首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plumes produced by the impacts of asteroids and comets consist of rock vapor and heated air. They emit visible light, ultraviolet, and infrared radiation, which can greatly affect the environment. We have carried out numerical simulations of the impacts of stony and cometary bodies with a diameter of 0.3, 1, and 3 km, which enter the atmosphere at various angles, using a hydrodynamic model supplemented by radiation transfer. We assumed that the cosmic object has no strength, and deforms, fragments, and vaporizes in the atmosphere. After the impact on the ground, the formation of craters and plumes was simulated, taking the internal friction of destroyed rocks and the trail formed in the atmosphere into account. The equation of radiative transfer, added to the equations of gas dynamics, was used in the approximation of radiative heat conduction or, if the Rosseland optical depth of a radiating volume of gas and vapor was less than unity, in the volume‐emission approximation. We used temperature and density distributions obtained in these simulations to calculate radiation fluxes on the Earth's surface by integrating the equation of radiative transfer along rays passing through a luminous region. We used tables of the equation of state of dunite and quartz (for stony impactors and a target) and air, as well as tables of absorption coefficients of air, vapor of ordinary chondrite, and vapor of cometary material. We have calculated the radiation impulse on the ground and the impact radiation efficiency (a ratio of thermal radiation energy incident on the ground to the kinetic energy of a body), which ranges from ~0.5% to ~9%, depending on the impactor size and the angle of entry into the atmosphere. Direct thermal radiation from fireballs and impact plumes, poses a great danger to people, animals, plants, and economic objects. After the impacts of asteroids at a speed of 20 km s?1 at an angle of 45°, a fire can occur at a distance of 250 km if the asteroid has a diameter of 0.3 km, and at a distance of 2000 km if the diameter is 3 km.  相似文献   

2.
The Morasko strewn field located near Poznań, Poland comprises seven impact craters with diameters ranging from 20 to 90 m, all of which were formed in glacial sediments around 5000 yr ago. Numerous iron meteorites have been recovered in the area and their distribution suggests a projectile with the trajectory from NE to SW. Similar impact events producing crater strewn fields on average happen every 500 yr and pose a serious risk for modern civilization, which is why it is of utmost importance to study terrestrial strewn fields in detail. In this work, we investigate the Morasko meteoroid passage through the atmosphere, the distribution of its fragments on the ground, and the process of forming individual craters by means of numerical modeling. By combining atmospheric entry modeling, Pi‐group scaling of transient crater size and hydrocode simulations of impact processes, we constructed a comprehensive model of the Morasko strewn field formation. We determined the preatmospheric parameters of the Morasko meteoroid. The entry mass is between 600 and 1100 tons, the velocity range is between 16 and 18 km s?1, and the trajectory angle is 30–40°. Such entry velocities and trajectory angles do not deviate from typical values for near‐Earth asteroids, although the initial mass we determined can be considered as small. Our studies on velocities and masses of crater‐forming fragments showed that the biggest Morasko crater was formed by a projectile about 1.5 m in diameter with the impact velocity ~10 km s?1. Environmental consequences of the Morasko impact event are very localized.  相似文献   

3.
The observation of gullies on Mars raised questions about the presence of liquid water in the recent past. In some regions like Hale and Bond crater, gullies occur in one crater (Hale) but do not in another crater nearby (Bond). These regional differences have been interpreted as an argument for a formation of the gullies related to groundwater. The formation of gullies on Earth depends on rainfall and/or melting of snow as well as on several parameters such as the presence of steep slopes and sufficient amounts of fines and debris. We investigated the Hale/Bond region for differences in crater wall morphology and texture, slopes, and thermal properties to determine whether the gully formation is dependent on factors such as steep slope angles and availability of fine-grained material. Morphologically there exist two kinds of gullies in the Hale crater: Gullies on the south- and east-facing crater slopes have a pristine appearance with deep channels eroded into the talus material and well-preserved aprons. Gully-like features on the north- and west-facing slopes are degraded and superposed by craters, indicating that they are old in comparison to the pristine ones. However, their formation process is unclear and might be due to debris flows, surface runoff or dry mass wasting processes or a combination of these processes. The crater walls of Bond do not show gullies. Their morphology is most likely consistent with a degraded mantle deposit. Slope measurements reveal that the gullies in Hale crater occur on slopes between ~20° and ~30° in contrast to the slopes without gullies in Bond that are between ~10° and ~20° steep. Mean thermal inertia values on slopes with younger gullies are ~175 J m?2 K?1 s?1/2 corresponding to higher amounts of fine-grained material. At slopes with older gully-like features mean thermal inertia values are ~315 J m?2 K?1 s?1/2 corresponding to higher amounts of bedrock or possibly indurated grain sizes. Mean thermal inertia values of the Bond crater walls are ~230 J m?2 K?1 s?1/2 indicating more consolidated terrain possibly due to the cementation of the dissected mantle material. From our investigation we conclude that the occurrence of gullies in the Hale/Bond region most likely depends on the distribution of unconsolidated material and steep slopes. The regional and local gully distribution on Mars likely varies due to differences in topography and surface material properties. Their proposed clustered distribution on Mars is not an argument for a groundwater formation mechanism of the gullies.  相似文献   

