首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Geodinamica Acta》2013,26(6):389-400
It is difficult to explain the position and behaviour of the main karst springs of southern France without calling on a drop in the water table below those encountered at the lowest levels of Pleistocene glacio-eustatic fluctuations. The principal karst features around the Mediterranean are probably inherited from the Messinian period (“Salinity crisis”) when sea level dropped dramatically due to the closing of the Straight of Gibraltar and desiccation of the Mediterranean Sea. Important deep karst systems were formed because the regional ground water dropped and the main valleys were entrenched as canyons. Sea level rise during the Pliocene caused sedimentation in the Messinian canyons and water, under a low hydraulic head, entered the upper cave levels.

The powerful submarine spring of Port-Miou is located south of Marseille in a drowned canyon of the Calanques massif. The main water flow comes from a vertical shaft that extends to a depth of more than 147 m bsl. The close shelf margin comprises a submarine karst plateau cut by a deep canyon whose bottom reaches 1,000 m bsl. The canyon ends upstream in a pocket valley without relation to any important continental valley. This canyon was probably excavated by the underground paleoriver of Port-Miou during the Messinian Salinity Crisis. Currently, seawater mixes with karst water at depth. The crisis also affected inland karst aquifers. The famous spring of Fontaine de Vaucluse was explored by a ROV (remote observation vehicle) to a depth of 308 m, 224 m below current sea level. Flutes observed on the wall of the shaft indicate the spring was formerly an air-filled shaft connected to a deep underground river flowing towards a deep valley. Outcroppings and seismic data confirm the presence of deep paleo-valleys filled with Pliocene sediments in the current Rhône and Durance valleys. In the Ardèche, several vauclusian springs may also be related to the Messinian Rhône canyon, located at about 200 m below present sea level. A Pliocene base level rise resulted in horizontal dry cave levels. In the hinterland of Gulf of Lion, the Cévennes karst margin was drained toward the hydrologic window opened by the Messinian erosional surface on the continental shelf.  相似文献   

2.
Overfilled incised valleys develop when the rate of sediment supply outpaces the rate of accommodation. An overfilled incised valley presents simple or compound valley-fill architecture, depending on the depth of the valley incision, compared with the height reached by the following sea-level rise.The Ventimiglia incised valley, exposed on the Ligurian coast, north-western Mediterranean margin, presents a spectacular example of compound incised-valley fill, developed in perennial “overfill” conditions. The valley was subaerially incised during the Messinian Salinity Crisis and rapidly flooded by the sea at the beginning of Pliocene, then filled by eleven coarse-grained Gilbert-type deltas during Early–Middle Pliocene time.The basal Messinian unconformity is locally paved with subaerial scree breccias and bioclastic shallow-marine sandstones, and blanketed by bathyal marls. These deposits record the lowstand, transgressive and early-highstand systems tracts of the first valley-fill sequence. The subsequent progradation of Gilbert-type deltas occurred in four stages, or depositional sequences, separated by transgressive marine-marl intervals. Within each depositional sequence, the deltaic bodies display offlapping architecture, recording falling shoreline trajectory, downward shifts in facies, and overall forced regression. The water depth and accommodation in the inundated coastal valley was gradually decreasing with time. The reduced accommodation allowed the youngest deltas to prograde out to the shelf edge, triggering mass collapses and subsequent filling into the newly created slump scars. Some of the deltas probably acted as “canyon-perched deltas” and supplied sediment to the deep-water slope and floor of the Ligurian Basin.The vertical stacking of Gilbert-type deltas is usually attributed, in tectonically active basins, to fault-related subsidence pulses. In Ventimiglia, the accommodation was created by high-frequency eustatic sea-level rises that, probably accompanied by climate controlled reductions in sediment supply, temporarily outpaced uplift, leading to the development of multiple cycles of infill.  相似文献   

