首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
耶曼  李婧  马怡飞  柯艳  李小桂 《岩矿测试》2022,41(4):680-687
高频红外碳硫仪测定不同矿石种类中的硫含量,测定速度快,稳定性好,但当测定范围宽、样品种类多时,受助熔剂、氧化温度和氧化时间影响较大。本文应用高频红外碳硫分析仪,研究了实验条件对分析结果的影响,通过优化样品称样量、助熔剂添加量和分析时间,建立了矿石样品中质量分数为0.74%~32.0%的硫含量检测方法,分析条件为:分析氧气流速2.8L/min,样品称样量0.0400g,纯铁助熔剂0.50g,纯钨助熔剂2.0g,分析时间45s。通过国家标准物质验证该方法的检出限为0.185%,定量限为0.739%,标准曲线线性相关系数大于0.9995,测定结果的相对标准偏差小于3%(n=11),与标准值的相对误差小于2%,且均小于DZ/T 0130—2006中对矿石样品分析要求的相对误差允许限。采用本方法与传统燃烧碘量法对实际样品进行测定,两种方法测定值的绝对误差小于0.5%,测定结果之间呈极显著线性关系(R2=0.9995),表明两种方法具有良好的一致性。  相似文献   

2.
应用高频燃烧-红外碳硫吸收法测定含铜烧结物中的高含量硫。对样品称样量、助熔剂的种类、加入顺序、用量等测定条件进行研究。由于样品含硫量的不同,根据矿石标准样品中含硫量的比例关系确定具体的称样量。以纯铁屑和钨粒作助熔剂,高温燃烧分解试样,红外检测可定量测定含铜烧结物样品中含量为1%~23%的硫。方法加标回收率为94%~113%,相对标准偏差(RSD,n=6)小于2%。与经典的硫酸钡重量法对比,相对误差小于4%。建立的方法解决了大宗含铜烧结物中硫快速、准确测定的问题,已应用于实际的日常检验工作。  相似文献   

3.
应用高频燃烧-红外碳硫分析仪测定农用地土壤质量调查样品中碳、硫的含量,解决了土壤样品中碳、硫测定过程中存在的基体影响和低电磁感应等问题。对样品称样量、助熔剂的加入量、氧气流量等测定条件进行优化试验,用国家一级标准物质验证了方法准确度和精密度,相对误差(RE)小于10%,相对标准偏差(RSD,n=8)总碳小于2%,硫小于9%。方法能够满足农用地土壤质量调查样品的分析质量要求。  相似文献   

4.
测试地质样品中的硫含量,以电感耦合等离子体发射光谱法(ICP-OES)和燃烧-红外吸收光谱法应用最为广泛。ICP-OES法灵敏度高、稳定性好,但受样品预处理和基体干扰的影响较大;燃烧-红外吸收光谱法便捷高效,但受结晶水红外吸收干扰,分析硫含量低的样品稳定性较差。本文采用5种酸溶方式处理样品ICP-OES测定硫含量,同时采用燃烧-红外吸收光谱法测定低中高含量的硫,综合比较了两类方法的检出限、检测范围、精密度和准确度、分析效率等,明确了各方法的适用范围。实验中确定了燃烧-红外吸收光谱法最佳测试条件为:称样量0.0500g,燃烧时间25s,分析时间40s,氧气流量4.0L/min;通过标准物质验证,该方法检出限为10×10-6,检测范围为10×10-6~470000×10-6,相对标准偏差(RSD) < 6%(n=12),相对误差绝对值小于8%。实验结果表明,ICP-OES分析效率高,但是样品处理时间长,检测范围不如燃烧-红外吸收光谱法宽;燃烧-红外吸收光谱法采用固体直接进样,成本低,用高氯酸镁作为干燥剂可解决结晶水红外吸收干扰问题。总体上,ICP-OES法适用于分析硫含量低的样品或作为测试结果佐证的手段,可实现多元素联测;批量样品或基体类型复杂的样品宜采用燃烧-红外吸收光谱法测试,更加便捷。  相似文献   

5.
6.
红外碳硫仪测定矿石中高含量硫的探讨   总被引:1,自引:3,他引:1  
探讨了用红外碳硫测定仪测定矿石中高含量硫需注意的一些影响因素,包括标样的选择、减少天平误差、称样量、样品的充分燃烧以及仪器的稳定性,说明了用红外碳硫仪测定矿石中高含量硫的可行性。  相似文献   

