首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In September 1974, deep seismic sounding experiments were performed in the Alboran Sea. The crustal seismic profiles were carried out with shotpoints at sea along approximately the 36°N parallel and along 3°W and 5°W meridians with stations on land in Morocco and Spain following these three directions. The first interpretation of the data indicates a thinned continental crust with a Moho depth of 16 km on top of a slightly anomalous upper mantle (7.5<V p<7.9 km/s) beneath the center of the Alboran Sea. Towards Spain the transition to the continental margin is characterized by a very rapid thickening of the crust. Towards Morocco a rather abrupt thickening is observed only for the Rif region, while in the eastern part (north-south profile along 3°W) the dip of the Moho is very slight.  相似文献   

2.
本文利用喜马拉雅二期科学探测台阵的678个地震台站及26个固定台站记录到的9,641个地震共约160000条远震P波走时数据,采用基于稀疏约束的多尺度层析成像方法,获得了鄂尔多斯西缘及邻区上地幔800 km深度范围内P波速度结构.结果显示,在东经104°附近阿拉善地块与鄂尔多斯盆地间存在岩石圈深度的构造边界,这表明阿拉善地块与鄂尔多斯可能分别从属于不同的大地构造单元.以北纬38°线为界,鄂尔多斯地块西缘在岩石圈范围内南北存在明显的速度差异,鄂尔多斯南部上地幔200~300 km深度范围显示为高速异常,而鄂尔多斯北部上地幔显示大面积的低速异常.这一现象表明,鄂尔多斯地块南北两部分经历了不同的构造演化过程.根据本文的结果可以进一步推断,由于青藏高原、阿拉善地块向东北方向推挤以及岩石圈的拆离引起的上地幔扰动导致了地幔上涌,上涌的热物质改造了鄂尔多斯西北缘地区的岩石圈,并使该区的岩石圈减薄.地幔上涌也可能是东经104°边界带和北纬38°构造带形成的深部动力学因素.  相似文献   

3.
FFT和DFT在地震数据采集器幅频特性测试中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
在进行地震数据采集器的幅频特性测试中,当标定信号频率稍高时(约为采集器采样率1/5以上),采集器输出的正弦波形发生畸变,无法人工读取正弦波峰值.为了解决该问题,本文提出了基于离散傅里叶变换(DFT)的积分恢复算法,将该方法与快速傅里叶变化(FFT)谱分析方法同时应用于一台高精度地震数据采集器的幅频特性测试数据处理.结果表明这两种算法均能标准化、高精度地完成采集器幅频特性标定数据的计算.其中基于DFT的积分恢复算法的计算程序操作简单,能够高效率地完成数据采集器的幅频特性检定工作;并且该方法还可以应用于地震数据采集器的线性度测试.   相似文献   

4.
Introduction Zhangjiakou-Bohai seismic zone is a major active seismic zone that passes through the north-ern part of North China. Zhangjiakou-Beijing area, the northwest part of North China, is located at the intersection position of Yanshan, Taihangshan uplift, and Shanxi down-faulted zone, and the geological structures in this area are extremely complicated. Many researchers in the geoscience circle always pay close attention to this region because Yanqing-Huailai region is located in th…  相似文献   

5.
The regularities in the radiation and propagation of seismic waves within the Baikal Rift Zone in Buryatia are studied to estimate the ground motion parameters from the probable future strong earthquakes. The regional parameters of seismic radiation and propagation are estimated by the stochastic simulation (which provides the closest agreement between the calculations and observations) of the acceleration time histories of the earthquakes recorded by the Ulan-Ude seismic station. The acceleration time histories of the strongest earthquakes (M W ~ 3.4–4.8) that occurred in 2006–2011 at the epicentral distances of ~96–125 km and had source depths of ~8–12 km have been modeled. The calculations are conducted with estimates of the Q-factor which were previously obtained for the region. The frequency-dependent attenuation and geometrical spreading are estimated from the data on the deep structure of the crust and upper mantle (velocity sections) in the Ulan-Ude region, and the parameters determining the wave forms and duration of acceleration time histories are found by fitting. These parameters fairly well describe all the considered earthquakes. The Ulan-Ude station can be considered as the reference bedrock station with minimum local effects. The obtained estimates for the parameters of seismic radiation and propagation can be used for forecasting the ground motion from the future strong earthquakes and for constructing the seismic zoning maps for Buryatia.  相似文献   

