首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 184 confirmed impact structures are known on Earth to date, as registered by the Earth Impact Database . The discovery of new impact structures has progressed in recent years at a rather low rate of about two structures per year. Here, we introduce the discovery of the approximately 10 km diameter Santa Marta impact structure in Piauí State in northeastern Brazil. Santa Marta is a moderately sized complex crater structure, with a raised rim and an off‐center, approximately 3.2 km wide central elevated area interpreted to coincide with the central uplift of the impact structure. The Santa Marta structure was first recognized in remote sensing imagery and, later, by distinct gravity and magnetic anomalies. Here, we provide results obtained during the first detailed ground survey. The Bouguer anomaly map shows a transition from a positive to a negative anomaly within the structure along a NE–SW trend, which may be associated with the basement signature and in parts with the signature developed after the crater was formed. Macroscopic evidence for impact in the form of shatter cones has been found in situ at the base around the central elevated plateau, and also in the interior of fractured conglomerate boulders occurring on the floor of the surrounding annular basin. Planar deformation features (PDFs) are abundant in sandstones of the central elevated plateau and at scattered locations in the inner part of the ring syncline. Together, shatter cones and PDFs provide definitive shock evidence that confirms the impact origin of Santa Marta. Crystallographic orientations of PDFs occurring in multiple sets in quartz grains are indicative of peak shock pressures of 20–25 GPa in the rocks exposed at present in the interior of the crater. In contrast to recent studies that have used additional, and sometimes highly controversial, alleged shock recognition features, Santa Marta was identified based on well‐understood, traditional shock evidence.  相似文献   

2.
Abstract— The results of a new gravity survey show that the Haughton impact structure is associated with a 24 km diameter negative Bouguer gravity anomaly with a maximum amplitude of ?12 mgal. A local minimum with a half-width of 2 km and an amplitude of ?4 mgal is located at the center of the structure. A positive magnetic total field anomaly with a half-width of 0.6 km and an amplitude of 700 nT coincides with the local central gravity anomaly. The overall negative gravity anomaly is explained by lowered rock densities due to impact-related fracturing in the crater area. The central gravity and magnetic anomalies are believed to be due to highly shocked and heated sedimentary and crystalline basement rocks forming the unexposed peak of the central uplift in the Haughton impact structure.  相似文献   

3.
We present the outcomes of simulations of the formation of the Vista Alegre impact structure, Paraná Basin, Brazil. The target comprised a thick sequence of volcanic rocks of predominantly basaltic composition of the Serra Geral Formation that had been deposited on top of sedimentary rocks (sandstones) of the Pirambóia/Botucatu formations. The cratering process was modeled using the iSALE shock physics code. Our best‐fit model suggests that (1) the crater was originally ~10 km in size; (2) it was formed in ~115 s by a stony projectile of 1000 m in diameter, for an assumed impact velocity of 12 km s?1; (3) target rocks underwent a peak pressure of ~20 GPa, in agreement with previous petrographic investigations of shock deformation. Furthermore, the model points out that the sedimentary strata below the layer of volcanic rocks were raised by ~650 meters at the central part of the crater, which resulted in the current partial exposure of the sandstones at the surface. The outcomes of our modeling suggest that parameters like cohesion and strength of the target rocks, after shock compression, determined the final morphology of the crater, especially the absence of a topographically prominent central peak. Finally, the results of the numerical modeling are roughly in agreement with gravity data over the structure, in particular with respect to the presence of the uplifted sedimentary strata, which are responsible for a low gravity signature at the center of the structure.  相似文献   

