首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
受不同物理过程影响,辐射带电子呈现多种投掷角分布类型,其中蝴蝶状分布尤为引人关注,其特征为通量在90°投掷角附近有极小值、在较低投掷角处达到峰值.现有研究普遍通过对几个特定投掷角间的通量比值进行限定来识别蝴蝶状分布,然而,该方法所挑选的电子分布并不一定符合蝴蝶状分布特征,这为准确研究电子蝴蝶状分布的现象学规律及其背后物...  相似文献   

2.
由等离子体层嘶声波引起的电子散射效应是地球内磁层电子损失的重要机制,也是地球内外辐射带间槽区形成的主要原因.在量化嘶声波对高能电子散射效应的研究过程中,冷等离子体近似下的嘶声波色散关系被广泛应用.然而在实际磁层等离子体环境中,热等离子体成分的存在会修正嘶声波的色散特性,进而也会影响嘶声波对高能电子的散射效应.本文主要介绍了热等离子体影响嘶声波色散特性及其对电子散射效应的相关研究.基于卫星波动观测数据的统计分析结果证实了热等离子体效应对嘶声波色散特性的修正作用;通过典型事例分析以及基于准线性理论的数值计算,分析了嘶声波散射高能电子对地磁活动条件和热等离子体参数(电子温度各向异性、热电子温度以及热电子占比)的依赖性.结果表明,冷等离子体假设会高估100 keV以下能量电子以及较大投掷角范围内100 keV以上能量电子的散射系数,而低估较低投掷角范围内100 keV以上能量电子的散射系数.此外,冷等离子体假设下共振区间会扩展到更低能量的电子,而基于观测的色散曲线结果则使100 keV以上电子与嘶声波的共振范围扩展到更小的投掷角区间.随着热等离子体参数的增大,冷等离子体近似与热等离子体环境下的...  相似文献   

3.
等离子体波动与带电粒子的共振相互作用一直是磁层物理学的研究热点.作为一种常见的宽频、右旋极化等离子体波动,等离子体层嘶声在地球磁层电子的损失过程中起到了重要作用.其中,嘶声波对电子的回旋共振散射被认为是辐射带槽区形成的主要机制,而人们对嘶声波与电子的弹跳共振机制的理解却相对匮乏.本文旨在细致研究嘶声波与槽区电子的弹跳共振相互作用,明确其对槽区电子动态演化过程的影响.研究发现,嘶声波与电子的弹跳共振可以造成槽区电子在高投掷角(80°~90°)处明显的投掷角扩散.相比于低能(<~100 keV)电子,嘶声波引起的高能(>~100 keV)电子的弹跳共振效应明显更强.槽区电子的弹跳共振投掷角扩散系数对于L-shell、地磁活动条件和共振阶数都有着很强的依赖性.随着L-shell的增大和地磁活动的增强,嘶声波对电子的弹跳共振散射效应显著增强.对于低能电子,共振阶数对总散射系数的贡献随阶数的升高而增大;而对于低L-shell处的高能电子,共振阶数对总散射系数的贡献随阶数的升高而呈现先增大后减小的趋势.嘶声波与槽区电子的弹跳共振相互作用可以有效地将高投掷角电子散射到较低的投掷角上,进而...  相似文献   

4.
哨声模波对高能电子槽区和外辐射带的调节作用   总被引:5,自引:3,他引:2       下载免费PDF全文
本文利用磁层哨声模嘶声和合声波的幅度分布模型、近赤道背景电子(能量在eV量级)的数密度分布模型和IGRF10磁场模型建立了一个高能电子(能量大于50 keV)准线性扩散模型.模型的数值结果表明,在不同的地磁条件下,等离子体层顶位置的变化改变了磁层背景电子数密度的空间分布,从而改变了哨声模嘶声对高能电子有效的投掷角扩散(损失)区域,同时也改变了哨声模合声波对高能电子有效的动量扩散(加速)区域.哨声模嘶声对电子投掷角扩散区域的变化和RRES卫星探测到的高能电子的槽区变化是一致的,而合声波对电子的动量扩散区域的变化和卫星探测到外辐射带的变化相同.这种对应关系说明:在不同的地磁条件下,哨声模波对高能电子扩散区域的变化是造成高能电子槽区和外辐射带的空间位置和大小变化的一个重要因素.在一些强磁暴期间,由于嘶声对部分能量范围电子的投掷角扩散作用消失,这些电子的槽区也随之消失,从而使内外辐射带连接在一起.  相似文献   

