首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
太平洋海山成矿系统与成矿作用过程   总被引:2,自引:0,他引:2       下载免费PDF全文
文中初步探讨了太平洋海山富钴结壳成矿系统的结构与成矿作用过程。海山成矿系统的控矿要素主要包括地质要素和海洋要素,地质要素主要包括海山的形成、迁移、沉降和水道的开合等,海洋要素主要包括大洋温盐环流、最低含氧带(OMZ)、文石溶跃面、碳酸盐补偿深度和海山周围海水的动力情况等。重点分析了海山漂移和沉降、水道开合、最低含氧带变化、大洋环流以及气候变化等要素对富钴结壳成矿的控制作用。海山为富钴结壳成矿提供了一个容矿空间,稳定的基岩,即长期稳定的容矿空间,是富钴结壳成矿的基本条件;海山的形成年龄、海山的迁移和水道的开合决定并改变了富钴结壳的成矿背景条件,促使海山成矿系统发生演化。最低含氧带作为富钴结壳成矿的地球化学障,是直接的矿源层;而海山周边的地形旋涡沟通了最低含氧带与富氧、富铁的深层和底层水,使得最低含氧带中的成矿金属离子得到氧化,进而发生胶体凝聚沉淀,形成富钴结壳。以西太平洋海山成矿系统为例,将该区白垩纪以来富钴结壳成矿作用过程划分为5个阶段:(1)白垩纪—始新世,(2)始新世末—晚渐新世,(3)晚渐新世—中中新世早期,(4)中中新世早期—晚中新世早期,(5)晚中新世早期—现代,其中(2)、(3)阶段有利于发育富钴结壳。  相似文献   

2.
Paleomagnetism of eastern Nazca plate seamounts defines Nazca and Farallon absolute plate motion during Cenozoic times. Magnetic and bathymetric surveys are presented for two eastern Nazca plate seamounts in the Chile Basin and they are used to calculate paleomagnetic poles with uniform and nonuniform magnetic modeling. The paleopole for Piquero-2 seamount is coincident with the earth's pole, suggesting a young seamount. The paleopole for Piquero-1 seamount indicates that the Nazca plate moved 23° northward during 0–50 ma. This is 13° more latitudinal motion than predicted by a Pacific hotspot reference frame and 20 ° more motion than predicted by DSDP sediment and basalt paleomagnetism.  相似文献   

3.
Rare earth elements in phosphate-ferromanganese crusts on Pacific seamounts   总被引:1,自引:0,他引:1  
Based on publications devoted to the composition of P-rich ferromanganese crusts on Pacific seamounts, relationships between the REE distribution in the crusts and the contents of phosphates and Fe-Mn hydroxides therein are considered. It is shown that REEs in the crusts are related to all three mineral phases and their contents are variable. In general, the REEs show weak correlations with P, Mn, and Fe in different varieties of ore crust. Average REE contents are comparable in samples with the maximal and minimal phosphorus contents, suggesting irregularity of REE distribution in the phosphates and ferromanganese phases. This fact is consistent with data on the presence of natural REE minerals in the phosphates.  相似文献   

4.
The Hawaiian–Emperor Seamount chain records the motion of the Pacific Plate relative to the Hawaiian mantle hotspot for 80 m.y. A notable feature of the chain is the pronounced bend at its middle. This bend had been widely credited to a change in plate motion, but recent research suggests a change in hotspot motion as an alternative. Existing paleomagnetic data from the Emperor Chain suggest that the hotspot moved south during the Late Cretaceous and Early Tertiary, but reached its current latitude by the age of the bend. Thus, data from area of the bend are important for understanding changes in plume latitude. In this study, we analyze the magnetic anomalies of five seamounts (Annei, Daikakuji-W, Daikakuji- E, Abbott, and Colahan) in the region of the bend. These particular seamounts were chosen because they have been recently surveyed to collect multibeam bathymetry and magnetic data positioned with GPS navigation. Inversions of the magnetic and bathymetric data were performed to determine the mean magnetization of each seamount and from these results, paleomagnetic poles and paleolatitudes were calculated. Three of the five seamounts have reversed magnetic polarities (two are normal) and four contain a small volume of magnetic polarity opposite to the main body, consistent with formation during the Early Cenozoic, a time of geomagnetic field reversals. Although magnetization inhomogene ties can degrade the accuracy of paleomagnetic poles calculated from such models, the seamounts give results consistent with one another and with other Pacific paleomagnetic data of approximately the same age. Seamount paleolatitudes range from 13.7 to 23.7, with an average of 19.4 ± 7.4 (2σ). These values are indistinguishable from the present-day paleolatitude of the Hawaiian hotspot. Together with other paleomagnetic and geologic evidence, these data imply that the Hawaiian hotspot has moved little in latitude during the past 45 m.y.  相似文献   