3.
The Marche Apennines (Italy) offer an excellent opportunity to constrain the temporal and spatial relationships between drainage network formation and tectonic activity. Using a combination of field data, seismic lines and boreholes we show that the main deformation phase took place during the Messinian when the area, affected by the Messinian sea level drop, emerged and evolved from marine to continental conditions. The results highlight that during the Messinian emersion a drainage network developed contemporaneously with an increase in tectonic activity that could be related to sea level fall and river erosion. The present‐day river system, which is dominated by transverse rivers that cut straight across the tectonic grain, is located in older Messinian palaeovalleys, even though the region was subsequently covered by water until the late Pliocene–early Pleistocene.  相似文献   

4.
The margin of the Foz do Amazonas Basin saw a shift from predominantly carbonate to siliciclastic sedimentation in the early late Miocene. By this time, the Amazon shelf had also been incised by a canyon that allowed direct influx of sediment to the basin floor, thus confirming that the palaeo‐Amazon fan had already initiated by that time (9.5–8.3 Ma). Above this interval, during a prolonged lowstand, Messinian third‐order sequences are preserved only in the incised‐valley fills of the canyon with no equivalent strata on the shelf. Third‐ and fourth‐order sequences younger than Messinian are preserved on the shelf after sea‐level rise above the shelf by the early Pliocene. Sequences younger than 3.8 Ma often show fourth‐order cyclicity with an average duration of 400 ka (larger scale eccentricity cycles) often preserved in high‐sedimentation‐rate areas of river deltas. Mass wasting and transportation of slope sediments to the basin began to play an important role in sediment dispersal at least as far back as the mid‐Pliocene, after rapid progradation had produced steeper slopes more prone to failure.  相似文献   

5.
Past hydrological interactions between the Mediterranean Sea and Black Sea are poorly resolved due to complications in establishing a high‐resolution time frame for the Black Sea. We present a new greigite‐based magnetostratigraphic age model for the Mio‐Pliocene deposits of DSDP Hole 380/380A, drilled in the southwestern Black Sea. This age model is complemented by 40Ar/39Ar dating of a volcanic ash layer, allowing a direct correlation of Black Sea deposits to the Messinian salinity crisis (MSC) interval of the Mediterranean Sea. Proxy records divide these DSDP deposits into four intervals: (i) Pre‐MSC marine conditions (6.1–6.0 Ma); (ii) highstand, fresh to brackish water conditions (~6.0–5.6 Ma); (iii) lowstand, fresh‐water environment (5.6–5.4 Ma) and (iv) highstand, fresh‐water conditions (5.4–post 5.0 Ma). Our results indicate the Black Sea was a major fresh‐water source during gypsum precipitation in the Mediterranean Sea. The introduction of Lago Mare fauna during the final stage of the MSC coincides with a sea‐level rise in the Black Sea. Across the Mio‐Pliocene boundary, sea‐level and salinity in the Black Sea did not change significantly.  相似文献   

6.
Sedimentation in the upstream reaches of incised valleys is predominantly of alluvial origin and, in most cases, independent from relative sea‐level or lake‐level oscillations. Preserved facies distributions record the depositional response to a combination of allogenic factors, including tectonics, climate and landscape evolution. Tectonics drive fluvial aggradation and degradation through local changes in gradient, both longitudinal and transverse to the valley slope. This article deals with a Pliocene–Pleistocene fluvial valley fill developed in the north‐eastern shoulder of the Siena Basin (Northern Apennines, Italy). Evolution of the valley was not influenced by sea‐level or lake‐level changes and morphological and depositional evolution of valley resulted from extensional tectonics that gave rise to normal and oblique‐slip faults orthogonal and parallel to the valley axis. Data from both field observations and geophysical study are interpreted to develop a comprehensive tectono‐sedimentary model of coeval longitudinal and lateral tilting of the developing alluvial plain. Longitudinal tilting was generated by a transverse, upstream‐dipping normal fault that controlled the aggradation of fining‐upward strata sets. Upstream of the fault zone, valley back‐filling generated an architecture similar to that of classic, sea‐level‐controlled, coastal incised valleys. Downstream of the fault zone, valley down‐filling was related to an overwhelming sediment supply sourced and routed from the active fault zone itself. Lateral tilting was promoted by the activity of a fault oriented parallel to the valley axis, as well as by different offsets along near orthogonal faults. As a result, the valley trunk system experienced complex lateral shifts, which were governed by interacting fault‐generated subsidence and by the topographic confinement of progradational, flank‐sourced alluvial fans.  相似文献   

