首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
新疆塔里木河下游柽柳、芦苇对生态输水的响应   总被引:9,自引:2,他引:7  
通过对塔里木河下游生态输水过程中地下水埋深变化的动态监测和天然植物生理指标的测试分析, 探讨了塔里木河下游柽柳、芦苇对生态输水的响应. 研究表明, 塔里木河下游河道输水对抬升其附近的地下水位起到了明显效果, 地下水埋深呈逐级抬升过程. 输水河道附近的地下水埋深由输水前的5~8 m抬升到了2~4 m; 植物各项生理指标对地下水位变化反应敏感, 表现出明显的梯度变化. 不同植物生长由于对地下水位要求深度不一样, 随地下水位变化而表现出不同的响应, 芦苇的反应敏感区约在150~200 m之间, 而柽柳则多在200~250 m之间. 结合野外样地的实际调查分析推测, 芦苇和柽柳的胁迫地下水位分别为3.5 m和4.0 m.  相似文献   

2.
塔里木河下游生态输水后地下水变化规律研究   总被引:16,自引:0,他引:16       下载免费PDF全文
为准确反映塔里木河下游生态输水工程后地下水的动态变化,实现为本地区开展大规模的生态恢复和重建工作提供科学依据,在塔里木河下游沿321km河道上布设了9个监测断面和39口监测井,采用电导法定期监测地下水位近3年。结果显示:输水后地下水位在河道纵向、横向上有各自的变化规律,说明生态输水的效益是逐步显现的。因此,对本地区生态输水的综合评价应该放在几年以后再开展。同时,通过对生态输水后地下水位变化的分析,提出了调整输水规模和方式的建议。  相似文献   

3.
对塔里木河下游自2000年以来的4次生态输水的地下水位变化与地下水监测井的水化学资料比较分析,结果表明:地下水化学特征随4次生态输水,在时间与空间上发生明显变化.沿输水河道方向(纵向),下游上段的监测断面的地下水化学特征受输水的影响明显早于下游下段的水化学特征,且变化幅度也较大.沿垂直河道的方向(横向),距输水河道不同距离处的地下水化学特征先后呈现相似的变化规律,即:在受输水影响的初期,地下水化学成分中的主要离子含量和矿化度都明显上升,随着生态输水的继续进行而逐步下降.同时,地下水化学的变化特征反映出生态输水的影响范围在逐渐扩大,4次输水后地下水的响应范围在距离输水 000 m左右态输水虽然对地下水中盐分浓度起到了暂时冲淡和区域盐分再分配作用,但要使下游水质真正好转只有采取一系列工程和管理措施.  相似文献   

4.
基于Boussinesq方程,采用ADM法建立地下水解析模型,分析ADM法的模拟精度,并改进该方法边界条件表述方式,以减少ADM法计算误差。将改进ADM法应用于沧县地区,通过对比模拟值与实测值,改进ADM法能较好地模拟研究区的地下水位分布及变化、降落漏斗分布情况等,计算过程方便快捷。利用地下水解析模型率定的参数对研究区进行地下水数值计算,将两者结果进行对比分析,基于改进ADM法的地下水解析模型方法简单,计算效率高,总体来说模拟效果理想。  相似文献   

5.
塔里木河下游生态输水及植被恢复遥感监测评价   总被引:9,自引:1,他引:8  
邓铭江 《冰川冻土》2007,29(3):380-386
在干旱区内陆河流域,由于水资源过度开发利用,生态环境退化已成为普遍现象.向断流的河道和生态退化区域实施生态输水,是河流生态系统恢复的基本行为和必然过程.基于向塔里木河下游7次生态输水过程中地表水、地下水、植被恢复等系统监测,并运用卫星遥感技术,对生态输水后植被恢复响应特征指标NDVI(植被指数),进行了系统研究分析,并提出植被相对恢复度的评价方法.  相似文献   

6.
地表水和地下水是水循环系统不可缺少的部分,对相互作用与反馈的模拟计算有助于水资源精准评价。在非饱和带数值计算模型(UZF1)与模块化地下水动力模型(MODFLOW2005)耦合的基础上构建了一个地表水文过程与地下水动力过程耦合数值模拟模型,模型可以同时输出流域出口断面流量和地下水位的空间分布,有利地提高了模型的可靠性。将模型应用于资料条件较好的临涣集流域,从模拟结果分析来看,模型可以很好地模拟流域出口流量与地下水位空间动态变化过程,具有较高的模拟精度。  相似文献   

7.
由于上中游水资源的过多开发利用,我国西北干旱区有些内陆河下游来水量急剧减少,从以前的常年性河流逐渐转变成现在的间歇性河流,给当地带来了一系列严重的生态环境问题。根据间歇性河流河道充水和停水过程周期性重复出现的水文特征,建立了河道两侧区域地下水运动的一维非稳定流模型,提出了把流量边界条件与水位界条件相互转换来求解模型的一种方法。最后应用上述模型分析西北某内陆河下游间歇性输水条件下河道两侧地区地下水位恢复状况,为输水生态效应的定量评价提供了理论基础。  相似文献   

