首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The isotopic composition of noble gases was investigated in the Dhofar 007 meteorite. Petrographic and mineralogical observations suggested that it is a brecciated cumulate eucrite with high contents of siderophile elements. The concentrations of noble gases in Dhofar 007 are identical to those of other eucrites. Its cosmic ray exposure age was estimated as 11.8 ± 0.8 Ma, which coincides with a maximum on the histogram of comic ray exposure ages of eucrite meteorites. It can be supposed that, similar to other eucrites, Dhofar 007 was ejected from the surface of their parent body (presumably, asteroid Vesta) about 12.0 Ma ago. The crystallization age of the Dhofar 007 eucrite was estimated from the ratio of plutonogenic Xe to Nd as 4476 ± 22 Ma. The potassium-argon age is much younger, 3.7–4.1 Ga, which indicates partial loss of radiogenic argon during the history of the meteorite, most likely related to impact metamorphic events.  相似文献   

2.
海沟金矿为一大型贫硫化物石英脉型金矿床,长期以来其形成时代一直存在争议,致使矿床成因研究受到较大影响,成矿预测等方面研究进展缓慢。采用石英流体包裹体的40Ar/39Ar激光探针定年法对该金矿床进行了精细的年代学测定,获得主成矿阶段石英流体包裹体的40Ar/39Ar正、反等时线年龄分别为(170±20) Ma和(172±16) Ma,MSWD分别为0.31和0.35,40Ar/36Ar比值分别为298±4和299±4;进一步剔除接近大气的成分点和过剩氩高的成分点,计算获得等时线年龄为(170±38) Ma(40Ar/36Ar Int.=299±10)和(165±52) Ma(40Ar/36Ar Int.=303±23)。结合已有同位素年代学研究成果,进一步明确了海沟金矿床主成矿期发生在早侏罗世晚期,成矿作用与中生代库拉板块向亚洲板块俯冲、特别是由此引发的华北板块东缘与兴蒙造山带东段的强烈拼贴并诱发的岩石圈加厚、减薄作用密切相关。  相似文献   

3.
Several shales and oils ranging in age from 3 million to 2·7 billion years have been investigated for their hydrocarbon content using gas chromatography and mass spectrometry as primary analytical tools. From the Soudan Shale from Minnesota (2·7 × 109yr) the C18, C19, C20 and C21 isoprenoid-alkanes were obtained. The Antrim shale from Michigan (about 265 × 106 yr) yielded the C16, C18, C19, C20 and C21 isoprenoids, as well as a C16 iso-alkane and the C18 and C19 cyclohexyl n-alkanes. The San Joaquin Oil (30 × 106 yr) and the Abbott Rock Oil (3 × 106 yr) contained the C16, C18, C19, C20 and the C18, C19, C20 and C21 isoprenoids respectively. In addition, a series of iso-alkanes (C16−C18), anteiso-alkanes (C16−C18) and n-alkylcyclohexanes (C16−C19) as well as a C21 isoprenoid were obtained from the Nonesuch Seep Oil (1 × 109 yr). This analysis provides a comprehensive picture of the types of biogenic hydrocarbons found in oils and shales of widely differing ages, and in particular, the finding of isoprenoid alkanes in the Soudan Shale furnishes evidence for life processes at that period of geological time.  相似文献   