5.
地球电子外辐射带对太阳与地磁活动呈现高度动态变化的响应,了解外辐射带的全球动态变化过程对于近地空间粒子辐射环境的理解认知和预测预报具有重要意义.基于卡尔曼滤波数据同化方法,本文利用范阿伦A星、B星和GOES-13和GOES-15四颗卫星的辐射带电子观测数据,分别利用三种不同维度的辐射带物理模型,将观测结果与数值结果有机融合,对2013年3月地球外辐射带电子通量的径向分布与变化进行数据同化分析.结果表明,考虑了磁层波动与辐射带电子共振作用引起的径向扩散、投掷角扩散以及能量扩散过程的三维同化模型可有效、合理地重现外辐射带电子通量的径向分布.本文进一步利用该三维同化模型对2013年一整年外辐射带电子的相空间密度分布进行重构与分析,得到了不同绝热不变量和不同地磁活动条件下电子辐射带的时空演化过程,从而为深入理解外辐射带电子的变化过程和动力学机制提供了强有力信息.通过分析同化过程中的新息矢量以及度量同化过程中观测数据在多大程度上修改了物理模型结果,还有助于定量分析现有辐射带物理模型中的源项和损失项的相对贡献以及可能忽略的物理机制或过程.  相似文献   

6.
顶部电离层是低轨道卫星的运行空间,是能量粒子沉降的重要区域,认识这个空间的能量粒子分布特征对研究各种空间天气事件、地震、火山以及其他人类活动引起的扰动具有重要的现实意义.本文利用位于顶部电离层的5颗NOAA系列卫星数据,统计研究了100~300keV的电子和80~2500keV的质子的全球分布特征.研究发现:高能电子和质子主要分布在两极辐射带和南大西洋异常区,两极辐射带观测到的高能电子通量比南大西洋异常区高几倍到一个数量级,而质子则相反;高能电子在两极辐射带地区通量分布具有不对称性,主要表现为在北辐射带西经75°到东经90°存在低值区,相对应的是粒子主要聚集在其磁共轭区,且其边界和南大西洋异常区相交;高能质子两极辐射带对称分布,在南半球东经0°至东经50°存在高值区.利用概率密度统计分析发现,各颗卫星在南大西洋异常区和两极辐射带的高能电子和高能质子通量总体上均呈正态分布.在南大西洋异常区,NOAA-15观测到的高能电子通量比其他卫星的低,NOAA-16观测的高能电子通量比其他卫星的高,各卫星的高能质子观测结果基本相同.在两极辐射带,各卫星观测的高能电子通量结果基本相同,NOAA-18和NOAA-19观测的质子通量最高,NOAA-16和NOAA-17次之,NOAA-15最低,其中NOAA-19比NOAA-15观测到的质子通量要高一个数量级左右.在磁暴期间顶部电离层高能电子的变化表明地磁指数Dst和空间粒子通量变化具有时间同步性.本文的研究成果将为我国下一代电磁卫星设计提供基础依据.  相似文献   

7.
星内粒子探测器观测结果与辐射带模型的比较   总被引:2,自引:0,他引:2       下载免费PDF全文
我们将资源一号卫星星内粒子探测器的观测数据与辐射带模式AE8/AP8的预测结果进行了对比,发现在南大西洋异常区的高能电子和质子的通量与辐射带模型的预测结果基本相同,而在两极极光带的电子通量比AE8模型预测的低得多.根据NOAA卫星的观测结果,可以认为这一差异主要是因为在南大西洋异常区(内辐射带)和两极极光带(外辐射带)的粒子投掷角分布的差异造成的.在南大西洋异常区粒子倾向于各向同性分布,而在极光带粒子各向异性明显,投掷角接近90°的粒子通量比0°投掷角附近的粒子通量大得多.  相似文献   

8.
基于Van Allen Probes近三年的EMFISIS仪器波动观测数据,对内磁层下频带哨声模合声波幅度的全球分布特性对地磁活动水平的依赖性进行了详细的统计分析,着重研究下频带合声波平均场强幅度随磁壳值L、磁地方时、地磁纬度的分布特征及不同强度区间的合声波的发生概率.结果表明,下频带合声波的波动强度与地磁活动密切正相关,处于强磁扰期间的合声波具有更大的振幅,其发生率与地磁活动强度具有同样的正相关特性.下频带合声波主要发生于午夜至下午的磁地方时区间,其余的磁地方时时段下频带合声波较弱.赤道面附近的下频带合声波主要分布在夜侧至黎明这一时段内,随着磁纬度的增加逐步向日侧扩展.下频带合声波在午夜侧(21-03 MLT)主要出现在15°的磁纬范围内,在晨侧(03-09 MLT)可以到达15°磁纬甚至更高纬度.下频带合声波主要发生于L=~4.5的附近区域.随着地磁活动的增加,下频带合声波所覆盖的L-shell空间区域增大,趋势为向高、低L值区域同时扩展.建立的下频带哨声合声波的全球分布模型将有助于进一步深入理解该重要磁层波动对辐射带电子的波粒作用散射效应和对辐射带动力学过程的定量贡献.  相似文献   

