首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
2.
The National Ignition Facility (NIF), a 192-beam Nd-glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light, is now operational at Lawrence Livermore National Laboratory (LLNL). As the world??s largest and most energetic laser system, NIF serves as the national center for the U.S. Department of Energy (DOE) and National Nuclear Security Administration to achieve thermonuclear burn in the laboratory and to explore the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from all of its 192 extremely energetic laser beams into a mm3-sized target, NIF can reach the conditions required to initiate fusion reactions. NIF can also provide access to extreme scientific environments: temperatures about 100 million K, densities of 1,000 g/cm3, and pressures 100 billion times atmospheric pressure. These conditions have never been created before in a laboratory and exist naturally only in interiors of the planetary and stellar environments as well as in nuclear weapons. Since August 2009, the NIF team has been conducting experiments in support of the National Ignition Campaign (NIC)??a partnership among LLNL, Los Alamos National Laboratory, General Atomics, the University of Rochester, Sandia National Laboratories, as well as a number of universities and international collaborators. The results from these initial experiments show promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. Important national security and basic science experiments have also been conducted on NIF. This paper describes the unprecedented experimental capabilities of NIF and the results achieved so far on the path toward ignition, for stockpile stewardship, and the beginning of frontier science experiments. The paper will also address our plans to transition NIF to a national user facility, providing access to NIF for researchers from the DOE laboratories, as well as the national and international academic and fusion energy communities.  相似文献   

3.
The problem of producing collisionless shocks in the laboratory is of great interest for space and astrophysical plasmas. One approach is based on the idea of combining strong magnetic field (up to 100 Tesla) created during a Z-pinch discharge with a plasma flow produced in the process of the interaction of a laser pulse with a solid target. In support of laboratory experiments we present hybrid simulations of the interaction of the plasma flow with frozen in it magnetic field, with the spherical obstacle. Parameters of the flow correspond to a laser plasma ablation produced in the laboratory during irradiation of the target by a 3 J laser. Magnetic fields in the plasma flow and around the obstacle are created by the currents produced by the pulse power ZEBRA voltage generator. With the appropriate set of initial conditions imposed on the flow collisionless shocks can be created in such a system. Using independent generators for plasma flow and magnetic field allows for the exploration of a wide range of shock parameters. We present simulations of the formation of supercritical collisionless shock relevant to the experiment, performed with the 2D version of the hybrid code based on the CAM-CL algorithm [Planet. Space Sci. 51, 649, 2003].  相似文献   

4.
We report on the first production of “tailored” blast waves in cluster media using a 1 ps laser pulse focused to 2×1016 W/cm2. This new technique allows cylindrical blast waves to be produced with a strong axial modulation of variable spatial frequency, as a seed for instability growth. Energy deposition is modified by changing the cluster density whilst keeping the atomic density of the target constant. Electron density maps show the production of strongly modulated blast waves and the development of a thin shell structure in H at late times, and the trajectories show blast waves forming in H, and Ar. In Xe, a blast wave does not form on the timescales studied. Analysis of astrophysical similarity parameters suggests that a hydrodynamically similar situation is created in H, and that further evolution would create a regime where radiative effects may be influential in Ar and Xe.  相似文献   

5.
In this paper, we study self-similar solutions, and their linear stability as well, describing the flow within a spherical shell with finite thickness, expanding according to a power law of time, t q , where q>0. The shell propagates in a medium with initially uniform density and it is bounded by a strong shock wave at its outer border while the inner face is submitted to a time-dependent uniform pressure. For q=2/5, the well-known Sedov–Taylor solution is recovered. In addition, although both accelerated and decelerated shells can be unstable against dynamic perturbations, they exhibit highly different behaviors. Finally, the dispersion relation derived earlier by Vishniac (Vishniac, E.T. in Astrophys. J. 274:152, 1983) for an infinitely thin shell is obtained in the limit of an isothermal shock wave.  相似文献   