4.
东准噶尔北缘和东天山雅满苏带是中国新疆北部地区两个重要的晚古生代铁氧化物-铜-金矿化潜力区,以老山口、乔夏哈拉和黑尖山矿床作为典型矿床代表。研究表明两区域的铁氧化物-铜-金矿床均产出于盆地闭合的弧盆转化体系下,且具有明显的铁、铜-金两阶段矿化。卤族元素和稀有气体同位素作为可靠的流体示踪剂,被应用于探究这一特定构造环境下的铁氧化物-铜-金矿床的流体演化和矿床成因。结果显示老山口、乔夏哈拉和黑尖山矿床的成矿流体具有明显的混合流体端员特征:(1)岩浆流体端员,主要参与黑尖山矿床磁铁矿阶段,I/Cl、Br/Cl和40Ar/36Ar比值分别为(16.3~18.0)×10-6、(1.03~1.06)×10-3和352~437;(2)海水表源蒸发成因盐卤水端员,主要参与老山口矿床铜-金矿化阶段,I/Cl、Br/Cl和40Ar/36Ar比值分别为(77.1~87.7)×10-6、(1.53~1.80)×10-3和672~883;(3)蒸发岩溶解或者深度水-岩反应成因的盐卤水/沉积岩地层水端员,主要参与到老山口、乔夏哈拉矿床的磁铁矿阶段以及黑尖山、乔夏哈拉矿床的铜-金矿化阶段,综合I/Cl、Br/Cl和40Ar/36Ar比值分别为(477~26 301)×10-6、(0.39~1.28)×10-3和288~510。明显的多阶段矿化和铜-金矿化阶段以非岩浆富Ca高盐度卤水为主的特征与世界范围内的IOCG型矿床极为相似,表明新疆北部的铁氧化物-铜-金矿床应为IOCG型矿床。  相似文献   

5.
The large landslide, Kostanjek, on the southern slopes of the mountain, Zagreba ka Gora, in the western suburb of Zagreb was activated in 1963 after some 2.1 × 106 m3 of marl for the cement factory, Croatia, was excavated at the foot of the slope. The geological features (sinclinal structure, faults, hydrogeological conditions, extension of the “Tripoli” marl strata) which had an important role in the formation of the slide, as well as the means of marl exploitation by means of mass blasting, are presented in the paper. The Kostanjek slide involves an urbanized area of some 100 ha. It is estimated that a sliding mass of some 32 × 106 m3 is involved, with a maximum depth of 90 m. Sliding occurs in three levels. The displacements of the surface are 3–6 m. The excavation of marl was stopped in 1988, when a total of 5.3 × 106 m3 of material was excavated. Since then the magnitude of surface displacement per year has decreased. The Kostanjek slide is still active. It is estimated that natural stabilization will take a long time, probably decades. Analyses of possible measures for the stabilization of movements suggested that preventive drainage with continuous observation of the slide is most suitable.  相似文献   

6.
Koen de Jong   《Lithos》2003,70(3-4):91-110
In order to attempt to further constrain the age of the early Alpine tectonic evolution of the Mulhacén Complex and to explore the influence of inherited isotopes, micas from a small number of well-characterised rocks from the Sierra de los Filábres, with a penetrative tectonic fabric related to the exhumation of eclogite-facies metamorphic rocks, were selected for 40Ar/39Ar and Rb–Sr dating.

A single phengite grain from an amphibolite yielded an 40Ar/39Ar laser step heating plateau age of 86.9±1.2 Ma (2σ; 70% 39Ar released) and an inverse isochron age of 86.2±2.4 Ma with an 36Ar/40Ar intercept within error of the atmospheric value. Induction furnace step heating of a biotite separate from a gabbro relic in an eclogite yielded a weighted mean age of 173.2±6.3 Ma (2σ; 95% 39Ar released). These ages are diagnostic of excess argon (40ArXS) incorporation, as they are older than independent age estimates for the timing of eclogite-facies metamorphism and intrusion of the gabbros. 40ArXS incorporation probably resulted from restricted fluid mobility in the magmatic rocks during their metamorphic recrystallisation.