8.
黑河中游盆地水资源转化规律研究   总被引:2,自引:1,他引:1  
基于近二十多年黑河中游盆地的地表水和地下水观测资料,通过对盆地水资源转化规律的认识,利用水文系统分析法分析了该区域地表水、地下水相互转化规律,建立了盆地出口断面水资源量转化模型和盆地平均地下水水位变幅变化模型,经模型计算值与实测值比较吻合的较好,故可运用模型预测该盆地出口断面的水资源量和地下水水位的变化幅度。根据黑河出山径流不同频率的来水量,预测了现状条件下中游绿洲区平均地下水水位的变化幅度。得出了应该充分利用地表水和地下水的相互转化提高水资源的总体利用率,单方面考虑提高地表水利用率的做法有可能破坏地下水资源、降低水资源的总体利用率和造成生态与环境恶化的结论。  相似文献   

9.
塔里木河下游输水优化配置模型研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在调查塔里木河下游各子区生态用水需求的基础上,采用带约束条件的非线性优化理论建立了塔里木河下游各子区优化分配水量模型。采用Kuhn-Tucker条件,对模型进行求解,合理分配了各子区的输水水量。计算结果表明,通过向塔里木河下游河道输水3.4亿m3,可改善下游生态面积达1 490 km2。所建模型为将来的应急输水及水资源的合理配置提供了技术支持。  相似文献   

10.
本文根据间歇性河流河道充水和停水过程周期性重复出现的水文特征,建立了河道两侧区域地下水运动的一维非稳定流模型,提出了把流量边界条件与水位界条件相互转换来求解模型的一种方法.最后应用上述模型分析西北某内陆河下游间歇性输水条件下河道两侧地区地下水位恢复状况,为输水生态效应的定量评价提供了理论基础.  相似文献   

11.
Because of long-term stream-flow cut off in the lower reaches of Tarim River, environmental degradation has become the most severe and widespread environmental problem in Tarim River basin. Nine ecological water conveyances to the lower reaches of Tarim River made ecological environment change a lot. 3S technology was used to monitor dynamic change of ecology. However, remote sensing area index cannot analyze ecological restoration degree of Tarim River precisely because the time of each water conveyance is short, the change of vegetation area is not obvious, and there exists visual interpretation error. In this paper, remote monitoring datum of high temporal resolution and high spatial resolution were used to research the relationships between normalized difference vegetation index (NDVI) and the groundwater depth, between NDVI and the surface vegetation coverage, and between the groundwater depth and the surface vegetation coverage. The growth and restoration of the vegetation in different periods were evaluated by investigative analysis of the change trend of NDVI. The conception of relative restoration degree was proposed and the response of vegetation restoration to the water conveyance was evaluated. The evaluation result suggests that: first, the response of vegetation to the water conveyance concentrates within 1,000 m of both riversides, and the range of influence becomes smaller along the lower reaches of Tarim River. Second, influenced by the groundwater recharge, the vegetation coverage shows decreasing trend with the increase of off-river distance. Third, the vegetation coverage shows decreasing trend along the watercourse influenced by the water consumption. Finally, in spatial, original scattered meadow of low coverage transforms to high coverage gradually in research region. Vegetation response to the water conveyance expands to both sides with the watercourse being the axis, and expanding scale increases continuously.  相似文献   

12.
The changes in the depth of groundwater were studied from the period before water conveyance through 2010, and the TDS of groundwater was analyzed in the lower reaches of the Tarim River during the period 2001–2010. Besides, the numbers of juvenile P. euphratica were investigated in the lower reaches of the Tarim River during the period 2001–2010. The findings indicate that: (1) the hydrological environment of the lower reaches has slowly deteriorated again; and (2) few juvenile P. euphratica were observed along the channel. These results show that the positive influence of the ecological water conveyance project on the ecosystem of the lower Tarim River should be beneficial in the long term; however, the long-term stability of the ecosystem cannot be achieved by the current water diversion scheme.  相似文献   