4.
Regional geological mapping of the glaciated surface of northwestern Victoria Island in the western Canadian Arctic revealed an anomalous structure in otherwise flat‐lying Neoproterozoic and lower Paleozoic carbonate rocks, located south of Richard Collinson Inlet. The feature is roughly circular in plan view, approximately 25 km in diameter, and characterized by quaquaversal dips of approximately 45°, decreasing laterally. The core of the feature also exhibits local vertical dips, low‐angle reverse faults, and drag folds. Although brecciation was not observed, shatter cones are pervasive in all lithologies in the central area, including 723 Ma old dikes that penetrate Neoproterozoic limestones. Their abundance decreases distally, and none was observed in surrounding, horizontally bedded strata. This circular structure is interpreted as a deeply eroded meteorite impact crater of the complex type, and the dipping strata as the remnants of the central uplift. The variation in orientation and shape of shatter cones point to variably oriented stresses with the passage of the shock wave, possibly related to the presence of pore water in the target strata as well as rock type and lithological heterogeneities, especially bed thickness. Timing of impact is poorly constrained. The youngest rocks affected are Late Ordovician (approximately 450 Ma) and the impact structure is mantled by undisturbed postglacial sediments. Regional, hydrothermal dolomitization of the Ordovician limestones, possibly in the Late Devonian (approximately 360 Ma), took place before the impact, and widespread WSW–ENE‐trending normal faults of probable Early Cretaceous age (approximately 130 Ma) apparently cross‐cut the impact structure.  相似文献   

5.
A relic impact structure was recognized within the strewn field of the Agoudal iron meteorite. The heavily eroded structure has preserved shatter cones in a limestone basement, and remnants of autochthonous and allochthonous breccias. Fragments of iron incorporated into the allochthonous breccia have a chemical composition (Ni = 5.16 wt%, Ir = 0.019 ppm) similar to that of the Agoudal meteorite, supporting a syngenetic origin of the strewn field and the impact structure. The total recovered mass of Agoudal meteorite fragments is estimated at approximately 500 kg. The estimated size of the SE–NW‐oriented strewn field is 6 × 2 km. Model calculations with minimal preatmospheric size show that a similar meteorite strewn field plus one small crater with observed shock effects could be formed by fragmentation of a meteoroid approximately 1.4 m in diameter with an impact angle of approximately 60° from the horizontal. However, the most probable is an impact of a larger, 3–4 m diameter meteoroid, resulting a strewn field with approximately 10 craters, 10–30 m in diameter each, plus numerous meteorite fragments. The calculated scattering area of meteorite shrapnel ejected from these impact craters could completely cover the observed strewn field of the Agoudal meteorite.  相似文献   

6.
Målingen is the 0.7 km wide minor crater associated to the 10 times larger Lockne crater in the unique Lockne–Målingen doublet. The craters formed at 458 Ma by the impact of a binary asteroid related to the well-known 470 Ma Main Belt breakup event responsible for a large number of Ordovician craters and fossil meteorites. The binary asteroid struck a target sequence including ~500 m of sea water, ~80 m of limestone, ~30 m of dark mud, and a peneplainized Precambrian crystalline basement. Although the Lockne crater has been extensively studied by core drillings and geophysics, little is known about the subsurface morphology of Målingen. We performed magnetic susceptibility and remanence, as well as density, measurements combined with gravity, and magnetic field surveys over the crater and its close vicinity as a base for forward magnetic and gravity modeling. The interior of the crater shows a general magnetic low of 90–100 nT broken by a clustered set of high-amplitude, short wavelength anomalies caused by bodies of mafic rock in the target below the crater and as allogenic blocks in the crater infill. The gravity shows a general −1.4 mgal anomaly over the crater caused by low-density breccia infill and fractured crystalline rocks below the crater floor. The modeling also revealed a slightly asymmetrical shape of the crater that together with the irregular ejecta distribution supports an oblique impact from the east, which is consistent with the direction of impact suggested for the Lockne crater.  相似文献   

