首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
本文运用SBAS-InSAR时序技术,对2019年9月19日—2020年3月29日期间的17景Sentinel-1A数据进行处理,获取了济宁北部煤矿区内的年均沉降速率,探测到6处沉降漏斗分布,最大沉降速率达到-242mm/y。结果表明:SBAS-InSAR时序方法可在矿区的地表形变监测中得到足够的监测对象,较完整地探测到矿区的沉降漏斗分布和沉降范围,为矿区的地表形变监测提供了可靠的技术支持。  相似文献   

2.
采用PS-InSAR技术处理44景COSMO-SkyMed卫星影像,获取南宁市建成区2013~2016年地表沉降形变信息;选取典型沉降突变区域进行实地调查,分析地表变形特征及原因,验证PS-InSAR技术监测结果的准确性。结果表明,研究区年平均形变速率范围为-7~5 mm/a;沉降突变点大多分布在青秀区、西乡塘区及兴宁区的绕城高速以内,其中青秀区新竹路与思贤路交叉区域、民族大道高速出入口区域地面沉降明显,平均形变速率超过-9 mm/a;结合工程建设资料、光学历史影像进行实地调查,结果与PS-InSAR监测数据反映的问题吻合较好。该研究可为地质灾害预测和防治工作提供新思路。  相似文献   

3.
为了有效预防地面沉降带来的地质灾害,基于ENVI Sarscape平台,通过对2020年湘澧盐矿地区4-6月份的Sentinel-1A数据进行干涉测量处理,通过形变结果分析盐矿地区各区域的沉降情况,结合土地利用类型、水文、地质和交通等数据,总结各处沉降地区的特征和形成原因,并通过对各矿井沉降速率的获取与分析,验证了In...  相似文献   

4.
基于覆盖上海地区2018~2020年的35景Sentinel-1A影像数据,采用PSInSAR方法获取该地区3条地铁线路的年平均沉降速率和累积沉降量,并分析沉降原因。结果表明:1)上海地区呈现不均匀沉降,沉降主要发生在上海市主城区南部的闵行区许泾村附近,最大累积沉降量达-47.3 mm;2)上海市闵行区出现明显的沉降漏斗现象,并与该地区城市基础设施建设及地下水水位变化呈正相关;3)上海市地铁5、8、16号线路均有部分路段存在明显沉降现象,地铁5号线途经闵行区周围时沉降最明显,最大沉降速率达-12.0 mm/a。最后给出上海地区以及主要地铁沿线地表沉降的时空特征和地表沉降与其影响因子之间的相互关系。  相似文献   

5.
运用SBAS-InSAR获取北京地区的地表沉降信息,采用18景ENVISAT ASAR影像完成北京地区2007~2010年地表沉降的时空分析。结果表明,北京地区沉降不均匀较为严重,在昌平区、顺义区、通州区等区域出现多处沉降漏斗,且有连成一片并向东扩张的趋势;大部分地区的平均沉降速率在-150 ~10 mm/a,沉降中心的最大沉降量超过400 mm;地表沉降受地下水开采与城市化影响明显。  相似文献   

6.
针对传统监测技术GNSS、水准测量等难以开展大范围、高精度和高空间分辨率的地表沉降监测工作,采用InSAR技术对某城市17景TerraSAR-X数据进行分析处理,得到2012~2013年度的地面沉降信息,采用水准与InSAR同步观测方式,开展地面沉降星地一体化同步观测实验研究,利用水准观测结果对InSAR技术地面沉降监测的精度进行分析评价,结果表明InSAR地面沉降监测具有较高精度,为同类地质灾害、地面裂缝监测提供参考。  相似文献   

7.
文章基于覆盖广州市2017—2019年的18景Sentinel-1A影像数据,采用SBAS-InSAR技术获取该地区的地表沉降信息并进行时空分析.结果表明,广州市地表沉降呈不均匀分布,主要沉降区分布沿珠江流域一带分别为广州大学城、沙溪、小洲村,最大沉降量为-28 mm;大部分地区平均沉降速率为-4.0~2.8 mm/a...  相似文献   

8.
阿博高速公路软土地基沉降监测分析   总被引:1,自引:0,他引:1       下载免费PDF全文
沉降观测是验证软土地基设计、指导施工的重要手段,对阿荣旗至博克图高速公路K42+400~K42+500段软土地基处理后现场沉降观测结果及差异沉降量进行分析,表明沉降主要发生在集中填筑期内,沿路基横断面沉降量的分布是不均匀的;验证了采用砂垫层+土工格栅法处理软土地基对减小横向差异沉降和提高地基承载力效果良好。  相似文献   

9.
10.
采用SBAS-InSAR技术获取WLL水库及周边区域地表沉降信息。结果表明:1)WLL水库大坝表现为整体下沉,沉降速率在逐年减小后趋于稳定;2)受水库水位、大坝自重及地下水位等因素的共同影响,大坝沉降速率、累积沉降量表现为东南至西北方向逐渐增大;3)水库周边区域沉降未对大坝产生实质性影响。  相似文献   