4.
Since the discovery of shatter cones (SCs) near the village of Agoudal (Morocco, Central High Atlas Mountains) in 2013, the absence of one or several associated circular structures led to speculation about the age of the impact event, the number, and the size of the impact crater or craters. Additional constraints on the crater size, age, and erosion rates are obtained here from geological, structural, and geophysical mapping and from cosmogenic nuclide data. Our geological maps of the Agoudal impact site at the scales of 1:30,000 (6 km2) and 1:15,000 (2.25 km2) include all known occurrences of SCs in target rocks, breccias, and vertical to overturned strata. Considering that strata surrounding the impact site are subhorizontal, we argue that disturbed strata are related to the impact event. Three types of breccias have been observed. Two of them (br1‐2 and br2) could be produced by erosion–sedimentation–consolidation processes, with no evidence for impact breccias, while breccia (br1) might be impact related. The most probable center of the structure is estimated at 31°59′13.73?N, 5°30′55.14?W using the concentric deviation method applied to the orientation of strata over the disturbed area. Despite the absence of a morphological expression, the ground magnetic and electromagnetic surveys reveal anomalies spatially associated with disturbed strata and SC occurrences. The geophysical data, the structural observations, and the area of occurrence of SCs in target rocks are all consistent with an original size of 1.4–4.2 km in diameter. Cosmogenic nuclide data (36Cl) constrain the local erosion rates between 220 ± 22 m Ma?1 and 430 ± 43 m Ma?1. These erosion rates may remove the topographic expression of such a crater and its ejecta in a time period of about 0.3–1.9 Ma. This age is older than the Agoudal iron meteorite age (105 ± 40 kyr). This new age constraint excludes the possibility of a genetic relationship between the Agoudal iron meteorite fall and the formation of the Agoudal impact site. A chronolgy chart including the Atlas orogeny, the alternation of sedimentation and erosion periods, and the meteoritic impacts is presented based on all obtained and combined data.  相似文献   

5.
Some eucrites contain up to 10 vol% silica minerals; however, silica minerals have not been studied in detail so far. We performed a mineralogical study of silica minerals in three cumulate eucrites (Moore County, Moama, and Yamato [Y] 980433). Monoclinic tridymite was common in all three samples. Moama contained orthorhombic tridymite as lamellae within monoclinic tridymite grains. Y 980433 included quartz around an impact melt vein. The presence of orthorhombic tridymite in Moama indicates that Moama cooled more rapidly than the other two samples at low temperatures (<400 °C). This result is different from the slower cooling rates of Moama (?0.0004 °C yr?1) than that of Moore County (>0.3 °C yr?1, after the shock event) at high temperatures (>500 °C) estimated from compositional profiles of pyroxene exsolution lamellae. The difference of the cooling rates may reflect their geological settings. Y 980433 cooled slowly at low temperature, as did Moore County. Quartz in Y 980433 could be a local product transformed from monoclinic tridymite by a shock event. We suggest that silica minerals in meteorites record thermal histories at low temperatures and shock events.  相似文献   