6.
During 30 years, a big theoretical effort to understand the physical processes in the heliospheric interface has followed the pioneer papers by Parker (1961) and Baranov et al. (1971). The heliospheric interface is a shell formed by the solar wind interaction with the ionized component of the circumsolar local interstellar medium (LISM). For fully ionized supersonic interstellar plasma two-shocks (the termination shock and the bow shock) and a contact discontinuity (the heliopause) are formed in the solar wind/LISM interaction. However, LISM consists of at least of three components additional to plasma: H-atoms, galactic cosmic rays and magnetic field. The interstellar atoms that penetrate into the solar wind, are ionized there and form pickup ions. A part of the pickup ions is accelerated to high energies of anomalous cosmic rays (ACRs). ACRs may modify the plasma flow upstream the termination shock and in the heliosheath. In this short review I summarize current understanding of the physical and gasdynamical processes in the heliospheric interface, outline unresolved problems and future perspectives. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Following some of the recent articles on hole super-conductivity and related phenomena by Hirsch (Phys. Lett. A 134:451, 1989; Phys. Rev. B 68:184502, 2003a; Phys. Rev. B 71:184521, 2005a and Phys. Lett. A 345:453, 2005b) a simple model is proposed to explain the observed low surface magnetic field of the expected quark stars. It is argued that the diamagnetic moments of the electrons circulating in the electro-sphere induce a magnetic field, which forces the existing quark star magnetic flux density to become dilute. For the sake of completeness, we have also included the analyses of instability at the normal-super-conducting interface due to excess accumulation of magnetic flux lines. The instability at the interface has also been studied numerically.   相似文献   

8.
Recent experiments in a gas embedded compressional Z-pinch are presented. The experiments have been carried out in H2 and D2, using a pulse power generator capable of delivering a dI/dt 1012 A/s. The pinch is initiated by a focused laser pulse, which is coaxial with a cylindrical DC microdischarge. This configuration results in double column pinch at early times, which at current rise evolves into a gas embedded compressional Z-pinch. Diagnostics used are Rogowskii coil, single frame holographic interferometry and holographic shadowgraphy, visible streak camera images from which, current, density, line density, pinch radius and plasma motion are obtained. The pinch is characterised by a maximum on axis density which is much higher than the expected value from filling pressure, with a Bennett temperature of 75 eV at 180 kA.  相似文献   

9.
Recent numerical investigations of wave propagation near coronal magnetic null points (McLaughlin and Hood: Astron. Astrophys. 459, 641, 2006) have indicated how a fast MHD wave partially converts into a slow MHD wave as the disturbance passes from a low-β plasma to a high-β plasma. This is a complex process and a clear understanding of the conversion mechanism requires the detailed investigation of a simpler model. An investigation of mode conversion in a stratified, isothermal atmosphere with a uniform, vertical magnetic field is carried out, both numerically and analytically. In contrast to previous investigations of upward-propagating waves (Zhugzhda and Dzhalilov: Astron. Astrophys. 112, 16, 1982a; Cally: Astrophys. J. 548, 473, 2001), this paper studies the downward propagation of waves from a low-β to high-β environment. A simple expression for the amplitude of the transmitted wave is compared with the numerical solution.  相似文献   

10.
Abstract— We have determined the recoil range of spallation xenon produced by irradiation of Ba glass targets with ?1190 and ?268 MeV protons, using a catcher technique, where spallation products are measured in target and catcher foils. The inferred range for 126Xe produced in silicon carbide is ?0.19 μm, which implies retention of ?70% for 126Xe produced in “typical” presolar silicon carbide grains of 1 μm size. Recoil loss of spallation xenon poses a significantly smaller problem than loss of the spallation neon from SiC grains. Ranges differ for the various Xe isotopes and scale approximately linearly as function of the mass difference between the target element, Ba, and the product. As a consequence, SiC grains of various sizes will have differences in spallation Xe composition. In an additional experiment at ?66 MeV, where the recoil ranges of 22Na and 127Xe produced on Ba glass were determined using γ‐spectrometry, we found no evidence for recoil ranges being systematically different at this lower energy. We have used the new data to put constraints on the possible presolar age of the SiC grains analyzed for Xe by Lewis et al. (1994). Uncertainties in the composition of the approximately normal Xe component in SiC (Xe‐N) constitute the most serious problem in determining an age, surpassing remaining uncertainties in Xe retention and production rate. A possible interpretation is that spallation contributions are negligible and that trapped 124Xe/126Xe is ?5% lower in Xe‐N than in Q‐Xe. But also for other reasonable assumptions for the 124Xe/126Xe ratio in Xe‐N (e.g., as in Q‐Xe), inferred exposure ages are considerably shorter than theoretically expected lifetimes for interstellar grains. A short presolar age is in line with observations by others (appearance, grain size distribution) that indicate little processing in the interstellar medium (ISM) of surviving (crystalline) SiC. This may be due to amorphization of SiC in the ISM on a much shorter time scale than destruction, with amorphous SiC not surviving processing in the early solar system. A large supply of relatively young grains may be connected to the proposed starburst origin (Clayton 2003) for the parent stars of the mainstream SiC grains.  相似文献   