7.
The Monteville spherule layer (MSL) was deposited in the Griqualand West Basin (GWB) on the Kaapvaal Craton approximately 2.63 Ga. The spherules were generated by a large impact and reworked by impact‐generated waves and/or currents. The MSL has been intersected in three previously undescribed cores. Two of the cores, GKF‐1 and GKP‐1, were drilled ~30 km west of the southernmost outcrop of the MSL. The third core, BH‐47, was drilled ~250 km south and east of the GWB. The MSL contains medium to coarse sand‐size spherules like those described previously in all three cores but each one was emplaced in a different way. In GKF‐1, the MSL is 90 cm thick and contains large rip‐up clasts of basinal carbonate and early diagenetic pyrite. In GKP‐1, the MSL is only 1.5 cm thick and consists largely of fine carbonate sand, yet it contains pyrite intraclasts up to ~1 cm long. In BH‐47, the MSL consists of a lower coarse sandy zone ~37 cm thick rich in spherules, carbonate peloids/ooids, pyrite intraclasts, and quartzose sand and an upper, finer sandy zone ~46 cm thick; neither zone contains any large intraclasts. The new occurrences triple the known extent of the MSL from ~15,000 to ~46,000 km2, support the oceanic impact model for the formation of the MSL, demonstrate that it is a persistent regional time‐stratigraphic marker, place new constraints on the Kaapvaal paleoshoreline at the time of impact, and support the existence of Vaalbara.  相似文献   

8.
The Terny impact structure, located in central Ukraine, displays a variety of diagnostic indicators of shock metamorphism, including shatter cones, planar deformation features in quartz, diaplectic glass, selective melting of minerals, and whole rock melting. The structure has been modified by erosion and subsequently buried by recent sediments. Although there are no natural outcrops of the deformed basement rocks within the area, mining exploration has provided surface and subsurface access to the structure, exposing impact melt rocks, shocked parautochthonous target rocks, and allochthonous impact breccias, including impact melt‐bearing breccias similar to suevites observed at the Ries structure. We have collected and studied samples from surface and subsurface exposures to a depth of approximately 750 m below the surface. This analysis indicates the Terny crater is centered on geographic coordinates 48.13° N, 33.52° E. The center location and the distribution of shock pressures constrain the transient crater diameter to be no less than approximately 8.4 km. Using widely accepted morphometric scaling relations, we estimate the pre‐erosional rim diameter of Terny crater to be approximately 16–19 km, making it close in original size to the well‐preserved El'gygytgyn crater in Siberia. Comparison with El'gygytgyn yields useful insights into the original morphology of the Terny crater and indicates that the amount of erosion Terny experienced prior to burial probably does not exceed 320 m.  相似文献   

9.
Abstract— In Leon County, Texas, USA, the Marquez Dome, an approximately circular 1.2 km diameter zone of disturbed Cretaceous rocks surrounded by shallow dipping Tertiary sediments, has been interpreted by Gibson and Sharpton (1989) and Sharpton and Gibson (1990) as the surface expression of a buried complex impact crater. New gravity and magnetic anomaly data collected over the Marquez Dome have been combined with well‐log and seismic reflection information to develop a better estimate of the overall geometry of the structure. A three‐dimensional model constructed to a depth of 2000 m from all available information indicates a complex crater 13 km in diameter with an uplift in the center of at least 1120 m. The zone of deformation associated with the cratering event is limited to a depth of <1720 m. No impact breccias were recovered in drilling at two locations, 1.1 and 2 km from the center of the structure, and the central uplift may be the only prominent remnant of this impact into unconsolidated, water‐rich sediments. The magnetic anomaly field shows no correlation with the location and extent of the structure.  相似文献   