6.
7.
Abstract— Libyan Desert Glass (LDG) is an impact‐related, natural glass of still unknown target material. We have determined Rb‐Sr and Sm‐Nd isotopic ratios from seven LDG samples and five associated sandstones from the LDG strewn field in the Great Sand Sea, western Egypt. Planar deformation features were recently detected in quartz from these sandstones. 87Sr/86Sr ratios and ?‐Nd values for LDG range between 0.71219 and 0.71344, and between –16.6 and –17.8, respectively, and hence are distinct from the less radiogenic 87Sr/86Sr ratios of 0.70910–0.71053 and ?‐Nd values from –6.9 to –9.6 for the local sandstones from the LDG strewn field. Previously published isotopic ratios from the Libyan BP and Oasis crater sandstones are generally incompatible with our LDG values. LDG formation undoubtedly occurred at 29 Ma, but neither the Rb‐Sr nor the Sm‐Nd isotopic system were rehomogenised during the impact event, as we can deduce from Pan‐African ages of ?540 Ma determined from the regression lines from a total of 14 LDG samples from this work and the literature. Together with similar Sr and Nd isotopic values for LDG and granitoid rocks from northeast Africa west of the Nile, these findings point to a sandy matrix target material for the LDG derived from a Precambrian crystalline basement, ruling out the Cretaceous sandstones of the former “Nubian Group” as possible precursors for LDG.  相似文献   

8.
The terrestrial impact record contains currently ~145 structures and includes the morphological crater types observed on the other terrestrial planets. It has, however, been severely modified by terrestrial geologic processes and is biased towards young (≤ 200 Ma) and large (≥ 20 km) impact structures on relatively well-studied cratonic areas. Nevertheless, the ground-truth data available from terrestrial impact structures have provided important constraints for the current understanding of cratering processes. If the known sample of impact structures is restricted to a subsample in which it is believed that all structures ≥ 20 km in diameter (D) have been discovered, the estimated terrestrial cratering rate is 5.5±2.7 × 10?15km?2a?1 for D ≥ 20 km. This rate estimate is equivalent to that based on astronomical observations of Earth-crossing bodies. These rates are a factor of two higher, however, than the estimated post-mare cratering rate on the moon but the large uncertainties preclude definitive conclusions as to the significance of this observation. Statements regarding a periodicity in the terrestrial cratering record based on time-series analyses of crater ages are considered unjustified, based on statistical arguments and the large uncertainties attached to many crater age estimates. Trace element and isotopic analyses of generally siderophile group elements in impact lithologies, particularly impact melt rocks, have provided the basis for the identification of impacting body compositions at a number of structures. These range from meteoritic class, e.g., C-1 chondrite, to tentative identifications, e.g., stone?, depending on the quality and quantity of analytical data. The majority of the identifications indicate chondritic impacting bodies, particularly with respect to the larger impact structures. This may indicate an increasing role for cometary impacts at larger diameters; although, the data base is limited and some identifications are equivocal. To realize the full potential of the terrestrial impact record to constrain the character of the impact flux, it will be necessary to undertake additional and systematic isotopic and trace element analyses of impact lithologies at well-characterized terrestrial impact structures.  相似文献   

9.
Abstract– The fluence of dust particles <10 μm in diameter was recorded by impacts on aluminum foil of the NASA Stardust spacecraft during a close flyby of comet 81P/Wild 2 in 2004. Initial interpretation of craters for impactor particle dimensions and mass was based upon laboratory experimental simulations using projectiles less than >10 μm in diameter and the resulting linear relationship of projectile to crater diameter was extrapolated to smaller sizes. We now describe a new experimental calibration program firing very small monodisperse silica projectiles (470 nm–10 μm) at approximately 6 km s?1. The results show an unexpected departure from linear relationship between 1 and 10 μm. We collated crater measurement data and, where applicable, impactor residue data for 596 craters gathered during the postmission preliminary examination phase. Using the new calibration, we recalculate the size of the particle responsible for each crater and hence reinterpret the cometary dust size distribution. We find a greater flux of small particles than previously reported. From crater morphology and residue composition of a subset of craters, the internal structure and dimensions of the fine dust particles are inferred and a “maximum‐size” distribution for the subgrains composing aggregate particles is obtained. The size distribution of the small particles derived directly from the measured craters peaks at approximately 175 nm, but if this is corrected to allow for aggregate grains, the peak in subgrain sizes is at <100 nm.  相似文献   

10.
Abstract— The recent Carancas meteorite impact event caused a worldwide sensation. An H4–5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye‐witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter‐sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100–1000 MJ (0.024–0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12–14 kms?1) and shallow entry angles (<20 °) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40–60 °), and an impact velocity of 350–600 ms?1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of infrasound signals.  相似文献   