11.
The Local Group galaxies enable us to study the impact of metallicity on the structure and evolution of massive stars through spectroscopic analyses. However, color-based target selection for spectroscopy (in absence of known spectral types), though relatively successful, usually produces lists dominated by B-type modest-mass stars. We have developed a friends of friends code to find OB associations in Local Group galaxies (Garcia et al. in Astron. Astrophys. 502:1015, 2009; Bull. Soc. R. Sci. Liege 80:381, 2011a). The interpretation of the association’s color-magnitude diagrams (CMDs) and the automatic determination of evolutionary masses for the members, allow a more insightful choice of candidates for spectroscopy and to spot out potential advanced evolutionary stages (Garcia et al. in Astron. Astrophys. 523:A23, 2010). We show our results on the dwarf irregular IC 1613 as illustration of the potential of the method.  相似文献   

12.
The evolution of Population III intermediate mass stars of 5, 7, and 9M has been studied after the core He-exhaustion phase. There are two energy producing regions within the stars; one is H-burning shell and the other is He-burning shell. During the double shell burning phase, the evolution does not proceed on the asymtotic giant branch and the second dredge-up does not appear, hence, there is no change in the surface composition of the stars. The final state of these stars are important in modelling the galactic evolution.  相似文献   

13.
Following the analytical work of Armstrong et al. (Icarus 160:183–196, 2002), we detail an expanded N-body calculation of the direct transfer of terrestrial material to the Moon during a giant impact. By simulating 1.4 million particles over a range of launch velocities and ejecta angles, we have derived a map of the impact velocities, impact angles, and probable impact sites on the moon over the last 4 billion years. The maps indicate that the impacts with the highest vertical impact speeds are concentrated on the leading edge, with lower velocity/higher-angle impacts more numerous on the Moon’s trailing edge. While this enhanced simulation indicates the estimated globally averaged direct transfer fraction reported in Armstrong et al. (Icarus 160:183–196, 2002) is overestimated by a factor of 3–6, local concentrations can reach or exceed the previously published estimate. The most favorable location for large quantities of low velocity terrestrial material is 50 W, 85 S, with 8.4 times more impacts per square kilometer than the lunar surface average. This translates to 300–500 kg km−2, compared to 200 kg km−2 from the previous estimate. The maps also indicate a significant amount of material impacting elsewhere in the polar regions, especially near the South Pole-Aiken basin, a likely target for sample return in the near future. The magnitudes of the impact speeds cluster near 3 km/s, but there is a bimodal distribution in impact angles, leading to 43% of impacts with very low (<1 km/s) vertical impact speeds. This, combined with the enhanced surface density of meteorites in specific regions, increases the likelihood of weakly shocked terrestrial material being identified and recovered on the Moon.  相似文献   

14.
We compare the dynamics of plasma in a hollow gas puff Z-pinch device, obtained with Schlieren pictures, with the predictions of a 2-D MHD Lagrangian code. We show that agreement between the model and experiment require an axially variable line density and width of the injected gas.  相似文献   

15.
High rate sampling detectors measuring the potential difference between the main body and boom antennas of interplanetary spacecraft have been shown to be efficient means to measure the voltage pulses induced by nano dust impacts on the spacecraft body itself (see Meyer-Vernet et al. in Sol. Phys. 256:463, 2009). However, rough estimates of the free charge liberated in post impact expanding plasma cloud indicate that the cloud’s own internal electrostatic field is too weak to account for measured pulses as the ones from the TDS instrument on the STEREO spacecraft frequently exceeding 0.1 V/m. In this paper we argue that the detected pulses are not a direct measure of the potential structure of the plasma cloud, but are rather the consequence of a transitional interruption of the photoelectron return current towards the portion of the antenna located within the expanding cloud.  相似文献   