5.
The morphotectonic features of the Central Indian Ocean Basin (CIOB) provide information regarding the development of the basin. Multibeam mapping of the CIOB reveals presence of abundant isolated seamounts and seamount chains sub-parallel to each other and major fracture zones along 73° E, 79° E and 75°45′ E. Morphological analyses were carried out for 200 seamounts that occur either as isolated edifies or along eight sub-parallel chains. The identified eight parallel seamount chains that trend almost north–south and reflecting the absolute motion of the Indian plate, probably originated from the ancient propagative fractures. Inspite of the differences in their height, the seamounts of these eight chains are morphologically correlatable. In the study area the seamounts are clustered north and south of 12° S latitude. Interestingly, in the area north of 12° S (area II: 9°–12° S) the seamounts are distinctly smaller (≤ 400 m height) whereas, the area south of 12° S (area I: 12°–15° S) has a mixed population of seamounts. The normalized abundance of the CIOB seamount is 976 seamounts/106 km2 but on a finer scale this value varies from 500 to 1600 seamounts/106 km2, which is less than the seamount concentrations of the Pacific and Atlantic oceans (9000 to 16,000 seamounts/106 km2). Three categories of seamounts are present in the CIOB e.g. (1) single-peaked (2) multi-peaked and (3) composite. The study indicate that single-peaked seamounts are dominant (89%) while multi-peaked is less (8%) and composite ones are rare (3%) in the CIOB.The progressive northward movement of the Indian continent caused collision between India and Asia at around 62 Ma ago. A majority of the near-axis originated seamounts in the CIOB seemed to have formed as a consequence of the temporally widespread (Cretaceous  65 Ma to late Eocene < 49 Ma) collision between India and Eurasia. The regional stress patterns in the Indian plate vary N to NE in the continent and N to NW in Indian Ocean areas. The combined effect of the regional stress patterns maintained the orientation of the seamount chains and the local stress regime helped in the upwelling of magma and formation of seamounts. The low heat flow, morphological features and geochemical signature indicate that the morphotectonic structures formed contemporaneously with the oceanic crust.  相似文献   

6.
通过大洋一号船DY105--12 /14 航次采集的结壳样品,对中太平洋CL、CM2、CM3、CX、CQ、 CA、CB 海山结壳的主要成壳元素Mn、Fe、Co、Ni、Cu 的含量进行了测试统计,并与邻区的麦哲伦海山、马绍尔群岛、夏威夷群岛和莱恩群岛进行了对比,中太平洋各海山以及不同区域海山结壳的主成分之间存在一些差异,这主要与各海山结壳的物质来源、成壳环境和成壳时代的差异有关。不同形态类型的结壳主成分具有一定的差别,其主要原因可能是生长机制和形成环境不同造成的。  相似文献   

7.
8.
Volcanic rocks in seamounts of the South China Sea consist mainly of alkali basalt, tholeiitic basalt, trachyandesitic pumice, dacite, etc. Inclusions in the minerals of the volcanic rocks are mainly amorphous melt inclusions, which reflects that the volcanic rocks are characterized by submarine eruption and rapid cooling on the seafloor. Furthermore, fluid-melt inclusions have been discovered for the first time in alkali basalts and mantle-derived xenoliths. indicating a process of differentiation between magma and fluid in the course of mantle partial melting. Alkali basalts and inclusions may have been formed in this nonhomogeneous system. Rock-forming temperatures of four seamounts were estimated as follows: the Zhongnan seamount alkali basalt 1155 ∼ 1185 °C; the Xianbei seamount alkali basalt 960 ∼ 1200 °C; tholeiitic basalt 1040 ∼ 1230 °C; the Daimao seamount tholeiitic basalt 1245 ∼ 1280 °C; and the Jianfeng seamount trachyandestic pumice 880 ∼ 1140 °C. Equilibrium pressures of alkali basalts in the Zhongnan and Xianbei seamounts are 13.57 and 8.8 × 108 Pa, respectively. Pyroxene equilibrium temperatures of mantle xenoliths from the Xianbei seamount were estimated at 1073 ∼ 1121 °C, and pressures at (15.58 ∼ 22.47)×108Pa, suggesting a deep-source (e.g. the asthenosphere) for the alkali basalts. This project was financially supported by the National Natural Science Foundation of China and Guangzhou Marine Geology Survey.  相似文献   