11.
We present the outcomes of simulations of the formation of the Vista Alegre impact structure, Paraná Basin, Brazil. The target comprised a thick sequence of volcanic rocks of predominantly basaltic composition of the Serra Geral Formation that had been deposited on top of sedimentary rocks (sandstones) of the Pirambóia/Botucatu formations. The cratering process was modeled using the iSALE shock physics code. Our best‐fit model suggests that (1) the crater was originally ~10 km in size; (2) it was formed in ~115 s by a stony projectile of 1000 m in diameter, for an assumed impact velocity of 12 km s?1; (3) target rocks underwent a peak pressure of ~20 GPa, in agreement with previous petrographic investigations of shock deformation. Furthermore, the model points out that the sedimentary strata below the layer of volcanic rocks were raised by ~650 meters at the central part of the crater, which resulted in the current partial exposure of the sandstones at the surface. The outcomes of our modeling suggest that parameters like cohesion and strength of the target rocks, after shock compression, determined the final morphology of the crater, especially the absence of a topographically prominent central peak. Finally, the results of the numerical modeling are roughly in agreement with gravity data over the structure, in particular with respect to the presence of the uplifted sedimentary strata, which are responsible for a low gravity signature at the center of the structure.  相似文献   

12.
Målingen is the 0.7 km wide minor crater associated to the 10 times larger Lockne crater in the unique Lockne–Målingen doublet. The craters formed at 458 Ma by the impact of a binary asteroid related to the well-known 470 Ma Main Belt breakup event responsible for a large number of Ordovician craters and fossil meteorites. The binary asteroid struck a target sequence including ~500 m of sea water, ~80 m of limestone, ~30 m of dark mud, and a peneplainized Precambrian crystalline basement. Although the Lockne crater has been extensively studied by core drillings and geophysics, little is known about the subsurface morphology of Målingen. We performed magnetic susceptibility and remanence, as well as density, measurements combined with gravity, and magnetic field surveys over the crater and its close vicinity as a base for forward magnetic and gravity modeling. The interior of the crater shows a general magnetic low of 90–100 nT broken by a clustered set of high-amplitude, short wavelength anomalies caused by bodies of mafic rock in the target below the crater and as allogenic blocks in the crater infill. The gravity shows a general −1.4 mgal anomaly over the crater caused by low-density breccia infill and fractured crystalline rocks below the crater floor. The modeling also revealed a slightly asymmetrical shape of the crater that together with the irregular ejecta distribution supports an oblique impact from the east, which is consistent with the direction of impact suggested for the Lockne crater.  相似文献   

13.
Over the last decade, silica aerogel tracks and aluminum foil craters on the Stardust collector have been studied extensively to determine the nature of captured cometary dust grains. Analysis of particles captured in aerogel has been developed to a fine art, aided by sophisticated preparation techniques, and yielding revolutionary knowledge of comet dust mineralogy. The Stardust foil craters can be interpreted in terms of impacting particle size and structure, but almost all studies of composition for their contents have relied on in situ analysis techniques or relatively destructive extraction of materials. This has limited their examination and interpretation. However, numerous experimental hypervelocity impact studies under Stardust-Wild 2 encounter conditions have shown that abundant dust components are preserved in foil craters of all sizes. Using some of these analogue materials, we have previously shown that modern, nondestructive scanning electron microscope imaging and X-ray microanalysis techniques can document distribution of dust remnants both quickly and thoroughly within foil craters prior to any preparation. Here we present findings from our efforts to quantify the amount of residue and demonstrate a simple method of crater shape modification which can bring material into positions where it is much more accessible for in situ analysis, or safe removal of small subsamples. We report that approximately 50% of silicate-dominated impactors were retained as impact crater residue; however, <3% of organic impactors remained in the craters after impact.  相似文献   