13.
The ecological water conveyance project that pipes water from Daxihaizi reservoir to lower reaches of Tarim River has been implemented ten times since 2000. After ecological water conveyance, restoration has taken place for vegetation along the dried-up lower reaches of the Tarim River. The changes of vegetation fluctuated yearly due to ecological water conveyance. In order to reveal the detailed process of vegetation changes, remote sensing images from 1999 to 2010 were all classified individually into vegetated and non-vegetated areas using the soil-adjusted vegetation index threshold method. Then inter-annual changes of vegetation over a period of 12 years were obtained using a post-classification change detection technique. Finally, spatial–temporal changes distribution of vegetation cover and its response to ecological water conveyance were analyzed. The results indicate: (1) vegetation area increased by 8.52 % overall after ecological water conveyance. Vegetation between 2003 and 2004 increased dramatically with 45.87 % while vegetation between 2002 and 2003 decreased dramatically with 17.83 %. (2) Vegetation area gain is greater than vegetation loss during 1999–2000, 2001–2002, 2003–2004 and 2009–2010 periods. Although vegetation restoration is obvious from 1999 to 2010, vegetation loss also existed except for the periods above. It indicates that vegetation restoration fluctuated due to ecological water conveyance. (3) Spatial distribution of vegetation restoration presented “strip” distribution along the river and group shaper in the lower terrain area, while spatial distribution of vegetation loss mainly located in the upper reaches of river and area far away from the river. (4) Vegetation restoration area had a positive relative with total ecological water conveyance volume. The scheme and season of ecological water conveyance had also influenced the vegetation restoration. The vegetation change process monitoring, based on continuous remote sensing data, can provide the spatial–temporal distribution of vegetation cover in a large-scale area and scientific evidences for implementing ecological water conveyance in the lower Tarim River.  相似文献   

14.
邓晓雅  杨志峰  龙爱华 《冰川冻土》2013,35(6):1600-1609
塔里木河流域近期综合治理已近尾声,众多山区水库及水电开发建设将大规模展开,开展流域生态调度对巩固综合治理已取得的成效,强化水资源统一管理,构建和谐流域具有重要的现实意义. 基于流域已确定实施的水资源分配方案和近10 a来的生态输水实践,分析了生态调度与水资源合理配置的关系以及流域生态调度关键问题、主要技术路线和基本框架结构,计算了流域生态调度关键控制断面阿拉尔断面生态流量,探索了源流区、干流中上游、干流下游生态调度的目标和措施,提出了源流"集中同步组合"、干流"分段耗水控制"、干流下游"地下水位调控"的生态调度方案,以期为流域水资源统一管理、控制性水利工程运行管理和流域生态环境保护提供参考依据.  相似文献   

15.
The Green Corridor in the lower reaches of Tarim River in northwestern China has an extreme hot and dry climate. Vegetation here, consisting of arbor, shrub and grass, relies on groundwater exceedingly. However, the increasing anthropogenic activities of large-scale agricultural reclamation and unreasonable water utilization in the upper and middle reaches caused the 321-km riverway in the lower reaches to dry up completely in 1972 and resulted in the sharp decline of groundwater, followed by the ruin of desert riparian vegetation on a large scale. The Green Corridor is on the verge of shrinking. Water has a key role in maintaining ecological balance and socioeconomic development. This paper, focused on the relationship between vegetation and groundwater, discusses (1) the change of groundwater table caused by the ecological water delivery carried out in the lower reaches of Tarim River; (2) the appropriate groundwater depth meeting the vegetation’s survival; (3) the minimum ecological flux and ecological water requirement for the growth of natural vegetation. It was shown that (1) based on the analysis of the monitoring data from the groundwater level of ten times water delivery, such an extensive artificial watering takes positive effect on raising the groundwater level along the two sides of the river; (2) a groundwater table depth of 2–4 m is probably the appropriate ecological water table level for the lower reaches of the Tarim River, and 6 m is the threshold for the local vegetation; (3) at the lower Tarim River, 1.157 × 10m3 of water flow is needed for itself. The longer the duration of water releases, the greater would be the groundwater rise and the larger the range of vegetation influenced. It was found that the duration and volume of water delivery was closely related to restoration of vegetation in the lower reaches of the Tarim River. The goal of this paper is to offer scientific evidences for water delivery in the rigorous areas to maintain an ecological balance.  相似文献   

16.
从合理地下水生态水位的定义出发,探讨了各类估算合理地下水生态水位的方法。以塔里木河下游为例,分析应急生态输水后,地下水埋深与胡杨样枝生长情况的关系,结果表明,塔里木河下游合理地下水生态水位埋深为4~6m。  相似文献   

17.
This paper analyzed the dynamic change of the groundwater level by 6 years’ monitoring in field monitoring and the change of vegetation by the field survey and satellite remote sensing after watering in the lower reaches of Heihe River. The findings indicated: (1) the groundwater level elevation and the plant growth are closely related to the volume and the duration of watering. In general, groundwater level elevates dramatically and plants are growing much more vigorously after watering; (2) Watering incidence on groundwater keeps extending with the watering times increasing; (3) Plants grew rapidly in 100–400 m away from the water channel after watering. Watering incidence on vegetation reached 1,000 m; (4) In terms of the function and structure of ecosystem after watering in the lower reaches of Heihe River, the ecological water conveyance does not still reach the goal of ecological restoration at a large spatial scale at present. In addition, in order to solve fundamentally the problem of ecological environment worsens in the lower reaches of Heihe River, some suggestions and countermeasures are put forward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号