11.
对地下采煤造成的地表沉陷进行及时、精确的监测监管是一个亟待解决的课题。该文以济宁市为例,介绍了D-InSAR技术在大范围采煤沉陷区监测及其时序变化特征分析中的应用。介绍了使用D-InSAR技术对采煤沉陷进行监测的基本原理;以5cm下沉线作为采煤沉陷区边界线,选取15期RADARSAT-2 Wide模式数据,采用多基线累积叠加方法分别提取各期采煤沉陷区边界并使用岩移观测数据对监测结果进行了检核。以花园煤矿为例,分析D-InSAR监测采煤沉陷范围及程度的时序变化特征,随着开采的持续进行,沉陷范围及沉陷量逐步增加,受临近工作面开采影响,沉陷中心的沉陷量呈周期性增加。结果表明,D-InSAR可以精确有效地对采煤沉陷区范围及其时序变形过程进行监测,可以应用于大尺度采煤沉陷区的动态监测。  相似文献   

12.
利用遥感技术,对兖济滕矿区2000-2010年的采煤沉陷区动态变化进行了研究,结果表明,2010年,兖济滕矿区累计沉陷面积为88.43km^2,占整个矿区面积的3.53%。10年来,沉陷区面积呈直线上升趋势,由2000年的57.37km^2,增加到2010年的88.43km^2,平均年增沉陷地面积约为3.45km^2。采用遥感手段,在大范围内,可以较直观、准确地确定采煤沉陷区的范围、面积、形态、动态变化等特征,可为沉陷区的综合治理提供科学依据。  相似文献   

13.
经过多年信息化建设沉淀,济宁市国土资源局初步建立起以综合管理服务平台为运行支撑环境,以数据中心和档案系统为资源共享更新载体,以业务系统为应用拓展体系的协同开发环境。为利用现代科技手段辅助采煤塌陷地综合治理,提出了一种协同开发环境下建设采煤塌陷地动态监测监管系统的方法,实现了采煤塌陷地的综合利用、项目管理、业务审批、资金监管、动态监测、预测分析等功能,为采煤塌陷地信息资源的集中管理、统一展现、实时更新和自动归档提供了有力支持,保障了采煤塌陷地业务数据的在线共享,提高了工作效率和信息化水平。  相似文献   

14.
为高效获取采动区长时间序列形变,监控煤炭开采对矿区铁路的影响,研究一种基于TCP-InSAR(temporarily coherent point interferometric synthetic aperture radar)的采动区铁路形变监测方法。该方法根据时间序列SAR影像间的相干性,选取临时相干点构建Delaunay三角网,并通过离群值探测去除具有相位模糊度的TCP间的弧段,最后采用最小二乘解算得到区域地表变形。实验使用2016-10~2017-04时间段内的15景Sentinel-1A数据,利用TCP-InSAR技术获得某矿区的铁路形变。结果表明,受采动影响,该时间段内铁路最大下沉值为95mm,最大倾斜坡度为0.37‰。利用TCP-InSAR技术可实现采动区内铁路长时间的动态形变监测。  相似文献   

15.
为摸清肥城采煤塌陷区的发展变化规律,利用航天遥感技术的优势进行采煤塌陷区动态变化调查。首先依据调查区的实际情况选择了多时相的TM及2006年SPOT5数据,并对其进行图像处理;鉴于地物光谱特征作了相关性分析,确定了最佳波段组合;利用ENVI软件对塌陷区的信息进行了计算机自动提取,然后把3个时相的遥感解译成果进行叠加对比分析,总结了塌陷区的变化特征。为矿区的可持续发展提供决策支持,为下一步的地质灾害治理提供依据。  相似文献   

16.
煤矿采空沉陷预测因素分析及计算方法   总被引:1,自引:1,他引:0  
采空沉陷的预测是矿山开发利用、矿山地质环境保护与治理的重要依据,该文论述了影响煤矿采空沉陷预测的各种因素和应注意的问题,提出了易操作、直观、可动态管理的计算方法,以及矿山在开始采矿之前必须开展地表岩移监测等合理化建议。  相似文献   

17.
高强度煤炭开采产生巨大的地表形变,形变相位梯度过大导致干涉测量解缠错误,单一采用常规DInSAR及其衍生技术都无法获得地表沉陷主值。本文提出一种新的解决方案,即联合利用DInSAR与偏移量追踪技术(Offset-tracking)各自的技术优势,实现开采区大变形的准确提取,并基于GAUSS函数模型拟合恢复沉陷区剖面形态。基于2012年2月13日和2012年11月27日两景高分辨率SAR数据(RADARSAT-2,5 m精细波束模式(MF5))为数据源,以神东矿区布尔台矿、寸草塔一矿、二矿为研究区,采用常规DInSAR技术获得亚厘米级沉陷区边界,边界沉陷值处于-0.01~ -0.02 m;利用偏移量追踪方法获取米级地表沉陷中心主值,中心沉陷值集中在-1.0~ -4.0 m。将2种方法监测到沉陷信息分段融合,最后采用GAUSS函数模型重构矿区开采沉陷下沉特征曲线。结果表明,偏移量追踪方法可弥补DInSAR技术监测大量级形变信息的不足,联合技术可完整获取高强度采区的大形变沉陷。  相似文献   

18.
本文基于2016-01~2018-07的Sentinel-1A数据,采用PS-InSAR和SBAS-InSAR时序处理方法获取南昌市主城区地面形变信息,对比2种监测结果,分析产生不均匀地面形变的原因。结果表明,2种时序技术的监测结果相关性较高,南昌市主城区的形变趋势为西北抬升、东南下沉。形变区空间分布存在梅岭抬升区、南昌西火车站沉降区、赣江东岸沉降区、邓家埠沉降区和南钢沉降区,主要受地质构造、含水层介质、地下水开采和城市建设等因素影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号