14.
The two neighboring Suvasvesi North and South impact structures in central‐east Finland have been discussed as a possible impact crater doublet produced by the impact of a binary asteroid. This study presents 40Ar/39Ar geochronologic data for impact melt rocks recovered from the drilling into the center of the Suvasvesi North impact structure and melt rock from glacially transported boulders linked to Suvasvesi South. 40Ar/39Ar step‐heating analysis yielded two essentially flat age spectra indicating a Late Cretaceous age of ~85 Ma for the Suvasvesi North melt rock, whereas the Suvasvesi South melt sample gave a Neoproterozoic minimum (alteration) age of ~710 Ma. Although the statistical likelihood for two independent meteorite strikes in close proximity to each other is rather low, the remarkable difference in 40Ar/39Ar ages of >600 Myr for the two Suvasvesi impact melt samples is interpreted as evidence for two temporally separate, but geographically closely spaced, impacts into the Fennoscandian Shield. The Suvasvesi North and South impact structures are, thus, interpreted as a “false” crater doublet, similar to the larger East and West Clearwater Lake impact structures in Québec, Canada, recently shown to be unrelated. Our findings have implications for the reliable recognition of impact crater doublets and the apparent rate of binary asteroid impacts on Earth and other planetary bodies in the inner solar system.  相似文献   

15.
To study the accretional growth of rimmed chondrules and their agglomerates in the solar nebula, we measured the restitution coefficients, ε, and the sticking velocities to a porous silica layer, vc, by impacting the silica layer with a glass ball at velocities from 0.1 to 80 m s?1. We used a porous silica layer covering a basalt block with thicknesses ranging from 1/5 of the glass ball radius to equal to the glass ball radius as a rimmed chondrule analogue, and the porosity of the silica layer was set to be 70%, 80%, 85%, and 90%. Collisional experiments were conducted by means of the free fall method or by the use of a spring gun or a gas gun, allowing us to vary the impact velocity. We used a laser displacement meter to estimate the impact and rebound velocities as well as the acceleration during the collision at impact velocities below 1 m s?1. As a result, the sticking velocity, vc, of 90%- and 85%- porosity layers with a thickness equal to 1/2 of the glass ball diameter was 0.44 and 2.4 m s?1, respectively. On the other hand, we found a distinct barrier to sticking for smaller-porosity layers: the silicate layer with a porosity smaller than 80% never exhibited sticking at any impact velocity below 1 m s?1. Instead, we observed a rebound effect with restitution coefficients larger than 0.2. In the case of a silica layer with a porosity smaller than 80%, we observed the sub-sticking condition defined by ε < 0.1 at velocities extending from 5 m s?1 to 70 m s?1.  相似文献   

16.
Libyan Desert Glass (LDG) is an enigmatic natural glass, about 28.5 million years old, which occurs on the floor of corridors between sand dunes of the southwestern corner of the Great Sand Sea in western Egypt, near the Libyan border. The glass occurs as centimeter‐ to decimeter‐sized, irregularly shaped, and strongly wind‐eroded pieces. The origin of the LDG has been the subject of much debate since its discovery, and a variety of exotic processes were suggested, including a hydrothermal sol‐gel process or a lunar volcanic source. However, evidence of an impact origin of these glasses included the presence of schlieren and partly or completely digested minerals, such as lechatelierite, baddeleyite (a high‐T breakdown product of zircon), and the presence of a meteoritic component in some of the glass samples. The source material of the glass remains an open question. Geochemical data indicate that neither the local sands nor sandstones from various sources in the region are good candidates to be the sole precursors of the LDG. No detailed studies of all local rocks exist, though. There are some chemical and isotopic similarity to rocks from the BP and Oasis impact structures in Libya, but no further evidence for a link between these structures and LDG was found so far. These complications and the lack of a crater structure in the area of the LDG strewn field have rendered an origin by airburst‐induced melting of surface rocks as a much‐discussed alternative. About 20 years ago, a few shocked quartz‐bearing breccias (float samples) were found in the LDG strewn field. To study this question further, several basement rock outcrops in the LDG area were sampled during three expeditions in the area. Here we report on the discovery of shock‐produced planar microdeformation features, namely planar fractures (PFs), planar deformation features (PDFs), and feather features (FFs), in quartz grains from bedrock samples. Our observations show that the investigated samples were shocked to moderate pressure, of at least 16 GPa. We interpret these observations to indicate that there was a physical impact event, not just an airburst, and that the crater has been almost completely eroded since its formation.  相似文献   