Rb–Sr whole-rock–phengite ages of graphite-bearing mica schists from Paleozoic rocks (Secano unit) show a dramatic variation (66.1±3.2, 40.6±2.6 and 14.1±2.2 Ma). An albite chlorite mica schist from the Mesozoic series of the Nevado–Lubrín unit has a whole-rock–mica–albite age of 17.2±1.9 Ma, which is within error of an 40Ar/39Ar plateau age published previously and of the youngest Rb–Sr age of the Paleozoic series obtained in this study. The significant spread in Rb–Sr ages implies that progressive partial resetting of an older isotopic system has occurred. The microstructure of the samples with pre-Miocene Rb–Sr ages reveals incomplete recrystallisation of white mica and inhibited grain growth due to the presence of graphite particles. This interpretation agrees with previously published, disturbed and slightly dome-shaped 40Ar/39Ar age spectra that may point similarly to the presence of an older isotope component. The progressively reset Rb–Sr system is a relic of Variscan metamorphism of the Paleozoic series of the Mulhacén Complex. In contrast, the origin of the ca. 17.2 Ma old sample from the Mesozoic series precludes any isotopic inheritance, in agreement with its pervasive tectono-metamorphic recrystallisation during the Miocene.

Exhumation of the eclogite-facies Mulhacén Complex occurred in two stages with contrasting rates of about 22.5 mm/year during the early phase and 9–10 mm/year during the late phase; the latter with a cooling rate in the order of 330 °C/Ma.  相似文献   


7.
大庙斜长岩的40Ar/39Ar年龄测定呈现出一条典型的马鞍型年龄谱,在中温阶段有二个明显的坪年龄1656±15 Ma和1029±7 Ma,结合其构造位置和全球斜长岩分布来看,它们分别代表了侵位年龄和后期热扰动的时代。密云奥长环斑花岗岩中角闪石的40Ar/39Ar坪年龄为1716±21 Ma。两者时空上密切相关,代表了裂谷作用初期非造山环境中双模式岩浆作用产物。斜长岩类和苏长岩之间稀土配分模式的相似性表明,它们明显为同一成因的岩浆分异系列的产物。  相似文献   

8.
Some aspects of the thermal evolution of the earth   总被引:3,自引:0,他引:3  
Empirical data relating to the thermal history of the earth are examined. Recent astronomic and geochemical evidence strongly suggests that the earth formed by accretion from an initially low-temperature gas-dust cloud of solar composition. The distribution of U, Pb, Th and K within the earth imply that it passed through a melting or partial melting process about 4.5 × 109 years ago. This conclusion is confirmed if the core is assumed to consist dominantly of iron-nickel. Formation of the core, which likewise occurred about 4.5 × 109 years ago would liberate sufficient gravitational energy to cause melting. Evidence in favour of melting is also provided by analogy with meteorites.

An examination is made of possible causes of this early melting stage and it is concluded that gravitational energy is chiefly responsible. Radioactive heating does not appear to be important. A critical factor in the early heating and chemical evolution is the interaction of accreting dust falling with high velocity into the primitive reducing atmosphere surrounding the earth. Because of this interaction, a metallic phase is produced by reduction.

The distribution of temperature within the earth 4.5 × 109 years ago will be given by the melting-point gradient. Recent data on the electrical conductivity of the mantle and the melting point of metals under high pressures suggest that the present temperature distribution is much less than the melting point gradient. This implies that the earth has cooled considerably.

The inferred cooling is consistent with present data on the abundance of radioactive elements in meteorites and in the earth, and also with possible modes of internal heat transfer—particularly convection and radiation.  相似文献   


9.
R. Burgess  G.B. Kiviets  J.W. Harris 《Lithos》2004,77(1-4):113-124
Ar–Ar age measurements are reported for selected eclogitic clinopyroxene and garnet inclusions in Orapa diamonds and clinopyroxene inclusions in Venetia diamonds. Laser drilling of encapsulated clinopyroxene inclusions within Venetia diamonds released a maximum of 3% of the total 40Ar, indicating little diffusive transfer and storage of radiogenic 40Ar at the diamond–inclusion boundary. Apparent ages obtained during stepped heating of three diamonds are consistent with diamond crystallisation occurring just prior to the kimberlite eruption 520 Ma ago. Stepped heating of three clinopyroxene-bearing Orapa diamonds gave ages of 906–1032 Ma, significantly above the eruption age, but consistent with previously determined isotopic ages. A few higher apparent ages hint at the presence an older generation of Orapa diamonds that formed >2500 Ma ago. Orapa garnets also contain measurable K contents, and record a range of ages between 1000 and 2500 Ma. The old apparent ages and lack of significant interface 40Ar released by the laser probe, suggests that pre-eruption radiogenic 40Ar and mantle-derived 40Ar components are trapped in microinclusions within the pyroxene and garnet inclusions.  相似文献   