9.
太平洋海底富钴结壳中的烃类有机质及其成因意义   总被引:1,自引:0,他引:1  
用气相色谱-质谱(GC-MS)联测方法测定了中西太平洋海底海山富钴结壳中的可溶有机质,对其丰度、生源构成、沉积环境、成熟度等方面进行了初步的探讨.富钴结壳的烃类生物标志化合物大多具成熟烃特征,个别具低成熟烃特点.“A“/C高达9.81~21.15,显示出运移烃的特征;藿烷C31-R(S JR)为0.43~0.46,Tm/(Tm Ts)为0.40~0.59,C30αβ藿烷/(αβ藿烷 βα莫烷)为0.85~0.89,C29αβ藿烷/(αβ藿烷 βα莫烷)为0.81~0.85,c29甾烷20S/(20S 20R)为0.45~0.60,从而计算出Rsc(%)为0.73%~0.81%,个别达到1.06%;C29αββ/(αββ ααα)为0.35~0.42.甾烷丰度顺序为C29甾烷>C27甾烷>C28甾烷,同时检出了孕甾烷和4-甲基甾烷,重排甾烷三角图显示该有机质为Ⅱ型.Pr/Ph值介于0.35~0.82,显示植烷优势.说明烃类形成于强还原环境.链状烷烃、类异戊二烯烷烃、萜烷、甾烷化合物的组成和分布都说明茵藻类低等水生生物和陆源高等植物混合生源输入.洋底热液活动是富钴结壳中有机质热演化的重要热源.有机质在特定的海底条件下生成,并被运移到海山上,通过扩散和浸粢由外层进入结壳.  相似文献   

10.
Ocean currents impinging on topographic obstacles such as seamounts create a high level of variability in mesoscale physical oceanography. In the N Pacific, for example, the structure of the Kuroshio and its extension differ significantly E and W of the Emperor Seamount chain, and eddy fields detected downstream may be attributed to seamount effects. Nearfield effects of seamounts have been theoretically predicted for several decades but only recently has theory been confirmed by observation. Taylor columns, quasi-stationary eddies over seamounts, alter flow patterns and thus have impacts on both benthos on seamounts and on the biota in water overlying the seamount. SE Hancock Seamount, located at the N end of the Hawaiian Ridge (29°47′N; 179°04′E), has a summit depth of 265 m. This seamount is located near the subtropical front and is at the southerly extent of productive seamounts where trawl fisheries have existed in the past. The pelagic ecosystem in the upper 200 m over the seamount clearly differs from waters at control stations at distances of 10's of kilometers away as shown by plankton and midwater trawl hauls and hydroacoustic transects conducted during 1984 and 1985. Over the seamount, hydroacoustic transects show a significantly higher biomass of scatterers as compared to control stations. Sampling these scattering layers with small midwater trawls demonstrates high densities of a resident micronekton fauna dominated by the sternoptychid fish “Maurolicus muelleri” and the mysid “Gnathophausia longispina”; these taxa were virtually absent from the control stations, were oceanic micronekton, particularly larger forms, were generally in higher abundance than at the seamount stations. Similarly, ichthyoplankton abundance differs above the seamount and at reference stations. In summer sampling, larval fishes were less abundant over the seamount whereas in winter the abundance was greater there. The differences in distribution and abundance of both micronekton and ichthyoplankton are significant and consistently observed, suggesting that physical or biological processes at the seamount have important effects on the pelagic ecosystem. Hypotheses concerning current — topography interactions, exclusion of vertical migrators, and predation by resident micronekton and fishes can be used to explain the observed effects. Seamounts and other areas of complex topography are frequently sites of highly productive ecosystems; the S Emperor and N Hawaiian Ridge seamounts provide a good example, with a catch of approximately one million tons of boarfish in ten years. The interaction of ocean currents and complex topography may play an important role in this high productivity, as demonstrated in the high biomass of lower trophic levels in the seamount ecosystem. Interannual variability in the latitudinal position of the subtropical front and the strength of current flow over these seamounts may result in significant differences in mesoscale physical oceanography and therefore in the productivity of these ecosystems.  相似文献   

11.
12.
13.
14.
南海盆海山火山碎屑岩的发现及其地质意义   总被引:3,自引:0,他引:3  
鄢全树  石学法 《岩石学报》2009,25(12):3327-3334
海山火山碎屑岩是水下爆发性火山作用的产物.南海盆两座海山上发现火山碎屑岩表明海山顶部曾经一度高于PCL(压力补偿深度).岩相学特征显示这些火山碎屑岩的胶结物主要为一混合相,包括粘土矿物和黑色铁质矿物等,这从一个侧面反映海山的正地形限制了粗粒外生碎屑到达海山顶部.岩石的单矿物组分、主量元素化学特征与同海山玄武质熔岩具有可比性,属碱性岩浆系列.计算获得海山平均最小下沉速率为0.06mm/年,最大可能达0.30mm/年.海山岩石的机械风化产物对周围海盆的沉积作用作出重要贡献.  相似文献   