6.
The design of a 2D small aperture seismic array (SASA) installed in the central part of the East European Platform (in the area of the village of Mikhnevo, Moscow Oblast’) is discussed. Brief information is provided on the geologic structure of the upper section. The SASA configuration is described along with parameters of the seismological instrumentation used, and the digital seismic data acquisition system. Results are described from a study of the spectral content and the spatial correlation properties of short period microseismic noise and seismic signal coherence. Examples are provided of records of natural and manmade seismic events occurring at different epicentral distances. Experimental data are analyzed to show that this small aperture seismic array can be an effective tool to study low magnitude seismicity in the East European Platform and for solving several other problems arising in contemporary experimental seismology.  相似文献   

7.
张渤地震带及邻区近震体波成像及孕震环境分析   总被引:3,自引:0,他引:3       下载免费PDF全文
针对张渤地震带深部孕震构造环境和地幔岩浆对地壳底侵作用的问题,本文充分收集了华北地区区域数字地震台网176个固定台站记录到的观测数据,应用近震体波层析成像方法,获得了华北地区地壳的P波三维速度结构和VP/VS波速比.依据VP/VS波速比能反映岩石物理性质和流变学特征的特性,并结合人工地震测深剖面、大地电磁测深、地球化学等成果,讨论了张渤地震带的孕震环境和动力学机制等问题.研究结果显示:张渤地震带强震位于高低速异常分界线附近或偏向高速体一侧,震源体下方均存在广泛的低速异常分布,据此推测这些低速异常的存在可能与流体有关,同时也揭示出张渤地震带地震主要分布在上地壳,从震源深度分布及地壳物性结构分析上地壳具有发震的构造背景,也有发震的物性基础,是一个易震层和多震层.张渤地震带地壳内部在20 km下方存在偏高的波速比特征,这些可能反映了在该区域内中、上地壳幔源物质的侵入和热状态的岩体在横向上的变化,可能是地幔岩浆长期底侵作用的结果.由于深部幔源物质的侵入,使得地壳深部流体的供给量增加,在地壳发震层下长期存在的流体会影响断裂带的结构,降低断裂带的强度,使区域应力场发生变化从而导致断裂带上应力的集中,进而引发地震发生.  相似文献   

8.
The Thurber iterative simultaneous inversion program is used to determine the three-dimensionalP-wave velocity structure in the Aswan seismic region of Egypt. The tomographic inversion presented in this study is based on 1131P-phase observations at 13 stations from 89 local earthquakes, all of which occurred within the Kalabsha fault zone. The assumed initial velocity model is that deduced from local explosion experiments. The results indicate that the Aswan region is characterized by a heterogeneous crust, consisting of a shallow, low-velocity zone and a deeper high-velocity anomaly. Seismic velocity structure within the shallow part demonstrates that the inferred change in velocity exists primarily across the east-west trending Kalabsha fault scarp, whereas the high-velocity zone is located south of this fault. Two well-resolved, low-velocity zones appear within the upper 6 km of the crust. The first coincides with a graben structure located between the Kalabsha and Seiyal faults and the second exists between the N-S Kurkur fault and the main axis of Lake Aswan. Both low-velocity zones occupy an area of approximately 30×40 km, located along the western bank of the lake. The most significant result of this study is that the location of the deeper, high-velocity anomaly coincides with the concentration of seismic activity in the lower crustal layer.  相似文献   