7.
Controversies around the Messinian salinity crisis (MSC) are because of the difficulties in establishing genetic and stratigraphic relationships between its deep and shallow‐water record. Actually, the Sicilian foreland basin shows both shallow and deep‐water Messinian records, thus offering the chance to reconstruct comprehensive MSC scenarios. The Lower Gypsum of Sicily comprises primary and resedimented evaporites separated in space and time by the intra‐Messinian unconformity. A composite unit including halite, resedimented gypsum and Calcare di Base accumulated between 5.6 and 5.55 Ma in the main depocentres; it records the acme of the Messinian Salinity Crisis during a tectonic phase coupled with sea‐level falls at glacials TG14‐TG12. These deposits fully post‐date primary gypsum, which precipitated in shallow‐water wedge‐top and foreland ramp basins between 5.96 and 5.6 Ma. This new stratigraphic framework results in a three‐stage MSC scenario characterized by different primary evaporite associations: selenite in the first and third stages, carbonate, halite and potash salt in the second one associated with hybrid resedimented evaporites.  相似文献   

8.
《Sedimentology》2018,65(3):851-876
The Sarah Formation is a glaciogenic sedimentary unit deposited along the Gondwana margin during the latest Ordovician ice age and represents a major hydrocarbon reservoir in northern Saudi Arabia. Large‐scale glacial palaeo‐valleys cut into the Qasim Formation and were infilled by the Sarah Formation. Post‐glacial transgression in the earliest Silurian resulted in the deposition of the Qusaiba Shale Member and associated organic‐rich basal source rocks, which cap the Sarah Formation infilled palaeo‐valleys. This unique setting makes the Sarah Formation an important emerging exploration target in Saudi Arabia. This study focuses on the facies and depositional architecture in seismic‐scale outcrops of the Sarah Formation in north‐western Saudi Arabia. The Rahal Dhab palaeo‐valley provides a 100 km long dip‐oriented cross‐section which has been covered by 24 vertical sections, sedimentary architectural analyses at metre to kilometre scale and by three cored shallow boreholes. In the Rahal Dhab palaeo‐valley, the Sarah Formation was deposited in a proglacial setting that ranged from marginal marine to offshore prodelta and is made up of three units: (i) the Sarah Sandstone; (ii) the Sarah Shale; and (iii) the Uqlah Member. This study shows the relationships between these three units and architectural controls on reservoir quality in this system. This paper contributes to the regional understanding of the Sarah Formation, and the new depositional model of the Rahal Dhab palaeo‐valley provides an outcrop‐reservoir analogue for hydrocarbon exploration in adjacent areas.  相似文献   

9.
Bertotti  Casolari  & Picotti 《地学学报》1999,11(4):168-173
The Gargano Promontory lies on the Adriatic plate between the Dinaride and Apennine fold-and-thrust belts and associated foredeeps. Neogene sediments and structures in the Gargano Promontory demonstrate the existence of significant contrac-tional structures which have not been reported previously. Beginning in early Miocene times, the future Gargano Promontory experienced shortening along NW-trending, mainly SW-vergent folds and thrusts. Deformation persisted until the Tortonian, and, most likely, until the Messinian. Limited NW-directed contraction affected the Promontory probably during Pliocene times. Morphological relief was minimal until the Messinian but from the middle Pliocene onwards, it was substantially similar to the present-day one partly as a consequence of extension along NE–SW-trending normal faults. The along-strike projection of kinematic relationships and quantities observed in the Gargano might call for a re-interpretation of previously underestimated structures NW and SE of the Promontory.  相似文献   