10.
A high-pressure, relatively low-temperature metamorphic complex is exposed at Motalafjella, Spitsbergen. White mica concentrates from the complex record variably discordant 40Ar/39Ar age spectra in which apparent ages systematically increase throughout low-temperature portions of the analyses and define intermediate- and high-temperature plateaux. Phengitic concentrates record plateau ages of c. 470 Ma whereas paragonitic concentrates yield c. 460 Ma plateaux. These ages are interpreted to date diachronous cooling through different argon closure temperatures following the high-pressure metamorphism. The slight discordance displayed in low-temperature portions of the experiments is interpreted to reflect a partial rejuvenation of intracrystalline argon systems during an c. 400–425 Ma thermal overprint associated with late Caledonian tectonothermal activity. White mica concentrates and associated whole-rocks yield Rb---Sr mineral + whole-rock ages from 457 ± 11 Ma to 474 ± 11 Ma. These are interpreted to date post-metamorphic cooling through Sr blocking temperatures. Because similar ages are recorded by both K---Ar and Rb---Sr isotopic systems, relatively rapid post-metamorphic cooling is implied. This and relatively rapid depressurization during uplift indicate that the 40Ar/39Ar and Rb---Sr mineral ages likely closely date the peak metamorphism.

The high pressure complex is unconformably overlain by variably cleaved, Upper Ordovician-Lower Silurian flysch which was deformed into regional recumbent folds prior to deposition of unconformably overlying Early Devonian molasse. Two penetratively cleaved slate samples display internally discordant 40Ar/39Ar whole-rock age spectra with ages increasing from c. 100 Ma to c. 470 Ma. The spectral discordance is interpreted to reflect the combined effects of: (1) a polymineralic character: (2) a detrital source similar in age to the Motalafjella complex; and (3) a partial, post-Paleozoic thermal rejuvenation of the detrital mica argon systems. No thermal overprint associated with Late Silurian cleavage formation appears to be recorded. This agrees with textural characteristics which suggest that the cleavage largely developed through pressure-solution assisted, grain-boundary sliding.  相似文献   


11.
Recent mineral separate ages obtained on the Karoo large igneous province (southern Africa) suggest that the province was built by several distinct magmatic pulses over a rather long period on the order of 5–6 Ma concerning the main erupted volume [Jourdan, F., Féraud, G., Bertrand, H., Kampunzu, A.B., Tshoso, G., Watkeys, M.K., Le Gall., B., 2005. The Karoo large igneous province: Brevity, origin, and relation with mass extinction questioned by new 40Ar/39Ar age data, Geology 33, 745–748]. Although this apparently atypical province is dated in more detail compared to many other large igneous provinces, volumetrically important areas still lack sufficient high-quality data. The timing of the Karoo province is crucial as this event is correlated with the breakup activity of the Gondwana supercontinent. The Lesotho basalts represent a major lava sequence of the province, but have not yet been precisely dated by systematic analysis of mineral separates. We analyzed plagioclase separates from five lava flows encompassing the complete 1.4-km-thick Lesotho sequence from top to bottom using the 40Ar/39Ar method. We obtained five plateau and mini-plateau ages statistically indistinguishable and ranging from 182.3 ± 1.6 to 181.0 ± 2.0 Ma (2σ). We derived an apparent maximum duration for this event of  0.8 Ma by neglecting correlated errors embedded in the age uncertainties.