9.
From August 2016 to July 2017, a passive seismic survey was conducted in South Western Iran as a part of a pilot project aimed to improve the imaging in geologically complex areas. Passive seismic methods have shown to be a useful tool to infer the physical properties of the underground geological structures where traditional hydrocarbon exploration methods are challenging. For this purpose, a dense passive seismic network consisting of 119 three-component borehole seismic stations was deployed over an area of 400 km2 around the city of Dehdasht. This paper focuses on the details of the network design, which was devoted to high-resolution seismological applications, including local earthquake tomography and seismic attenuation imaging. In this regard, we describe the instrument types and the station installation procedures used to obtain high-quality data that were used to retrieve three-dimensional models of P- and S-wave velocity and P-wave attenuation in the area using tomographic inversion techniques. We also assess the network performance in terms of the seismic ambient noise levels recorded at each station site, and we revise the horizontal orientation of the sensors using surface waves from teleseismic earthquakes.  相似文献   

10.
The Xiaojiang faults,striking north-to-south(NS),and the Honghe faults,striking north-to-west(NW),are first-order block boundaries that intersect to form a concentrated stress zone at an acute angle in the southern part of the Sichuan-Yunnan rhombic block(SYB).It is also a crucial zone for material escaping from the Tibetan Plateau(TP)due to the collision between the Indian Plate and the Eurasian Plate.In December 2017,the Institute of Earthquake Forecasting of the China Earthquake Administration(CEA)deployed a linear temporary seismic broadband array,the Honghe-Xiaojiang temporary Seismic Array(HX Array),across first-order block boundaries in the southern SYB.By using the waveform data of small earthquakes recorded by stations in the HX Array across Xiaojiang faults from 2017 to 2019,and by permanent seismic stations of the China National Earthquake Networks from 2012 to 2019,this paper adopts the systematic analysis method of shear-wave splitting(SWS),SAM method,to obtain preliminary results for seismic anisotropy in the upper crust.The study area can be divided into two subzones according to the spatial distribution of the directions of polarization of the fast shear-wave(PFS)at the stations:the northern zone(zone A,where the HX Array is located)and the southern zone(zone B,to the south of the HX Array).The results show that the directions of the PFS at stations in zone A were highly consistent,dominant in the NE direction,correlated with the in-situ principal compressive stress,and were seemingly unaffected by the Xiaojiang faults.The directions of the PFS as recorded at stations in zone B were more complicated,and were dominant in the NS direction parallel to that of the regional principal compressive stress.This suggests the joint influence of complex tectonics and regional stress in this narrow wedge area.By referring to the azimuthal anisotropy derived from seismic ambient noise in the southeast margin of the TP,the NS direction of the PFS in the middle and lower crust,and its EW direction in the upper mantle,this paper concludes that azimuthal anisotropy in the upper crust differed from that in the lower crust in the south segment of Xiaojiang faults,at least beneath the observation area,and azimuthal anisotropy in the crust was different from that in the upper mantle.The results support the pattern of deformation of ductile flow in the lower crust,and the decoupling between the upper and lower crusts as well as that between the crust and the mantle in the study area.The crustal directions of the PFS appeared to be independent of the Xiaojiang faults,suggesting that the influence of the South China block on the SYB passed through the Xiaojiang faults to the Yimen region.The results of this study indicate that anisotropic studies based on data on the dense temporary seismic array can yield clearer tectonic information,and reveal the complex spatial distribution of stress and deformation in the upper crust of the south segment of Xiaojiang faults.  相似文献   

11.
南北地震带南段地壳厚度重震联合最优化反演   总被引:2,自引:0,他引:2       下载免费PDF全文
陈石  郑秋月  徐伟民 《地球物理学报》2015,58(11):3941-3951
重力反演方法是研究地壳结构和物性界面起伏的有效地球物理手段之一.本文收集了南北地震带南段67个已有的固定台站接收函数反演的Moho面深度结果,并使用基于EGM2008重力异常模型计算的布格重力异常,验证了本文提出的重震联合密度界面反演方法的有效性.利用接收函数对台站下方Moho面深度估计作为先验约束,定义了一类评价函数,通过对重力反演算法中尺度因子,平移因子和稳定性因子的最优选择,最小化重力反演结果与接收函数模型之间的差异.结果表明,本文提出的方法,可以有效地同化不同地球物理方法获得的反演模型,且通过重震联合反演可以改进由于对空间分布不均匀的接收函数结果插值可能而引起的误差.本文还通过引入Crust1.0的Moho面深度为初值,同时考虑地壳密度的横向不均匀分布,通过模型之间的联合反演有效改善了地球物理反演模型间的不一致性问题.本文反演得到的最优化Moho面深度模型与已知67个台站位置接收函数模型之间的标准差约1.9km,小于Crust1.0与接收函数结果模型之间标准差为3.73km的统计结果.本文研究结果对于同化重震反演结果、精化地壳密度界面模型,都具有十分重要的参考意义.  相似文献   