10.
To elucidate the signature of isostatic and eustatic signals during a deglaciation period in pre‐Pleistocene times is made difficult because very little dating can be done, and also because glacial erosion surfaces, subaerial unconformities and subsequent regressive or transgressive marine ravinement surfaces tend to amalgamate or erode the deglacial deposits. How and in what way can the rebound be interpreted from the stratigraphic record? This study proposes to examine deglacial deposits from Late‐Ordovician to Silurian outcrops at the Algeria–Libya border, in order to define the glacio–isostatic rebound and relative sea‐level changes during a deglaciation period. The studied succession developed at the edge and over a positive palaeo‐relief inherited from a prograding proglacial delta that forms a depocentre of glaciogenic deposits. The succession is divided into five subzones, which depend on the topography of this depocentre. Six facies associations were determined: restricted marine (Facies Association 1); tidal channels (Facies Association 2); tidal sand dunes (Facies Association 3); foreshore to upper shoreface (Facies Association 4); lower shoreface (Facies Association 5); and offshore shales (Facies Association 6). Stratigraphic correlations over the subzones support the understanding of the depositional chronology and associated sea‐level changes. Deepest marine domains record a forced regression of 40 m of sea‐level fall resulting from an uplift caused by a glacio‐isostatic rebound that outpaces the early transgression. The rebound is interpreted to result in a multi‐type surface, which is interpreted as a regressive surface of marine erosion in initially marine domains and as a subaerial unconformity surface in an initially subaerial domain. The transgressive deposits have developed above this surface, during the progressive flooding of the palaeo‐relief. Sedimentology and high‐resolution sequence stratigraphy allowed the delineation of a deglacial sequence and associated sea‐level changes curve for the studied succession. Estimates suggest a relatively short (<10 kyr) duration for the glacio‐isostatic uplift and a subsequent longer duration transgression (4 to 5 Myr).  相似文献   

11.
Buried palaeo‐valley systems have been identified widely beneath lowland parts of the UK including eastern England, central England, south Wales and the North Sea. In the Midland Valley of Scotland palaeo‐valleys have been identified yet the age and genesis of these enigmatic features remain poorly understood. This study utilizes a digital data set of over 100 000 boreholes that penetrate the full thickness of deposits in the Midland Valley of Scotland. It identified 18 buried palaeo‐valleys, which range from 4 to 36 km in length and 24 to 162 m in depth. Geometric analysis has revealed four distinct valley morphologies, which were formed by different subglacial and subaerial processes. Some palaeo‐valleys cross‐cut each other with the deepest features aligning east–west. These east–west features align with the reconstructed ice‐flow direction under maximum conditions of the Main Late Devensian glaciation. The shallower features appear more aligned to ice‐flow direction during ice‐sheet retreat, and were therefore probably incised under more restricted ice‐sheet configurations. The bedrock lithology influences and enhances the position and depth of palaeo‐valleys in this lowland glacial terrain. Faults have juxtaposed Palaeozoic sedimentary and igneous rocks and the deepest palaeo‐valleys occur immediately down‐ice of knick‐points in the more resistant igneous bedrock. The features are regularly reused and the fills are dominated by glacial fluvial and glacial marine deposits. This suggests that the majority of infilling of the features happened during deglaciation and may be unrelated to the processes that cut them.  相似文献   