9.
利用大约15个月的CRRES卫星MEA能量电子观测数据,分别在地磁活动平静(0≤Kp<3)、中等(3≤Kp≤6)及强烈(6<Kp≤9)的条件下,选取电子能量为148 keV,509 keV,1090 keV,1581 keV的辐射带能量电子通量进行统计分析,得到了不同地磁活动条件下地球辐射带高能电子通量在(L,MLT)...  相似文献   

10.
作为地球磁层中一种分布广泛的电磁波,电磁离子回旋波(Electromagnetic ion cyclotron waves,简称EMIC波)是地球辐射带相对论电子的重要损失机制.EMIC波通常呈现H+、He+和O+三种不同频段,不同频段对相对论电子的散射效应和损失时间尺度大不相同.准线性理论是定量分析不同频段EMIC波对地球辐射带相对论电子散射效应的重要工具,我们利用基于准线性理论开发的Full Diffusion Code(FDC),分别计算了H+、He+、O+三种频段EMIC波在不同空间范围、背景等离子体条件以及不同传播角模型下对辐射带相对论电子的弹跳平均投掷角散射系数,建立了L=1.5~7,背景等离子体参数α*(=fpe/fce)=6~30范围内的多频段EMIC波电子散射系数矩阵库.进而,我们计算了辐射带相对论电子在不同频段EMIC波散射作用下的损失时间尺度,获得了在不同磁层条件下EM...  相似文献   

11.
Understanding the dynamics of the Earth’s radiation belts is important for modeling and forecasting the intensities of energetic electrons in space. Wave diffusion processes are known to be responsible for loss and acceleration of electrons in the radiation belts. Several recent studies indicate pitch angle and energy mixed-diffusion are also important when considering the total diffusive effects. In this study, a two-dimensional Fokker Planck equation is solved numerically using the Alternating Direction Implicit method. Mixed diffusion due to whistler-mode chorus waves tends to slow down the total diffusion in the energy-pitch angle space, particularly at smaller equatorial pitch angles. We then incorporate the electron energy and pitch angle mixed diffusions due to whistler-model chorus waves into the 4-dimensional Radiation Belt Environment (RBE) model and study the effect of mixed diffusion during a storm in October 2002. The 4-D simulation results show that energy and pitch angle mixed diffusion decrease the electron fluxes in the outer belt while electron fluxes in the slot region are enhanced (up to a factor of 2) during storm time.  相似文献   

12.
Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere(L~5) off the magnetic equator(MLAT~.7.5°)during a geomagnetic storm. We find that the multiple-harmonic emissions have power spectrum density(PSD) peaks during 2–8equatorial oxygen gyroharmonics( f ~ n fO+, n=2–8), while the fundamental mode(n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observation region. Additionally, these electromagnetic emissions are linearly polarized. Different from the equatorial noise emission that propagates considerably obliquely, these emissions have moderate wave normal angles(approximately 40°–60°), which predominately increase as the harmonic number increases.Considering their frequency and wave normal angle characteristics, it is suggested that these multiple-harmonic emissions play an important role in the dynamic variation of radiation belt electrons.  相似文献   

13.
The strong increase in the flux of relativistic electrons during the recovery phase of magnetic storms and during other active periods is investigated with the help of Hamiltonian formalism and simulations of test electrons which interact with whistler waves. The intensity of the whistler waves is enhanced significantly due to injection of 10–100 keV electrons during the substorm. Electrons which drift in the gradient and curvature of the magnetic field generate the rising tones of VLF whistler chorus. The seed population of relativistic electrons which bounce along the inhomogeneous magnetic field, interacts resonantly with the whistler waves. Whistler wave propagating obliquely to the magnetic field can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative) integer multiple of the local relativistic gyrofrequency. Because the gyroradius of a relativistic electron may be the order of or greater than the perpendicular wavelength, numerous cyclotron, harmonics can contribute to the resonant interaction which breaks down the adiabatic invariant. A similar process diffuses the pitch angle leading to electron precipitation. The irreversible changes in the adiabatic invariant depend on the relative phase between the wave and the electron, and successive resonant interactions result in electrons undergoing a random walk in energy and pitch angle. This resonant process may contribute to the 10–100 fold increase of the relativistic electron flux in the outer radiation belt, and constitute an interesting relation between substorm-generated waves and enhancements in fluxes of relativistic electrons during geomagnetic storms and other active periods.  相似文献   