12.
Tetsuo  Irifune 《Island Arc》1993,2(2):55-71
Abstract Phase transformations in model mantle compositions and those in subducting slabs have been reviewed to a depth of 800 km on the basis of recent high-pressure experimental data. Seismic velocity and density profiles in these compositions have also been calculated using these and other mineral physics data. The nature of the seismic velocity and density profiles calculated for a pyrolite composition was found to generally agree with those determined by seismic observations (e.g. PREM). The locations of the seismic discontinuities at 400 and 670 km correspond almost exactly to the depths where the transformations of the olivine component to denser phases take place. Moreover, the steep gradients in the seismic velocity/density profiles observed between these depths are qualitatively consistent with those expected from the successive transformations in the complementary pyroxene-garnet component in the pyrolite composition. Further, the calculated seismic velocity and density values agree well with those observed in the upper mantle and mantle transition region within the uncertainties attached to these calculations and observations. Pyrolite or peridotite compositions are thus most likely to represent the composition of the mantle above 670 km depth, although some degrees of chemical heterogeneity may exist in the transition region. The observed sharp discontinuous increases of seismic velocities and density at this depth may be attributed either to the phase transformation to a perovskite-bearing assemblage in pyrolite or to chemical composition changes. Density profiles in subducted slabs have been calculated along adequate geotherms assuming that the slabs are composed of the former oceanic crust underlain by a thicker harzburgitic layer. It is shown that the former oceanic crust is substantially less dense than the surrounding pyrolite mantle at depths below 670 km, while it is denser than pyrolite in the upper mantle and the transition region. The subducted former oceanic crust may be trapped in this region, forming a geochemically enriched layer at the upper mantle-lower mantle boundary. Thick and cool slabs may penetrate into the lower mantle, but the chemically derived buoyancy may result in strong deformation and formation of megalith structures around the 670 km seismic discontinuity. These structures are consistent with those detected by recent seismic tomography studies for subduction zones.  相似文献   

13.
We present a combined method, using sP depth-phase data and double-difference arrival times, to determine the precise hypocenter locations of earthquakes that occur under the Pacific Ocean outside of the area covered by the land-based seismic network. We assess the effectiveness of the combined method using a data set of P- and S-wave arrival times and sP depth phase from suboceanic earthquakes recorded by both land-based seismic stations and offshore seismic stations (OFS). The hypocenters of the offshore earthquakes relocated using the combined method are consistent with those determined using the standard location method and OFS data. The differences in the hypocenters relocated by the two methods are less than 4 km. We applied the method to the subduction region that underlies the Kanto district, central Japan, and located a large number of earthquakes that occurred beneath the Pacific Ocean. We then determined the detailed 3D seismic velocity structure by inverting a large number of arrival times of P- and S-waves and sP depth phase from the relocated earthquakes in the study region. High-velocity anomalies related to the cold subducting Pacific slab and low-velocity anomalies related to the hot mantle wedge are clearly imaged. Beneath active volcanoes, low-velocity zones are visible from the surface to a depth of 100 km, reflecting fluids released by dehydration of the subducting Pacific slab. Strong lateral heterogeneities are revealed on the upper boundary of the Pacific slab beneath the forearc region. The low-velocity areas under the offshore region are associated with low seismicity and weak interplate coupling. A low-velocity layer is imaged along the upper boundary of the Philippine Sea slab in the northern part of Kanto district, which may reflect dehydration of the slab. Our tomographic images indicate that the overlaying Philippine Sea plate has effects on the spatial distribution of active volcanoes related to the subducting Pacific slab in the study region.  相似文献   