12.
《Sedimentary Geology》2004,163(3-4):175-210
The Mio–Pliocene in Western Europe is a period of major climatic and tectonic change with important topographic consequences. The aim of this paper is to reconstruct these topographic changes (based on sedimentological analysis and sequence stratigraphy) for the Armorican Massif (western France) and to discuss their significance. The Mio–Pliocene sands of the Armorican Massif (Red Sands) are mainly preserved in paleovalleys and are characterized by extensive fluvial sheetflood deposits with low-preservation and by-pass facies. This sedimentological study shows that the Red Sands correspond to three main sedimentary environments: fluvial (alluvial fan, low-sinuosity rivers and braided rivers), estuarine and some rare open marine deposits (marine bioclastic sands: “faluns” of French authors). Two orders of sequences have been correlated across Brittany with one or two minor A/S cycles comprised within the retrogradational trend of a major cycle. The unconformity at the base of the lower cycle is more marked than the unconformity observed at the top, which corresponds to a re-incision of the paleovalley network. A comparison of the results of the sequence stratigraphy analysis with eustatic variations and tectonic events during the Mio–Pliocene allows (1) to discuss their influence on the evolution of the Armorican Massif and (2) to compare the stratigraphic record with other west-European basins. The unconformity observed at the base of the first minor cycle may be attributed to Serravallian–Tortonian tectonic activity and/or eustatic fall, and the unconformity of the second minor cycle may be attributed to Late Tortonian–Early Messinian tectonic activity. The earlier unconformity is coeval with the development of a “smooth” paleovalley network compared to the jagged present-day relief. A single episode of Mio–Pliocene deformation recorded in Brittany may be dated as Zanclean, thus explaining the lack of the maximum flooding surface except in isolated areas. From this study, five paleogeographic maps were drawn up also indicating paleocurrent directions: three maps for the lower cycle (Tortonian retrogradational trend, Late Tortonian to Early Messinian maximum flooding surface and Messinian progradational trend) and two for the upper cycle (Pliocene retrogradational trend and Piacenzian maximum flooding surface). These maps show (1) the variations of paleocurrent directions during the Mio–Pliocene, (2) the extent of estuarine environments during the maximum flooding intervals and (3) a paleodrainage watershed oriented NNW–SSE following the regional Quessoy/Nort-sur-Erdre Fault during the retrogradational trend of the upper cycle and possibly during the progradational trend of the lower cycle. The present-day morphology of the Armorican Massif is characterized by (1) incised valleys and jagged topography, in contrast with the “smooth” morphology described for Mio–Pliocene times and (2) a main East–West drainage watershed, located to the north, separating rivers flowing towards the English Channel from rivers flowing towards the Atlantic Ocean. The Mio–Pliocene/Pleistocene paleotopographic changes seem to be controlled by climatic effects. These can be related to the change in runoff associated with warmer and wetter conditions during the Mio–Pliocene, which control the river discharge and lead to the development of extensive fluvial sheetflood deposits. Tectonic or eustatic factors exert a second-order control.  相似文献   

13.
Transgressive dunes develop frequently along strandplain coastlines; however, they may also form along rocky coasts dominated by cliffs and embayments. Two lithified transgressive dune systems developed along the cliffed Alghero coast (NW Sardinia, Italy) have been investigated. One aeolian system forms a cliff‐front anchored aeolian dune accumulation; the other is a valley‐head anchored sand‐ramp system. Optically stimulated luminescence ages indicate that both systems formed around 75 ka. This period, which corresponds to the beginning of MIS 4, was characterized by a relatively low sea‐level stand (15 m below the present sea level) and was preceded by a sea‐level highstand (+1 m asl) around 81 ka (MIS 5a). Our results show that this rapid sea‐level fall exposed an enormous amount of marine sand, which was transported inland by strong northerly winds and deposited in front of cliffs or in valley heads. Therefore, sediment supply and sea‐level fall seem to be critical factors controlling dune formation along rocky coasts, which generate time‐transgressive aeolianites. Terra Nova, 00, 000–000, 2010  相似文献   

14.
Sedimentary complexes of ancient gulfs provide valuable information about paleoenvironmental dynamics. The study of several Pliocene–Pleistocene sections allowed reconstruction of the regional stratigraphical framework in the southwestern fringes of the Nile Delta. The Kafr El-Shiekh, the Gar El-Muluk, and the Kom El-Shelul formations of the Zanclean Age and the Wastani Formation of the Piacenzian Age constitute the Pliocene sedimentary succession in the study area. The establishment of 11 facies types related to 5 facies associations coupled with the results of the stratigraphical study indicate the existence of a paleogulf corresponding to the modern delta and lower valley of the Nile. This Nile Paleogulf appeared and reached its maximum spatial extent in the beginning of the Pliocene. Then, it retreated gradually and disappeared before the end of this epoch when alluvial sedimentation reestablished. There was significant flux of siliciclastic material to the study area. The Zanclean Flood in the Mediterranean Sea allowed marine incursion in the study area where the river valley incised during the precedent Messinian Salinity Crisis. Regional tectonic uplift and filling of the accommodation space with siliciclastic material from the eroded land were the main controls on the paleogulf evolution. Strengthened glaciation triggered global sea level fall, and alluvial deposition dominated the study area in the late Pliocene–Pleistocene.  相似文献   