16.
We have previously reported the experimental discovery of a second shock forming ahead of a radiative shock propagating in Xe. The initial shock is spherical, radiative, with a high Mach number, and it sends a supersonic radiative heat wave far ahead of itself. The heat wave rapidly slows to a transonic regime and when its Mach number drops to two with respect to the downstream plasma, the heat wave drives a second shock ahead of itself to satisfy mass and momentum conservation in the heat wave reference frame. We now show experimental data from a range of mixtures of Xe and N2, gradually changing the properties of the initial shock and the environment into which the shock moves and radiates (the radiative conductivity and the heat capacity). We have successfully observed second shock formation over the entire range from 100% Xe mass fraction to 100% N2. The formation radius of the second shock as a function of Xe mass fraction is consistent with an analytical estimate.  相似文献   

17.
Abstract— A review of problems related to Xe isotopic abundances in meteorites and terrestrial materials leads to four postulates which should be taken into account to build a model of the Earth's accretion and early evolution. 1. The pre-planetary accretion time scale was shorter than the 129I half-life, 17 Ma, so the initial ratio of 129I/127I had not been decreased considerably when planetary accretion started; therefore, this must also be the case for the 244Pu abundance. 2. The initial relative abundance of involatile refractory 244Pu in proto-planetary materials should be the same as in chondrites, that is, 244Pu/238U = 0.0068; this value corresponds to initial 244Pu 0.30 ppb in the bulk silicate earth. In contrast, I is a highly volatile element; its initial abundance, accretion history and even the present-day mean concentrations in principal terrestrial reservoirs are poorly known. 3. There is much less fission Xe in the upper mantle, crust, and atmosphere than is predictable from the fission of 244Pu (Xe(Pu)) based on the above argument. Therefore, Xe(Pu) has been mainly released from these reservoirs. 4. A mechanism for Xe(Pu) escape from the complementary upper mantle-crust-atmosphere reservoirs, for example, atmospheric escape via collisions of a growing Earth with large embryos and/or hydrodynamic hydrogen flux, etc., operated during the Earth's accretion. These postulates have been used as a background for a balance model of homogeneous Earth accretion which envisages: growth of the Earth due to accumulation of planetesimals; fractionation inside the Earth and segregation of the core; degassing via collision and fractionation; and escape of volatiles from the atmosphere. During the post-accretion terrestrial history, the processes described by the model are continuous fractionation, degassing and recycling of the upper mantle and crust. The lower mantle is considered as an isolated reservoir. Depending on the scenario invoked, the accretion time scale varies within the limits of 50–200 Ma. In the light of recent experimental data, the latter value is inferred to the most realistic version which explains a high Xe(U)/Xe(Pu) ratio in the upper mantle. Contrary to previous suggestions, the 129I-129Xe subsystem is considered to be meaningless with regard to the terrestrial accretion time scale. The terrestrial inventory of 129Xe(I) is controlled by the initial abundance of volatile elements (including I and Xe) in proto-terrestrial materials and the subsequent degassing history of the Earth. The residence time of a volatile element (e.g., Xe) in the bulk mantle (bm) during accretion, < t (Xe)bm>, is approximated by the ratio of < t (Xe)bm> m bm(t)/φbm, mf ≤ 10 Ma, where m bm(t) is the mantle mass, and φbm, mf is the rate of metal/silicate fractionation, which provided segregation of the core; φbm, mf is determined by involatile siderophile element abundances in the upper mantle. This relationship implies a link between the abundance of involatile siderophile and volatile incompatible elements. A short <t(Xe)bm> reflects a high degassing rate due to extremely high φbm, mf 1020 g/year. A small ratio of the atmospheric amount of Xe over the total amount of this gas in prototerrestrial materials, ≤0.01, is in accord with the process of Xe escape and fractionation in the primary Earth atmosphere.  相似文献   