A critical review of previous ages obtained on the Lesotho sequence [Duncan R.A., Hooper, P.R., Rehacek, J., Marsh, J.S., Duncan, A.R., 1997. The timing and duration of the Karoo igneous event, southern Gondwana. Journal of Geophysical Research 102, 18127–18138] shows that groundmass analyses are unreliable for high-resolution geochronology, due to alteration and 39Ar recoil effects. Discrepancy between our ages and a previous plagioclase age at  184 Ma obtained by the later workers is tentatively attributed to the heterogeneity of the monitor used and/or cryptic excess 40Ar. The current age database suggests that at least three temporally and spatially distinct brief major events (the Lesotho and southern Botswana lava piles and the Okavango dyke swarm) are so far recognized in the Karoo province. Identification of brief and volumetrically important Karoo magmatic events allows detecting the migration of the Karoo magmatism and potentially the stress regime that affected the southern African lithosphere at this time. A filtered compilation of 60 ages obtained with homogeneous intercalibrated standards suggests a shorter duration for the main pulses of the magmatism between 3 and 4.5 Ma, compared to a whole province duration of  10 Ma, between  182 and  172 Ma.  相似文献   


12.
Depth profiles of in situ-produced cosmogenic nuclides, including 10Be (T1/2=1.5×106 years) and 26Al (T1/20.73×106 years), in the upper few meters of the Earth's crust may be used to study surficial processes, quantifying denudation and burial rates and elucidating mechanisms involved in landform evolution and soil formations. In this paper, we discuss the fundamentals of the method and apply it to two lateritic sequences located in African tropical forests.  相似文献   

13.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   


14.
The pre-Mesozoic metamorphic belt runs parallel to the Day Nui Con Voi - Red River shear zone in Vietnam to the south. The belt is mainly composed of hornblende gneisses, amphibolite lenses and mica-schists. Five hornblendes from a gneiss and an amphibolite were analyzed chemically and chronologically by Electron Probe Micro Analysis (EPMA) and 40Ar/39Ar methods. EPMA analyses show that hornblendes in the gneiss and the amphibolite have significant amount of edenite component and similar average composition. However, the recalculated Fe3+ content is significantly heterogeneous in a thin section while total Fe is nearly the same among the analyses. The rim of each crystal is higher in Fe3+/(Fe3+ + Fe2+) than the core. These chemical and petrological features suggest that the hornblendes have suffered significant oxidation, in particular, largely in the gneiss.

40Ar/39Ar analyses showed that the gneiss has a significant variation of plateau ages (2089±14, 1977±19 and 1873±13 Ma) among three hornblende grains, whereas the amphibolite gives the same plateau ages (2056±14 and 2044±21 Ma) for two grains. All grains of both samples have excess ages in the first few fractions at low temperatures and partial-loss ages between the excess and plateau spectra. The Ca/K ratios indicate some disturbed phases for the lower temperature spectra but the partial-loss ages are also derived from hornblende phase. These facts suggest that hornblende in the gneiss has experienced partial argon loss by oxidation and/or thermally activated argon diffusion process. However, the gneiss and the associated amphibolite have preserved the early Proterozoic tectono-metamorphic event in the hornblende crystals except for their rims, giving new evidence for the early Proterozoic event within the pre-Mesozoic metamorphic belt (northern Vietnam) south of the Red River shear zone in Indochina.  相似文献   


15.
Twenty-one 2–4 mm rock samples from the Apollo 12 regolith were analyzed by the 40Ar/39Ar geochronological technique in order to further constrain the age and source of nonmare materials at the Apollo 12 site. Among the samples analyzed are: 2 felsites, 11 KREEP breccias, 4 mare-basalt-bearing KREEP breccias, 2 alkali anorthosites, 1 olivine-bearing impact-melt breccia, and 1 high-Th mare basalt. Most samples show some degree of degassing at 700–800 Ma, with minimum formation ages that range from 1.0 to 3.1 Ga. We estimate that this degassing event occurred at 782 ± 21 Ma and may have been caused by the Copernicus impact event, either by providing degassed material or by causing heating at the Apollo 12 site. 40Ar/39Ar dating of two alkali anorthosite clasts yielded ages of 3.256 ± 0.022 Ga and 3.107 ± 0.058 Ga. We interpret these ages as the crystallization age of the rock and they represent the youngest age so far determined for a lunar anorthosite. The origin of these alkali anorthosite fragments is probably related to differentiation of shallow intrusives. Later impacts could have dispersed this material by lateral mixing or vertical mixing.  相似文献   