15.
16.
We present new 40Ar/39Ar data for two of the Tore-Madeira Rise (TMR) volcanic seamounts. A sample from Tore East seamount on the northern part of the TMR yielded an ultra-precise age of 80.50 ± 0.13 Ma (2σ) that is similar within uncertainties to a published age obtained by U–Pb TIMS technique on titanites and zircons extracted from Tore NW seamount. Another sample from Isabelle seamount, located on the southern part of the TMR failed to produce a plateau age but yielded a minimum age estimate of >85 Ma. We filtered the published ages available on the TMR, the surrounding seamounts and the massifs of southwest Portugal to better understand the origin of this magmatic province. Together with this dataset, our new data suggest that: (1) a hypothetical Madeira hot-spot track spanning from Serra de Monchique on the continent to Madeira Archipelago is difficult to reconcile with the occurrence of several seamounts geographically located within or very close to this alleged hot-spot track yet being much older than the age predicted by the age trend.

(2) The geographical distribution and age pattern of the TMR and surrounding areas magmatism are still best explained by the interaction of a mantle melting anomaly emitting magma pulses and the different motion phases of the Iberia plate since 103 Ma.

  相似文献   

17.
Jonas B. Ruh 《地学学报》2016,28(3):163-170
Seamounts entering active subduction zone trenches initially collide with the frontal sedimentary accretionary wedges resulting in severe deformation of the overriding plate. A typical feature of this deformation is the occurrence of submarine landslides due to gravitational instabilities. Such landslides have been reported from the Middle America and Hikurangi trenches and potentially generate tsunami waves. Yet, the dynamics of accretionary wedges during seamount indentation, and landsliding as a mechanical response in particular, have not been investigated qualitatively. Here, I use 3D high‐resolution numerical experiments to model the collision of conical and flat‐topped seamounts into accreting sedimentary sequences. Results show that the topographical evolution of an accretionary wedge mainly depends on the volume of the entering seamount and not on its height. Submarine landslides occur only if seamounts are not completely buried by the sedimentary sequence, and the volume of the avalanche is roughly correlated with the seamount volume overtopping the incoming sediments.  相似文献   

18.
19.
Two subducting seamounts under inner trench slopes have been identified around Japan on the basis of magnetic anomalies, morphology and geological structure. The first one is located under the foot of the inner trench slope at the junction between the Japan Trench and the Kuril Trench. Another one occurs beneath the slope slightly seaward of the Tosabae (the basement high at the trench slope break along the Nankai Trough off Shikoku). The magnetic anomalies of seamount origin are accompanied by the characteristic morphology of a forearc wedge i.e., a swell landward and a depression seaward. The seamounts beneath the inner trench slopes have preserved magnetization showing reasonably consistent directions, which suggests that the subducting seamounts have kept roughly their original shapes. The morphology of the forearc wedge can be explained by a subducting seamount on the oceanic crust pushing the forearc material forward and upward. Deformation of the forearc wedge by the subducting seamount extends to the forearc basin. The seamounts are stronger and less deformable than the inner slope material and are not offscraped onto inner trench slopes.

Two other examples of deformed inner trench slopes around Japan which can be explained by subduction of topographic highs are presented. One example is a depression on the foot of the inner trench slope northeast of the junction between the Kyushu-Palau Ridge and the Nankai Trough. Another one is an area of complex morphology of the inner trench slope along the Japan Trench around the Daiichi-Kashima Seamount.  相似文献   


20.
Based on the analysis of planktonic and benthic foraminiferal assemblages, geological dating of the major elements of the section (layers) in the Co-rich manganese crust of the Magellan seamounts has been accomplished. The ore crust layers were formed at the following age intervals: layer I-1 in the Late Paleocene-Early Eocene, layer I-2 in the Middle-first half of Late Eocene, layer II in the Middle-Late Miocene, and layer III in the Pleistocene. Relict layers of the older crust, which underlies the main section in some places, are dated at the Campanian-Maestrichtian and Late Paleocene(?). Data on foraminifers generally fit the results obtained previously based on the analysis of nannoplankton assemblages. Insignificant discrepancies in the datings require further refinement and explanation. Biostratigraphic investigations of the sedimentary cover made it possible to identify the Aptian-Turonian, Campanian-Maestrichtian, Late Paleocene-Eocene, and Miocene rock associations and the unlithified Pliocene-Quaternary sediments. Comparison of the structure and composition of ore crust layers with the coeval rocks of the sedimentary cover revealed that layers I-1 and I-2 were deposited at depths corresponding to the shelf-upper bathyal zone (shallower than 600 m). Relict layers could be formed at even shallower depths up to the photic zone. The upper layers II and III were formed under nearly present-day conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号