18.
The twisting of magnetic fields threading an accretion system can lead to the generation on axis of toroidal field loops. As the magnetic pressure increases, the toroidal field inflates, producing a flow. Collimation is due to a background corona, which radially confines this axially growing “magnetic tower”. We investigate the possibility of studying in the laboratory the dynamics, confinement and stability of magnetic tower jets. We present two-dimensional resistive magnetohydrodynamic simulations of radial arrays, which consist of two concentric electrodes connected radially by thin metallic wires. In the laboratory, a radial wire array is driven by a 1 MA current which produces a hot, low density background plasma. During the current discharge a low plasma beta (β < 1), magnetic cavity develops in the background plasma (β is the ratio of thermal to magnetic pressure). This laboratory magnetic tower is driven by the magnetic pressure of the toroidal field and it is surrounded by a shock envelope. On axis, a high density column is produced by the pinch effect. The background plasma has >rsim1, and in the radial direction the magnetic tower is confined mostly by the thermal pressure. In contrast, in the axial direction the pressure rapidly decays and an elongated, well collimated magnetic-jet develops. This is later disrupted by the development of m = 0 instabilities arising in the axial column.  相似文献   

19.
In the framework of ‘microscopic’ theory of black holes (J. Phys. Soc. Jpn. Suppl. B 70, 84, 2001; Astrophys. USSR 4, 659, 1996; 35, 335, 1991, 33, 143, 1990, 31, 345, 1989a; Astrophys. Space Sci. 1, 1992; Dokl. Akad. Nauk USSR 309, 97, 1989b), and references therein, we address the ‘pre-radiation time’ (PRT) of neutrinos from black holes, which implies the lapse of time from black hole’s birth till radiation of an extremely high energy neutrinos. For post-PRT lifetime, the black hole no longer holds as a region of spacetime that cannot communicate with the external universe. We study main features of spherical accretion onto central BH and infer a mass accretion rate onto it, and, further, calculate the resulting PRT versus bolometric luminosity due to accretion onto black hole. We estimate the PRTs of AGN black holes, with the well-determined masses and bolometric luminosities, collected from the literature by Woo Jong-Hak and Urry (Astrophys. J. 579, 530, 2002) on which this paper is partially based. The simulations for the black holes of masses M BH ≃(1.1⋅106 ÷4.2⋅109) M give the values of PRTs varying in the range of about T BH ≃(4.3⋅105 ÷5.6⋅1011) yr. The derived PRTs for the 60 AGN black holes are longer than the age of the universe (∼13.7 Gyr) favored today. At present, some of remaining 174 BHs may radiate neutrinos. However, these results would be underestimated if the reservoir of gas for accretion in the galaxy center is quite modest, and no obvious way to feed the BHs with substantial accretion.  相似文献   

20.
Abstract— In a study of the isotopic signatures of trapped Xe in shock-produced glass of shergottites and in ALH 84001, we observe three components: (1) modern Martian atmospheric Xe that is isotopically mass fractionated relative to solar Xe, favoring the heavy isotopes, (2) solar-like Xe, as previously observed in Chassigny, and (3) an isotopically fractionated (possibly ancient) component with little or no radiogenic 129Xerad. In situ-produced fission and spallation components are observed predominantly in the high-temperature steps. Heavy N signatures in ALH 84001, EET 79001 and Zagami reveal Martian atmospheric components. The low-temperature release of ALH 84001 shows evidence for the presence of a light N component (δ15N ≤ -21%), which is consistent with the component observed in the other Shergotty, Nakhla and Chassigny (SNC) group meteorites. The highest observed 129Xe/130Xe ratio of 15.60 in Zagami and EET 79001 is used here to represent the present Martian atmospheric component, and the isotopic composition of this component is compared with other solar system Xe signatures. The 129Xe/130Xe ratios in ALH 84001 are lower but appear to reflect varying mixing ratios with other components. The consistently high 129Xe/130Xe ratios in rocks of different radiometric ages suggest that Martian atmospheric Xe evolved early on. As already concluded in earlier work, only a small fission component is observed in the Martian atmospheric component. Assuming that a chondritic 244Pu/129I initial ratio applies to Mars, this implies that either Pu-derived fission Xe is retained in the solid planet (in fact, in situ-produced fission Xe is observed in ALH 84001) or may reflect a very particular degassing history of the planet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号