14.
Introduction In the beginning of this century, along with the fast progress of seismic observation instru- ments in active source deep seismic sounding, the capability and efficiency for seismic data gath- ering has been greatly improved in China. In some key prospecting region, it takes comparatively short period today to collect artificial earthquake data with high densely covered receivers and shots, which makes it very practicable to probe into the fine crustal structures in complicated te…  相似文献   

15.
通过布置于龙门山断裂带中段、龙门山山前玉皇观区域的地震观测台站阵列接收地震数据,研究该区域的地震动放大效应和地下地质结构.观测阵列共10台宽频带地震仪,分布在玉皇观河口冲积扇区域.分别采用参考场址谱比法(RSSR)和HV谱比法(HVSR)计算64个高信噪比近震数据的振幅谱比函数,结果显示在玉皇观区域具有较明显的地震动放大效应,并且局部场址效应显著.以S06场址为例,建立近地表地震地质模型,通过SH波放大效应正演模拟研究该场址的地震动放大模式.RSSR与HVSR的结果表明,两者所计算的场址放大效应主频一致,但是HVSR的放大峰值却比RSSR的放大峰值大一倍左右,表明HVSR的结果可能包含了波场在近地表低速层之下传播路径的改造作用.另外,采用27个远震P波的接收函数计算了该区域地壳上地幔S波速度结构.接收函数研究结果显示玉皇观地区的莫霍面深度为44 km,沉积盖层、结晶地壳和上地幔的S波速度分别为2.5 km·s~(-1)、3.5 km·s~(-1)和4.5 km·s~(-1).观测阵列台站之间的接收函数反演结果一致性较好,说明本研究区域范围内地形地貌等近地表结构因素的相对变化对接收函数的影响不大.  相似文献   

16.
北京南部地壳精细结构深地震反射探测研究   总被引:9,自引:2,他引:7       下载免费PDF全文
为了研究北京平原区的地壳结构特征、断裂的空间展布、断裂活动性以及深浅构造关系,在北京平原区的南部完成了1条长90 km的深地震反射剖面.探测结果表明,该区地壳以双程反射时间(TWT)6~7 s的强反射带Tc为界分为上地壳和下地壳,上地壳厚约18~19 km,下地壳厚约16~17 km,Moho界面深度约为34~35 km.该区结晶基底起伏变化较大,上、下地壳分界面和Moho界面都是一个具有一定厚度的过渡带.上地壳反射层位丰富,断裂构造发育,构造形态清晰.在夏垫断裂西北,剖面揭示了4~5组能量较强的反射震相,表现为典型的隆起区特征;在夏垫断裂东南,上部为一套向东南倾伏的密集强反射层,下部为一套形态各异、结构复杂的强反射层,这些反射具有典型的沉积盆地特征,盆地最深处约为11 km.剖面揭示的地壳深断裂倾角较陡,向上切穿了上、下地壳分界面,延伸到上地壳沉积盆地的底部,向下切穿了壳幔过渡带,与上部断裂和沉积盆地构成了独特的组合关系.  相似文献   

17.
杨峰  黄金莉 《地球物理学报》2013,56(5):1487-1496
本文收集了首都圈地区40个测点的石油地震叠加速度资料,经常规处理后得到各测点下方速度随深度变化的曲线;对9条人工地震测深剖面的解释结果进行数字化处理获得各剖面下方离散的速度数据;应用上述资料和专业地质建模软件构建了首都圈地区(115.50°E-117.60°E,38.40°N-40.75°N)范围内上地壳高精度三维P波速度模型.结果表明:华北盆地为隆坳相间区,从东至西依次是黄骅坳陷、沧县隆起和冀中坳陷,上地壳速度结构十分复杂;结晶基底的埋深变化剧烈,冀中坳陷下最深处可达10 km,沿构造走向整体呈西南深、东北浅的趋势,沧县隆起下埋深约2~4 km,黄骅坳陷下最深处则达9 km,剧烈的基底起伏反映出盆地内部不同次级构造单元的差异沉降和中、新生代以来强烈的拉张构造运动.太行山、燕山隆起下的基底埋深较盆地区浅,体现出隆起区新生代以来的抬升构造运动.本文首次将石油地震叠加速度资料用于首都圈地壳速度模型的构建,与以往用人工地震测深资料得到的模型相比,本文结果对华北盆地复杂的上地壳结构刻画得更为细致.  相似文献   