15.
We propose a revised age calibration of the Messinian salinity crisis onset in the Mediterranean at 5.971 Ma based on the recognition of an extra gypsum cycle in the transitional interval of the Perales section (Sorbas basin, Spain) and the revision of the magnetostratigraphy of the Monticino section (Vena del Gesso basin, Italy). This age re‐calibration allows to state more accurately that: (i) the interval encompassing the MSC‐onset is continuous, thus ruling out any erosional feature or stratigraphic hiatus related to a major sea‐level fall affecting the Mediterranean; (ii) the first gypsum was deposited during the summer insolation peak at 5.969 Ma associated with an eccentricity minimum and roughly coincident with glacial stage TG32; (iii) the MSC‐onset was preconditioned by the tectonically‐driven reduction of the hydrological exchanges with the Atlantic Ocean and finally triggered by glacial conditions in the northern hemisphere and by arid conditions in northern Africa.  相似文献   

16.
Understanding the stratigraphic fill and reconstructing the palaeo‐hydrology of incised valleys can help to constrain those factors that controlled their origin, evolution and regional significance. This condition is addressed through the analysis of a large (up to 18 km wide by 80 m deep) and exceptionally well‐imaged Late Pleistocene incised valley from the Sunda Shelf (South China Sea) based on shallow three‐dimensional seismic data from a large (11 500 km2), ‘merge’ survey, supplemented with site survey data (boreholes and seismic). This approach has enabled the characterization of the planform geometry, cross‐sectional area and internal stratigraphic architecture, which together allow reconstruction of the palaeo‐hydrology. The valley‐fill displays five notable stratigraphic features: (i) it is considerably larger than other seismically resolvable channel forms and can be traced for at least 180 km along its length; (ii) it is located in the axial part of the Malay Basin; (iii) the youngest part of the valley‐fill is dominated by a large (600 m wide and 23 m deep), high‐sinuosity channel, with well‐developed lateral accretion surfaces; (iv) the immediately adjacent interfluves contain much smaller, dendritic channel systems, which resemble tributaries that drained into the larger incised valley system; and (v) a ca 16 m thick, shell‐bearing, Holocene clay caps the valley‐fill. The dimension, basin location and palaeo‐hydrology of this incised valley leads to the conclusion that it represents the trunk river, which flowed along the length of the Malay Basin; it connected the Gulf of Thailand in the north with the South China Sea in the south‐east. The length of the river system (>1200 km long) enables examination of the upstream to downstream controls on the evolution of the incised valley, including sea‐level, climate and tectonics. The valley size, orientation and palaeo‐hydrology suggest close interaction between the regional tectonic framework, low‐angle shelf physiography and a humid‐tropical climatic setting.  相似文献   

17.
Gregers Dam 《Sedimentology》2002,49(3):505-532
ABSTRACT After a period of early Palaeocene faulting and uplift of the Nuussuaq Basin, West Greenland, two valley systems were incised into the underlying sediments. Incision of the older Tupaasat valley took place during a single drainage event of large water masses, which resulted in catastrophic deposition. The valley was cut along early Palaeocene NW‐ to SE‐trending normal faults, clearly showing that the trend and the relief of the valley were structurally controlled. The valley fill is up to 120 m thick and consists of a lower part of sandstones and conglomerates deposited from catastrophic flows characterized by very high concentrations of suspended coarse‐grained sediment load. Catastrophic deposition was followed by rapid decrease in flow discharge and the establishment of a lacustrine environment within the valley characterized by the deposition of heterolithic sediments. The younger Paatuutkløften valley system was mainly cut into the Tupaasat valley fill, which was completely or nearly completely eroded away in many places. The younger valley is 1–2 km wide and up to 190 m deep. Incision of the Paatuutkløften valley probably reflected renewed tectonic activity and uplift of the basin. This phase was shortly followed by rapid major subsidence. The valley‐fill deposits comprise a uniform succession of fluvial and estuarine sandstones. The valley fill is topped by shoreface sandstones, which are succeeded abruptly by offshore mudstones deposited shortly before and during the initial extrusion of a thick hyaloclastite succession. The Paatuutkløften valley fill is attributed to a very rapid rise in relative sea level contemporary with extensive volcanism. It is suggested that this sequence of events coincided with the arrival of the North Atlantic mantle plume. In several respects, the early Palaeocene valley‐fill deposits of the Nuussuaq Basin are different from idealized facies models for incised valley systems and represent very special cases of incised valleys. Major differences from published examples include the dominance of catastrophic deposits and indications of large changes in relative sea level of several hundreds of metres taking place rapidly in less than 1 Myr. These changes were governed by the rise of the North Atlantic mantle plume.  相似文献   