16.
We have undertaken petrologic and SHRIMP U-Th-Pb isotopic studies on zircons from basaltic eucrites (Yamato [Y]-75011, Y-792510, Asuka [A]-881388, A-881467 and Padvarninkai) with different thermal and shock histories. Eucritic zircons are associated with ilmenite in most cases and have subhedral shapes in unmetamorphosed and metamorphosed eucrites. Some zircons in highly metamorphosed eucrites with granulitic texture occur alone in pyroxene, and typically have rounded to subrounded shapes due to recrystallization. Superchondritic Zr/Hf ratios of eucritic zircons indicate that they crystallized from incompatible element-rich melts after crystallization of ilmenite. Concentrations of uranium and thorium in zircons in the unmetamorphosed eucrite Y-75011 are higher than those in metamorphosed eucrites.The U-Pb systems of eucritic zircons are almost concordant but some zircon grains show reverse discordance. Radiogenic lead-loss up to 48% from zircons is observed in the shock-melted eucrite Padvarninkai. The 207Pb-206Pb ages of zircon in Y-75011 (4550 ± 9 Ma, n = 5) are nearly identical, within analytical uncertainty, to the ages of zircons from the metamorphosed eucrite Y-792510 (4545 ± 15 Ma, n = 13), the highly metamorphosed eucrites A-881388 (4555 ± 54 Ma, n = 5) and A-881467 (4558 ± 13 Ma, n = 8), and the shock-melted eucrite Padvarninkai (4555 ± 13 Ma, n = 18). The averaged 207Pb-206Pb age of zircon from five eucrites analyzed in this study is 4554 ± 7 Ma (95% confidence limits, n = 49), indistinguishable from the averaged U-Pb age (4552 ± 9 Ma) of the same samples. Because of the high closure temperature of lead in zircon (Tclosure = ∼1050°C with a cooling rate of 0.2°C/yr), the 207Pb-206Pb ages of eucritic zircon do not represent metamorphic ages but crystallization ages of extrusive lavas.This fact strongly suggests that volcanism of the eucrite parent body occurred at a very early stage of the Solar System history, 7-20 Ma after CAI formation (4567.2 ± 0.6 Ma), thus basaltic eucrites crystallized from parental magmas within a short interval following the differentiation of their parent body. The U-Pb ages of eucritic zircons are older than the U-Pb, Sm-Nd and Rb-Sr ages of some basaltic eucrites, which is consistent with differences in closure temperatures of each isotopic system, and suggests that thermal and shock metamorphism affected the isotopic systems of pyroxene, plagioclase and phosphates.  相似文献   

17.
The global composition of the early solar system is thought to be roughly chondritic in terms of refractory components, and this means that metal and silicate should be present together in early planetesimals. To fully understand the metal-silicate differentiation process within the eucrite parent body (EPB), it is important to try and identify the metal reservoir that is complementary to the silicate part. The isotope 182 of tungsten (W), a siderophile element, is partly formed from the decay of 182Hf, and W isotopes are useful for examining metal-silicate segregation. The W isotopic composition expected for the metal that is complementary to eucrites falls in the range of iron meteorites. However, mesosiderites seem to be genetically linked to eucrites based on petrologic and oxygen isotopic similarities. Therefore, we undertook the analysis of the metal phase of these stony-irons. Here we present tungsten isotopic data for mesosiderite and pallasite metal to characterize their parent body (bodies) and to assess possible relationships with eucrites.All stony-iron metals are depleted in radiogenic tungsten by −1.3 to −4.2 ε units, relative to the terrestrial standard, while chondrites, for comparison, are depleted by −1.9 ε units. In addition to W isotopic heterogeneity from one stony-iron to another, there is also W isotopic heterogeneity within individual meteorites. A formation model is tentatively proposed, where we show that mesosiderites, pallasites, and eucrites could possibly come from the same parent body. Several hypotheses are discussed to explain the isotopic heterogeneity: the production of cosmogenic tungsten, the in situ decay of hafnium present in inclusions, and tungsten diffusion processes after metal-silicate mixing during the cooling of the meteorites. The two latter hypotheses provide the best explanation of our data.  相似文献   

