal rotation in the northern Ryukyu Arc.  相似文献   

12.
计算了2008年3月21日新疆于田Ms7.3地震导致周围断层的库仑破裂应力变化. 结果表明,库仑应力在贡嘎错断裂的西南段和东北段、康西瓦断裂东段和西段、普鲁断裂西段、龙木错-邦达错西段、阿尔金断裂和西昆仑山前逆冲断裂增加分别达6.9×104 Pa、4.4×103 Pa、8.0×105 Pa、2.8×103 Pa、2.3×104 Pa、5.7×103 Pa、1.6×103 Pa和1.1×103 Pa,而使得贡嘎错断裂中段、康西瓦断裂中段、龙木错-邦达错东段、普鲁断裂中段和喀喇昆仑北段断层上的库伦破裂应力减小分别达3.9×105 Pa、5.8×105 Pa、1.5×104 Pa、1.5×104 Pa和1.1×103 Pa. 根据康西瓦的断层滑动速率估计该地震使得中段特征地震延迟1~127年,使得东段特征地震提前2~138年. 计算还得到2005年10月8日巴基斯坦Mw7.6地震在于田地震破裂面和滑动方向上产生的库仑破裂应力增加为10~20 Pa,虽然有利于于田地震的发生,但数值太小,难以看到明显的触发作用. 分析了该地震及其周围已发生地震出现正断层机制的原因. 认为在印度板块向欧亚板块北北东向推挤作用下,相对塔里木块体,青藏高原北缘的柴达木块体沿阿尔金断裂东向运动,而兴都库什块体沿喀喇昆仑断裂整体北西向运动. 地震发生区位于此两块体之间,在双边动力相互作用下导致了东西向拉张的形变模式.  相似文献   

13.
Geochronological and geochemical studies reveal the possible origin of the restricted body of mylonite rocks occurring at the eastern edge of Kyushu Island, Japan, just in contact with the Sashu Fault, a part of the Paleo‐Median Tectonic Line (Paleo‐MTL). The LA‐ICP‐MS zircon U–Pb dating of the quartz diorite mylonite in this mylonitic body indicates a crystallization age of 114.0 ±1.7 Ma. Moreover, the two tonalite samples appear as thin layers within the Permian fine‐grained mafic mylonite; a part of the same body yields the age of 113.7 ±2.3 Ma and 116.9 ±1.3 Ma, with extremely low Th/U ratio. These quartz diorite mylonite and tonalite are consistent with the late Early Cretaceous magmatism and coeval metamorphism similar to those in the Higo Plutono‐metamorphic Complex in western Kyushu, Japan. This newly characterized complex occurs just south of the Cretaceous Sambagawa metamorphic rocks. The newly characterized mylonitic rocks are lying structurally above the Sambagawa Metamorphic Complex and are distributed along the Paleo‐MTL. The extension of the Higo Plutonometamorphic Complex, as well as the structural relationship between this complex and the Sambagawa Metamorphic Complex, is still controversial but holds a key to reconstruct the tectonic evolution of Southwest Japan during the Late Mesozoic to Early Cenozoic period. Hence, this article provides new insight into the reconstruction of the evolution history of East Asia as an active convergent margin.  相似文献   

14.
The extent to which movement on major faults causes long term shear heating is a contentious issue and an important aspect in the debate about the strength of major faults in the crust. Comparing the results of experimental work on the kinetics of crystallization of carbonaceous material with results of thermal modeling show that the Raman carbonaceous material (CM) geothermometer is well suited to studying shear heating on geological time scales in suitable lithologies exposed around exhumed major fault zones. The Median Tectonic Line (MTL), SW Japan, is the largest on‐land fault in Japan with a length of > 800 km. Application of Raman CM thermometry to pelitic schist adjacent to the fault reveals the presence of a rise in peak temperature of around 60 °C over a distance of around 150 m perpendicular to the MTL fault plane. The spatial association of this thermal anomaly with the fault implies it is due to shear heating. Thermal modeling shows the recorded thermal anomaly and steep temperature gradient is compatible with very high rates of displacement over time scales of a few thousand years. However, the implied displacement rates lie outside those generally observed. An alternative explanation is that an originally broader thermal anomaly that developed during strike slip faulting was shortened due to the effects of normal faulting. Constraints on displacement rate, width of the original anomaly, duration of heating and peak temperature imply a coefficient of friction, μ, greater than 0.4.  相似文献   