18.
Summary There are considered magnitude values distortions because of not taking into account the properties of links of the system where seismic waves are excited, spread and registrated. The links are: the source, the medium, the thickness of rocks, forming the upper part of seismo-geological section at the station region, seismic channel and processing methods of considered data. The system links are divided into nonoperating (source, medium) and operating (seismogeological section at the station region, seismic channel parameters, processing methods), which can be changed to a certain extent while registrating seismic oscillations.Strong distortion of narrow band shortperiod and longperiod instrumentation of seismic records is shown. This brings to considerable decreasing magnitude values comparing with the values determined by the records of broad band instrumentation. In order to decrease the magnitude distortion there is recommended the passing to registration. In order to decrease the magnitude distortion there is recommended the passing to registration of seismic oscillations by broad band receiving channels with large dynamic range of 100–120 decibel with magnetic tape digital registration and following processing of the data by the computers.There is pointed out that seismic stations installation at unweathered crystalline rocks is the most favourable, and a special attention is drawn to necessity of correct choice of the processing methods of the net stations data while calculating the averaged magnitude values.At present before the complete passing to broad band digital registration there is suggested to determine magnitudes in the international centers on the data by specially chosen stations supplied by most broad band instrumentation, using existing standard scales, practically coinciding with Gutenberg-Richter's scales.  相似文献   

19.
张艺  高原 《地球物理学报》2017,60(6):2181-2199
利用中国地震科学台阵第一期(2011-01-2014-06)及部分中国地震科学台阵第二期(2013-02-2015-12)的流动地震台阵记录到的小震波形资料,运用剪切波分裂系统分析(SAM)方法,分析南北地震带的地壳各向异性,对剪切波分裂参数所反映的区域应力环境及构造特征,以及区域内主压应力方向与断裂分布的关系展开讨论.研究结果表明,南北地震带快剪切波偏振方向自北向南由NE向逐渐转变为NNW向,与南北地震带区域主压应力的方向变化具有一致性.区域内分布的大量NE及WNW或NW向断裂构造同样对快波偏振方向有比较大的影响,位于走滑断裂附近的台站,其快波方向与断裂走向大致平行,部分位于走滑断裂附近的台站其快波方向几乎垂直于断裂走向,而与构造应力场方向一致性较好.个别台站表现出复杂快波优势方向特征,反映出研究区内构造环境的复杂性.慢波时间延迟结果显示,南北地震带南段的平均时间延迟高于北段,反映了受印度板块和欧亚板块的碰撞挤压作用,南段地壳介质各向异性程度更大,构造变形更加剧烈.对比南北地震带上地幔各向异性特征,推测在川滇菱形块体内部可能存在复杂的壳幔耦合现象,地壳剪切波分裂除了反映区域应力特征,还可以揭示出区域构造信息.  相似文献   

20.
An assertion that the cross-correlation function of seismic noise, considered as a result of the superposition of the surface waves, excited by the sources, randomly distributed over the Earth’s surface, determines the Green function of the surface wave is verified by numerical modeling. The maximum wave periods, for which this assertion is correct, are estimated and the errors in determination of the phase and group velocity of the surface waves are evaluated. The procedure for the determination of the correlation function and estimation from it of the group velocity are tested thoroughly based on the example of the pair of the BJT and TLY stations in Asia. This procedure is used for obtaining the group and phase velocities of the Rayleigh waves on the traces between the OBN-ARU and PUL-ARU stations. The velocity sections of the transverse waves are built based on the dispersion curves of the phase and group velocities of averages along these traces. The region of the lowered velocity in the upper mantle at depths of 150–300 km is revealed on both traces. From the analysis of correlation functions, which are subjected to narrow-band filtering, it is shown that the frequency composition of noise varies from the East and from the West from the profiles between the stations: in the East (Siberia) the noise has an appreciably lower-frequency than in the West (Western Europe).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号