7.
镍基粉末中碳含量的分析质量直接影响材料的性能,但由于碳含量范围较宽,且测定干扰不同,最佳测量条件不一致,更无国家标准方法。高频燃烧-红外吸收法已广泛用于新型材料(如复合碳硅锰铁)中碳和硫的分析,本文基于前期测定镍基钎料以及镍基自熔合金的研究,采用高频燃烧-红外吸收法测定镍铝粉末中的碳,实验中选择纯铁与钨锡作助熔剂,高温燃烧分解样品,通过优化助熔剂用量及其添加顺序、样品称样量等测定条件,获得了较为准确的结果。该方法用于实际样品中碳的测定,相对标准偏差小于1.2%(RSD,n=11),加标回收率为98.0%~105.0%。本方法采用的助熔剂解决了样品导磁性差、燃烧易飞溅等问题,并且针对新型材料缺少标准样品,根据待测样品含量配制相应浓度的基准物质碳酸钠绘制校准曲线,消除了无标准校正的影响,提高了分析结果的准确性。该方法可分析镍铝粉末中含量在0.005%~0.60%范围的碳,也可为制定镍基粉末中碳的标准分析方法提供依据。  相似文献   

8.
建立了高温燃烧红外碳硫仪测定重铀酸盐中硫质量分数的分析方法。样品以五氧化二钒为助熔剂,在高温炉燃烧后,用红外吸收测定重铀酸盐中的硫,样品分析重现性好,精密度高,相对标准偏差为0.26%;样品加标回收率在97.1%~103%之间。  相似文献   

9.
建立了用火焰原子吸收光谱法连续测定高含量铅和锌的方法。铅、锌精密度(RSD)均为1:12%,是测定大批量高含量铅锌的有效方法。  相似文献   

10.
电感耦合等离子体发射光谱法测定钼矿石和铜矿石中的铼   总被引:3,自引:0,他引:3  
赵庆令  李清彩 《岩矿测试》2009,28(6):593-594
采用氧化镁-硝酸钠-过氧化氢处理试样,不需分离富集,电感耦合等离子体发射光谱法直接测定钼矿石及铜矿石中的铼,筛选了不同溶矿方法和仪器参数条件。方法检出限为0.014μg/g,相对标准偏差(RSD,n=11)小于5.00%,经国家一级钼矿石及铜矿石标准物质分析验证,结果与标准值吻合。  相似文献   

11.
王慧  刘烽  许玉宇  俞璐  吴骋  王国新 《岩矿测试》2012,31(3):434-437
样品用盐酸-硝酸溶解,氢氟酸挥发硅,高氯酸冒烟除去氢氟酸,然后以稀硝酸溶解可溶性盐类,火焰原子吸收光谱法测定红土镍矿中铅的含量。考察了不同的酸对样品的溶解效果,对介质酸度和共存元素干扰情况进行了实验。结果表明:盐酸-硝酸-氢氟酸-高氯酸可以将样品消解完全;5%以内的硝酸不影响铅的测定;100 mL体积内,100 mg铁、6 mg镍、1 mg铜、5 mg钙、2 mg锰、1 mg铬、1 mg钴、1 mg锌等共存元素对0.1 mg铅的测定不产生干扰。在选定的仪器工作参数下,Pb的检出限为0.044μg/mL,加标回收率为97%~106%,测定值与电感耦合等离子体发射光谱法结果一致。方法重复性好、准确度高,可满足准确测定红土镍矿中铅含量的分析要求。  相似文献   

12.
葛艳梅 《岩矿测试》2014,33(4):491-496
原子吸收光谱法(AAS)应用于高品位金矿石中金的测定,有效地解决了火试金重量法和氰醌容量法等分析方法有毒化学试剂用量大、测试条件局限性大等诸多问题。泡沫富集-火焰原子吸收光谱法(泡沫富集-FAAS法)就能够测定金品位达到500μg/g的金矿石,但该方法在常规FAAS方法基础上增加了滤渣分离、滤液稀释及泡沫灰化、复溶等过程,由于操作环节的增多,分析效率不高,且引入测量误差的机率随之加大。本文建立了一种高品位金的快速分析方法,样品用王水溶解,分离残渣,滤液定容后无需分离富集直接采用FAAS测定金量,方法精密度(RSD)为1.6%,优于FAAS本身精密度,满足了高品位金矿石样品快速分析监控的要求。通过实验对黑龙江省某岩金矿矿样(生产监控样)、金矿石外检样品及金矿石国家标准样品采用本法、泡沫富集-FAAS法、氰醌容量法、火试金重量法进行综合分析,结果表明样品基体中铁含量的高低直接影响到本法测定高品位金量的准确性。当金量为50~110μg/g时,允许样品中铁含量为10%;金量为110~164μg/g时,允许样品中铁含量为20%;金量为164~218μg/g时,允许样品中铁含量为25%。研究认为,本法普遍适用于测定金品位达到50μg/g以上、铁含量小于10%的金矿石。铁在地壳中的平均含量为5.63%,大部分金矿石国家标准样品的铁含量均在此平均值附近,一般金矿石的铁含量也很少达到较高水平,因此本法具备较强的应用性;且与泡沫富集-FAAS法相比,省去了泡沫富集-灰化-复溶的操作过程,大大提高了金量的分析效率。  相似文献   