15.
This work deals with the preliminary relationship between strain path and strain partitioning pattern in a sinistral transpressional zone,Lancangjiang shear zone,located to the southeast of Tibet.Various ductile rocks provide an opportunity to investigate quantitative finite strain(Rs),kinematic vorticity values(Wm),and proportions of simple and pure shear components.The mean kinematic vorticity values(Wm) were evaluated based on three methods,such as Rs-θ,prophyroclast hyperbolic distribution method(PHD),a...  相似文献   

16.
The Setouchi volcanic rocks include high-Mg andesites (HMAs) and garnet-bearing dacite–rhyolite, and are sporadically distributed along the Median Tectonic Line, Japan. New U–Pb zircon ages and geological and geochemical data are presented for those rocks in the Western Setouchi region (W-Setouchi). Previous studies referred to the altered andesite in the W-Setouchi as “pre-Setouchi volcanic rocks.” However, on the basis of the new U–Pb age (14.4 Ma ± 0.3 Ma) and geochemical characteristics, we redefine it as the Jikamuro Formation, part of the Setouchi volcanic rocks. Incompatible elements are more enriched in the Jikamuro Formation rocks than in the Setouchi HMAs. The characteristic element compositions may be explained by mixing of compositionally different magmas, including subducted sediment melts, plus a contribution from crustal contamination. A stress-inversion technique with Bingham distribution method was applied to the orientations of felsic and mafic dikes within the Setouchi volcanic rocks, and indicates paleo-stress conditions during the period of Setouchi volcanism in the W-Setouchi. The analysis reveals NNW-extensional stresses and a strike-slip stress. We infer that the former represents extensional conditions during the main period of volcanism and the latter represents a stress transition during the most recent period of volcanism (after 12 Ma).  相似文献   

17.
Abstract : The Hidaka metamorphic belt consists of an island-arc assembly of lower to upper crustal rocks formed during early to middle Paleogene time and exhumed during middle Paleogene to Miocene time. The tectonic evolution of the belt is divided into four stages, D0rs, D1, D2rs, and D3, based on their characteristic deformation, metamorphism, and igneous activity. The premetamorphic and igneous stage (D0) involves tectonic thickening of an uppermost Cretaceous and earliest Tertiary accretionary complex, including oceanic materials in the lower part of the complex. D1 is the stage of prograde metamorphism with increasing temperatures at a constant pressure during an early phase, and with a slight decrease of pressure at the peak metamorphic phase, accompanying flattening of metamorphic rocks and intrusions of mafic to intermediate igneous rocks. At the peak, incipient partial melting of pelitic and psammitic gneisses took place in the amphibolite–granulite facies transition zone, the melt and residuals cutting the foliations formed by flattening. In the deep crust, large amounts of S-type tonalite magma formed by crustal anatexis, intruded into the granulite facies gneiss zone and also into the upper levels of the metamorphic sequence during the subsequent stage. During D1 stage, mafic and intermediate magmas supplied and transported heat to form the arc-type crust and at the same time, the magmatic underplating caused extensional doming of the crust, giving rise to flattening and vertical uplifting of the crustal rocks. D2 stage is characterized by subhorizontal top-to-the-south displacement and thrusting of lower to upper crustal rocks, forming a basal detachment surface (décollement) and duplex structures associated with intrusions of S-type tonalite. Deformation structures and textures of high-temperature mylonites formed along the décollement, as well as the duplex structures, show that the D2 stage movement occurred under a N-S trending compressional tectonic regime. The depth of intra-crustal décollement in the Hidaka belt was defined by the effect of multiplication of two factors, the fraction of partial melt which increases downward, and the fluid flux which decreases downward. The crustal décollement, however, might have extended to the crust-mantle boundary and/or to the lithosphere and asthenosphere boundary. The subhorizontal movement was transitional to a dextral-reverse-slip (dextral transpression) movement accompanied by low-temperature mylonitization with retrograde metamorphism, the stage defined as D3. The crustal rocks from the basal décollement to the upper were tilted eastward on the N–S axis and exhumed during the D3 stage. During D2 and D3 stages, the intrusion of crustal acidic magmas enhanced the crustal deformation and exhumation in the compressional and subsequent transpressional tectonic regime.  相似文献   