18.
A new technique is described in which the natural thermoluminescence (TL) in chondritic meteorites is normalized to the TL sensitivity of each meteorite. The relationship between the normalized TL level and a meteorite's terrestrial age is examined. The average normalized TL level measured in 45 ordinary chondrites of known terrestrial age decreases with increasing terrestrial age. There is a factor of ten variation in the TL levels of fresh falls which is primarily due to differences in orbital temperatures (Melcher, 1981). Nevertheless, it is possible to distinguish between recent falls and meteorites greater than a few hundred years old if they have been stored at the same temperature. The decay characteristics of the TL are studied by means of initial rise experiments and isothermal decay experiments at elevated temperatures. The TL levels of 11 Antarctic meteorites are compared with the results of 14C, 26Al and 36Cl studies of the terrestrial ages of these objects. There is a rough correlation between the low temperature TL levels and the radionuclide activities. Since the TL method is quick and requires as little as 10mg of material, it is most valuable as a rapid screening process to select samples appropriate for study by other techniques.  相似文献   

19.
New analyses have been performed in order to enhance the data-set on the independent ages of four glasses that have been proposed as reference materials for fission-track dating. The results are as follows. Moldavite - repeated 40Ar/39Ar age determinations on samples from deposits from Bohemia and Moravia yielded an average of 14.34 ± 0.08 Ma. This datum agrees with other recent determinations and is significantly younger than the 40Ar/39Ar age of 15.21 ± 0.15 Ma determined in the early 1980s. Macusanite (Peru) -four K-Ar ages ranging from 5.44 ± 0.06 to 5.72 ± 0.12 Ma have been published previously. New 40Ar/39Ar ages gave an average of 5.12 ± 0.04 Ma. Plateau fission-track ages determined using the IRMM-540 certified glass and U and Th thin films for neutron fluence measurements agree better with these new 40Ar/39Ar ages than the previously published ages. Roccastrada glass (Italy) - a new 40Ar/39Ar age, 2.45 ± 0.04 Ma, is consistent with previous determinations. The Quiron obsidian (Argentina) is a recently discovered glass that has been proposed as an additional reference material for its high spontaneous track density (around 100 000 cm-2). Defects that might produce "spurious" tracks are virtually absent. An independent 40Ar/39Ar age of 8.77 ± 0.09 Ma was determined and is recommended for this glass. We believe that these materials, which will be distributed upon request to fission-track groups, will be very useful for testing system calibrations and experimental procedures.  相似文献   

20.
K-bearing Mn oxides may potentially constitute useful objects for isotopic dating of ore-forming events. A comprehensive 40Ar/39Ar study performed on supergene K–Mn oxides sampled from different sub-alpine mountain terrains in Germany and France has been undertaken. The objective of these investigations was to provide new insight into how and when these secondary Mn accumulations may have formed. Developed in supergene environments at the expense of Mn2+/Mn3+-bearing precursor minerals, the Mn4+ oxides occur either as pseudomorphic ores or as cavity-fillings and linings.

The isotopic ages range from 25 to 1 Ma, indicating intense chemical weathering, especially during the Miocene and Pliocene. It is yet too early to decide whether the age range represents a more or less continuous process or distinct weathering episodes. Formation of supergene Mn oxides may result from combined climatic and tectonic factors: local uplift, exhumation, and associated fracturing of rocks provided fresh mineral surfaces for percolating meteoric fluids that induced subsequent weathering under warm–temperate to subtropical conditions.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号