13.
钨矿石和钼矿石具有丰富的共生或伴生元素,检测共生或伴生元素的含量有利于矿产资源的综合利用.在国家标准方法中钨矿石和钼矿石的共生或伴生元素含量是按元素分别检测,效率很低.本文在敞开体系中用盐酸+硝酸+氢氟酸+高氯酸消解样品,以7%盐酸溶解盐类,电感耦合等离子体发射光谱同时测定钨矿石和钼矿石中铋、钴、铜、锂、镍、磷、铅、锶、钒、锌等10种微量元素.选定了各元素的分析谱线和光谱级次,采用离峰背景校正法消除背景干扰,干扰元素校正系数法消除元素间的谱线重叠干扰.方法检出限为1.43 ~ 18.8 μg/g,加标回收率为90% ~ 110%.经钨矿石和钼矿石标准物质分析验证,测定结果与标准值基本吻合,方法精密度(RSD,n=10)小于8%.该方法克服了碱熔引入大量碱金属元素以及可能引入杂质的缺陷,又不用处理钨酸和钼酸沉淀,能快速测定钨矿石和钼矿石中微量共生或伴生元素.  相似文献   

14.
采用经典火试金法测定高品位金,操作流程长,影响因素多,在铅扣灰吹过程中易挥发选出大量的铅,对实验环境造成严重污染.本文将20.0~100.0 g取样量先分成若干小样量进行焙烧,经50%王水完全分解后分离滤渣,所得若干份滤液定容于同一容量瓶内,分取适量体积进行泡沫塑料富集,将富集金的泡沫塑料灰化后用浓王水复溶,以火焰原子吸收光谱法(FAAS)测定高品位金矿石中金的含量.方法检出限为0.101 μg/g,通过多个国家一级标准物质和分析样品验证,准确度和精密度满足相关要求.此方法测定灵敏度高,取样量为20.0 ~ 100.0 g,有效地提高FAAS法取样代表性,同时拓展了FAAS法测定矿石中金的含量范围,针对50.0 ~ 550.0 μg/g中高含量段的金结果同样可靠.  相似文献   

15.
对于铅精粉中银含量高的样品,特别是银含量大于1000μg/g和含有机质及含硫量高的铅精粉样品,在湿法处理样品过程中因存在难溶解、易包裹、易沉淀,使得银含量的测定结果偏低。针对上述问题,本文从优化样品消解方法出发,研究了铅精矿中银的最佳分析条件。即首先用盐酸除硫,再用硝酸-氢氟酸-高氯酸溶解试样,在20%盐酸介质中,用火焰原子吸收光谱仪于波长328.07 nm测定银的含量。在此实验条件下溶矿完全,提取液清澈,无沉淀。用铅精粉国家标准物质GBW07167、GBW07172和标准样品Pb-3进行验证,方法精密度(RSD,n=12)为1.0%~3.2%,银的测定结果与其标准值吻合较好。本方法制备的样品溶液稳定性较好,分析快速,可测定的银含量高达3000μg/g。  相似文献   

16.
刘久苗 《岩矿测试》2013,32(6):893-896
红土镍矿分析没有统一的国家标准,行业标准于2013年初刚制定,其应用处于起步阶段,且行业标准中红土镍矿各元素主要采用化学分析法测定,操作程序繁琐耗时,工作量大,分析效率低。本文建立了电感耦合等离子体发射光谱测定红土镍矿中镍、钴、镁、铝和铁含量的方法。红土镍矿样采用王水溶解,加入氢氟酸和高氯酸,加热至高氯酸烟冒尽,再用盐酸溶解盐类,对消解后溶液中镍、钴、镁、铝和铁等目标元素选择了合适的分析谱线消除干扰。方法检出限镍为2.98 μg/g,钴为1.60 μg/g,镁为1.68 μg/g,铝为3.79 μg/g,铁为9.52 μg/g;方法精密度(RSD,n=11)为1.5%~2.2%;加标回收率为96.0%~102.5%。国家标准物质分析的测定值与标准值和外检值吻合较好。该方法简便快速,单元素不需分别处理,提高了分析效率,能够满足红土镍矿冶炼生产和地质探矿样品测定及时性的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号