18.
We present the results of a study of the Vena del Gesso Basin (Romagna Apennines, Italy) integrating field analyses and analogue modelling. This basin represents one of the best‐preserved top‐thrust basins in the Northern Apennines foreland and is one of the few examples where primary evaporites, related to the Messinian salinity crisis of the Mediterranean, widely crop out. The structural style affecting the Messinian gypsum is examined to get insights into the mechanism responsible for the overall deformation features recognizable in the area. The evaporites are completely detached at the base and widespread back‐thrusts, repeatedly doubling these deposits, strongly contrast with the regional forelandward vergence of structures in the Apennines. On the basis of the comparison between field data and experimental results, the features characterising this area can be described as the result of the deformation linked to the sequential activation of an obliquely propagating passive‐roof duplex. Analogue models evidenced the major role played (1) by syntectonic erosion that promoted the development of passive‐roof duplex style, as well as (2) the role of décollement level pinch‐out that determined an oblique progression of deformation. Finally our data lead to reconsider the palaeoenvironmental reconstruction concerning the onset of the Messinian salinity crisis in the Mediterranean. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The Ombrone palaeovalley was incised during the last glacial sea‐level fall and was infilled during the subsequent Late‐glacial to Holocene transgression. A detailed sedimentological and stratigraphic study of two cores along the palaeovalley axis led to reconstruction of the post‐Last Glacial Maximum valley‐fill history. Stratigraphic correlations show remarkable similarity in the Late‐glacial to early‐Holocene succession, but discrepancy in the Holocene portion of the valley fill. Above the palaeovalley floor, about 60 m below sea‐level, Late‐glacial sedimentation is recorded by an unusually thick alluvial succession dated back to ca 18 cal kyr bp . The Holocene onset was followed by the retrogradational shift from alluvial to coastal facies. In seaward core OM1, the transition from inner to outer estuarine environments marks the maximum deepening of the system. By comparison, in landward core OM2, the emplacement of estuarine conditions was interrupted by renewed continental sedimentation. Swamp to lacustrine facies, stratigraphically equivalent to the fully estuarine facies of core OM1, represent the proximal expression of the maximum flooding zone. This succession reflects location in a confined segment of the valley, just landward of the confluence with a tributary valley. It is likely that sudden sediment input from the tributary produced a topographic threshold, damming the main valley course and isolating its landward segment from the sea. The seaward portion of the Ombrone palaeovalley presents the typical estuarine backfilling succession of allogenically controlled incised valleys. In contrast, in the landward portion of the system, local dynamics completely overwhelmed the sea‐level signal, following marine ingression. This study highlights the complexity of palaeovalley systems, where local morphologies, changes in catchment areas, drainage systems and tributary valleys may produce facies patterns significantly different from the general stratigraphic organization depicted by traditional sequence‐stratigraphic models.  相似文献   

20.
Owing to its expanded stratigraphic sections, the Apennine thrust belt offers the opportunity to better understand the evaporitic and post-evaporitic Messinian events. A physical stratigraphic framework of Messinian deposits, based on facies analysis and basin-wide correlation of key surfaces and sedimentary cycles, is presented. It is shown that the Messinian Apennine foredeep had marginal basins with shallow-water primary evaporites and deeper basins where resedimented evaporites accumulated under relatively deep-water conditions. Like many other Mediterranean examples, primary shallow-water evaporites of Apenninic marginal basins show evidence for subaerial exposure and erosion. However, the development of such an erosional surface does not correspond to the deposition of primary evaporites in the deepest part of the basin(s); here, the unconformity can be traced towards the base of resedimented evaporites or to a level within them, implying that the deeper basins of the Apennine foredeep never underwent desiccation during the Messinian salinity crisis, but rather received the eroded marginal evaporites. This fact, usually overlooked, raises important questions about the deep desiccation model of the Mediterranean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号