17.
The contributions of lunar microcrater studies to understand the overall micrometeoroid environment are summarized and compared to satellite data.In comparison with small-scale laboratory studies, most lunar crater morphologies are compatible only with impact velocities > 3·5 km/sec and projectile densities between 1–8 g/cm3; a mean value is most likely 2–4 g/cm3. The particles arenon-porous and fairly equi-dimensional; needles, platelets, rods, whiskers and other highly asymmetric particle shapes can be excluded. Data on projectile chemistry is sparse and non-diagnostic at present.The crater diameters are converted into projectile masses via small scale laboratory impact experiments. Accordingly, the observed span of crater pit diameters (0·1 μm–1 cm) corresponds to a particle mass range of ≈ 10?15–10?3 g. This large, dynamic detection range is a unique feature of the lunar rock detector. Absolute crater densities on different rocks vary from “production” to “equilibrium” conditions. After normalization of such densities, relative microcrater size frequencies are obtained to deduce a mass frequency distribution for particles 10?15–10?3 g. There is evidence that this distribution is bimodal. A radiation pressure cutoff at 10?12 g particle mass does not exist. The micrometeoroid flux obtained from lunar rocks is compatible with satellite data. There is indication that the micrometeoroid flux may have been lower in the past. Some speculative astronomical consequences concerning the origin of micrometeoroids are discussed.  相似文献   

18.
The results of numerical simulations of the Eltanin impact are combined with the available geological data in order to reconstruct the impact dynamics and to get some constraints on the impact parameters. Numerical simulations show that the Eltanin projectile size should be less than 2 km for a 45° oblique impact and less than 1.5 km for a vertical impact. On the other hand, we demonstrate that the projectile diameter cannot be considerably smaller than 1 km; otherwise, the impact‐induced water flow cannot transport eroded sediments across large distances. The maximum displacement approximately equals the water crater radius and rapidly decreases with increasing distances. Numerical simulations also show that ejecta deposits strongly depend on impact angle and projectile size and, therefore, cannot be used for reliable estimates of the initial projectile mass. The initial amplitudes of tsunami‐like waves are estimated. The presence of clay‐rich sediments, typical for the abyssal basins in cores PS2709 and PS2708 on the Freeden Seamounts (Bellingshausen Sea, Southern Ocean) combined with numerical data allow us to suggest a probable point of impact to the east of the seamounts. The results do not exclude the possibility that a crater in the ocean bottom may exist, but such a structure has not been found yet.  相似文献   

19.
Abstract– The <1,100 yr old Whitecourt meteorite impact crater, located south of Whitecourt, Alberta, Canada, is a well‐preserved bowl‐shaped structure having a depth and diameter of approximately 6 and 36 m, respectively. There are fewer than a dozen known terrestrial sites of similar size and age. Unlike most of these sites, however, the Whitecourt crater contains nearly all of the features associated with small impact craters including meteorites, ejecta blanket, observable transient crater boundary, raised rim, and associated shock indicators. This study indicates that the crater formed from the impact of an approximately 1 m diameter type IIIAB iron meteoroid traveling east‐northeast at less than approximately 10 km s?1, striking the surface at an angle between 40° and 55° to horizontal. It appears that the main mass survived atmospheric transit relatively intact, with fragmentation and partial melting during impact. Most meteoritic material has a jagged, shrapnel‐like morphology and is distributed downrange of the crater.  相似文献   

20.
The SMART‐1 end‐of‐life impact with the lunar surface was simulated with impacts in a two stage light‐gas gun onto inclined basalt targets with a shallow surface layer of sand. This simulated the probable impact site, where a loose regolith will have overlaid a well consolidated basaltic layer of rock. The impact angles used were at 5° and 10° from the horizontal. The impact speed was ~2 km s?1 and the projectiles were 2.03 mm diameter aluminum spheres. The sand depth was between approximately 0.8 and 1.8 times the projectile diameter, implying a loose lunar surface regolith of similar dimensions to the SMART‐1 spacecraft. A crater in the basement rock itself was only observed in the impact at 10° incidence, and where the depth of loose surface material was less than the projectile diameter, in which case the basement rock also contained a small pit‐like crater. In all cases, the projectile ricocheted away from the impact site at a shallow angle. This implies that at the SMART‐1 impact site the crater will have a complicated structure, with exposed basement rock and some excavated rock displaced nearby, and the main spacecraft body itself will not be present at the main crater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号