18.
Our detailed field investigation, paleoseismic trenching, and airborne light detection and ranging (LiDAR)‐derived topographic data provides the first direct evidence for late Quaternary repetitive surface faulting on the northeast‐striking Isurugi fault along the northwestern margin of the Tonami Plain in the Hokuriku region of north‐central Japan. This fault has been interpreted previously by different researchers as both inactive and active, owing to a lack of geologic evidence and a failure to identify fault‐related geomorphic features. Our mapping of LiDAR topography revealed a series of northeast‐trending warped fluvial terraces, about 1.5 km long and 170 m wide, with an age of ≤ 29 ka. We interpreted these geomorphologic features to represent an active pop‐up structure bounded to the southeast by the northwest‐dipping main thrust of the Isurugi fault and to the northwest by a southeast‐dipping backthrust that splays off the main thrust in the shallow subsurface. Paleoseismic trenching across the northwestern part of an elongate terrace exposed a series of southeast‐dipping backthrusts and associated northwest‐verging monoclines. The deformation and depositional age of the strata provide evidence for repetitive surface rupturing on the backthrusts since the latest Pleistocene; the latest of these events occurred in the Holocene between about 4.0 and 0.9 ka. Despite the poor preservation of the surface expression of the Isurugi fault, repetitive scarp‐forming faulting in the late Quaternary and the proximity of the Oyabe River and its tributaries to the fault trace suggest that there may be an extension of the Isurugi fault to the northeast and southwest beneath the Tonami Plain that makes the fault long enough to generate a large earthquake (Mw ≥ 6.8) accompanied by surface rupture.  相似文献   

19.
Restrictions on the use of tributyltin (TBT) in aquaculture and on boats in coastal regions, except for ocean-going vessels, have been in place in Japan since 1990 due to the strong toxic effects of TBT on marine organisms. However, TBT pollution along the Japanese coasts has been reported after this legislation was enacted. In order to elucidate the present status of contamination by butyltin (BT) compounds, we measured the levels of BTs [monobutyltin (MBT), dibutyltin (DBT) and TBT] in seawater and Caprella spp. samples obtained from the western part of Seto Inland Sea, Uwa Sea and Uranouchi Bay in western Japan during March to September, 2001. Butyltins were detected in more than 90% of the seawater samples (n = 59), with average concentrations of 8.2 ± 9.2 (SD) ng MBT L−1, 3.3 ± 3.0 ng DBT L−1 and 9.0 ± 7.0 ng TBT L−1. Among 41 stations situated on coastal lines, a sufficient number of Caprella organisms for chemical analysis could be collected from only 16 stations. The butyltin concentrations in seawater and Caprella samples from Uwa Sea and Uranouchi Bay, in which the dominant industry in both waters is aquaculture, showed significantly higher than or no significant differences from those samples from the western part of Seto Inland Sea, a major heavy-industry area in Japan. As the TBT concentration in seawater increased, the number of Caprella organisms collected decreased. The mean TBT concentration among the seawater samples was above the estimated lowest observable effect concentration (LOEC) that reduces the survival rate of Caprella danilevskii. Thus, the present study indicates that TBT is still a potential ecological hazard to the survival of marine invertebrates inhabiting coasts along western Japan, even 11 years after the partial ban on TBT usage was implemented.  相似文献   

20.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号