14.
The losses of radiation belt electrons to the atmosphere due to wave–particle interactions with electromagnetic ion-cyclotron (EMIC) waves during corotating interaction region (CIR) storms compared to coronal mass ejections (CME) storms is investigated. Geomagnetic storms with extended ‘recovery’ phases due to large-amplitude Alfvén waves in the solar wind are associated with relativistic electron flux enhancements in the outer radiation belt. The corotating solar wind streams following a CIR in the solar wind contain large-amplitude Alfvén waves, but also some CME storms with high-speed solar wind can have large-amplitude Alfvén waves and extended ‘recovery’ phases. During both CIR and CME storms the ring current protons are enhanced. In the anisotropic proton zone the protons are unstable for EMIC wave growth. Atmospheric losses of relativistic electrons due to weak to moderate pitch angle scattering by EMIC waves is observed inside the whole anisotropic proton zone. During storms with extended ‘recovery’ phases we observe higher atmospheric loss of relativistic electrons than in storms with fast recovery phases. As the EMIC waves exist in storms with both extended and short recovery phases, the increased loss of relativistic electrons reflects the enhanced source of relativistic electrons in the radiation belt during extended recovery phase storms. The region with the most unstable protons and intense EMIC wave generation, seen as a narrow spike in the proton precipitation, is spatially coincident with the largest loss of relativistic electrons. This region can be observed at all MLTs and is closely connected with the spatial shape of the plasmapause as revealed by simultaneous observations by the IMAGE and the NOAA spacecraft. The observations in and near the atmospheric loss cone show that the CIR and CME storms with extended ‘recovery’ phases produce high atmospheric losses of relativistic electrons, as these storms accelerate electrons to relativistic energies. The CME storm with short recovery phase gives low losses of relativistic electrons due to a reduced level of relativistic electrons in the radiation belt.  相似文献   

15.
New observations of energetic helium ion fluxes in the Earth’s radiation belts have been obtained with the CAMMICE/HIT instrument on the ISTP/GGS POLAR spacecraft during the extended geomagnetically low activity period April through October 1996. POLAR executes a high inclination trajectory that crosses over both polar cap regions and passes over the geomagnetic equator in the heart of the radiation belts. The latter attribute makes possible direct observations of nearly the full equatorial helium ion pitch angle distributions in the heart of the Earth’s radiation belt region. Additionally, the spacecraft often re-encounters the same geomagnetic flux tube at a substantially off-equatorial location within a few tens of minutes prior to or after the equatorial crossing. This makes both the equatorial pitch angle distribution and an expanded view of the local off-equatorial pitch angle distribution observable. The orbit of POLAR also permitted observations to be made in conjugate magnetic local time sectors over the course of the same day, and this afforded direct comparison of observations on diametrically opposite locations in the Earth’s radiation belt region at closely spaced times. Results from four helium ion data channels covering ion kinetic energies from 520 to 8200 KeV show that the distributions display trapped particle characteristics with angular flux peaks for equatorially mirroring particles as one might reasonably expect. However, the helium ion pitch angle distributions generally flattened out for equatorial pitch angles below about 45°. Significant and systematic helium ion anisotropy difference at conjugate magnetic local time were also observed, and we report quiet time azimuthal variations of the anisotropy index.  相似文献   

16.
We investigate the flux evolution of geostationary orbit energetic electrons during a strong storm on 24 August 2005(event A,the storm index Dst<200 nT,the average substorm index AE=436 nT)and a weak storm on 28 October 2006(event B,Dst>50 nT,average AE=320 nT).Data collected by LANL and GOES-12 satellites show that energetic electron fluxes increase by a factor of 10 during the recovery phase compared to the prestorm level for both events A and B.As the substorm continued,the Cluster C4 satellite observed strong whistler-mode chorus waves(with spectral density approaching 10 5nT2/Hz).The wave amplitude correlates with the substorm AE index,but is less correlated with the storm Dst index.Using a Gaussian distribution fitting method,we solve the Fokker-Planck diffusion equation governing the wave-particle interaction.Numerical results demonstrate that chorus waves efficiently accelerate~1 MeV energetic electrons,particularly at high pitch angles.The calculated acceleration time scale and amplitude are comparable to observations.Our results provide new observational support for chorus-driven acceleration of radiation belt energetic electrons.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号