10.
The fundamental approach for the confirmation of any terrestrial meteorite impact structure is the identification of diagnostic shock metamorphic features, together with the physical and chemical characterization of impactites and target lithologies. However, for many of the approximately 200 confirmed impact structures known on Earth to date, multiple scale‐independent tell‐tale impact signatures have not been recorded. Especially some of the pre‐Paleozoic impact structures reported so far have yielded limited shock diagnostic evidence. The rocks of the Dhala structure in India, a deeply eroded Paleoproterozoic impact structure, exhibit a range of diagnostic shock features, and there is even evidence for traces of the impactor. This study provides a detailed look at shocked samples from the Dhala structure, and the shock metamorphic evidence recorded within them. It also includes a first report of shatter cones that form in the shock pressure range from ~2 to 30 GPa, data on feather features (FFs), crystallographic indexing of planar deformation features, first‐ever electron backscatter diffraction data for ballen quartz, and further analysis of shocked zircon. The discovery of FFs in quartz from a sample of the MCB‐10 drill core (497.50 m depth) provides a comparatively lower estimate of shock pressure (~7–10 GPa), whereas melting of a basement granitoid infers at least 50–60 GPa shock pressure. Thus, the Dhala impactites register a strongly heterogeneous shock pressure distribution between <2 and >60 GPa. The present comprehensive review of impact effects should lay to rest the nonimpact genesis of the Dhala structure proposed by some earlier workers from India.  相似文献   

11.
Abstract— Although mapped initially as a piercement dome, subsequent discovery of shock metamorphism in clasts of an impact breccia, shatter cones in outcrops of uplifted target rocks and morphological and geophysical characteristics consistent with a complex crater, confirmed a meteorite impact origin for the Haughton structure, Devon Island. Results of three field investigations carried out prior to 1984 defined a complex crater, 20 km in diameter, formed in a lower Paleozoic sedimentary sequence overlying gneisses of the Precambrian basement. The distribution of allochthonous breccia overlying the disturbed target rocks and of the sediments deposited in the crater-filling lake were mapped. A Miocene or possibly Holocene age for the crater was based on paleo-flora and fauna assemblages from the lake sediments. Gravity and magnetic surveys revealed anomalies coincident with the crater, but not interpretable from surface lithologies. Some of the early investigations were of a reconnaissance nature and results and interpretation can only be considered preliminary. Other studies that were carried out in some detail, petrographic investigations in particular, require complementary work for a fuller understanding of their significance. As a result, in 1984 the HISS (Haughton Impact Structure Studies) group carried out a program of detailed geological mapping and sampling, and seismic, gravity, and magnetic surveys in an attempt to improve the definition of the surface and subsurface nature of Haughton, and to formulate a more complete understanding of its formation and subsequent history. Results of these various studies are presented in the eight succeeding papers of this volume.  相似文献   

12.
Abstract— Shatter cones have been described from many meteorite impact structures and are widely regarded as a diagnostic macroscopic recognition feature for impact. However, the origin of this meso‐ to macroscopic striated fracture phenomenon has not yet been satisfactorily resolved, and the timing of shatter cone formation in the cratering process still remains enigmatic. Here, previous results from studies of shatter cones from the Vredefort impact structure and other impact structures are discussed in the light of new field observations made in the Vredefort Dome. Contrary to earlier claims, Vredefort cone fractures do not show uniform apex orientations at any given outcrop, nor do small cones show a pattern consistent with the previously postulated “master cone” concept. Simple back‐rotation of impact‐rotated strata to a horizontal pre‐impact position also does not lead to a uniform centripetal‐upward orientation of the cone apices. Striation patterns on the cone surfaces are variable, ranging from the typically diverging pattern branching off the cone apex to subparallel‐to‐parallel patterns on almost flat surfaces. Striation angles on shatter cones do not increase with distance from the center of the dome, as alleged in the literature. Instead, a range of striation angles is measured on individual shatter cones from a specific outcrop. New observations on small‐scale structures in the collar around the Vredefort Dome confirm the relationship of shatter cones with subparallel sets of curviplanar fractures (so‐called multipli‐striated joint sets, MSJS). Pervasive, meter‐scale tensile fractures cross‐cut shatter cones and appear to have formed after the closely spaced MSJ‐type fractures. The results of this study indicate that none of the existing hypotheses for the formation of shatter cones are currently able to adequately explain all characteristics of this fracturing phenomenon. Therefore, we favor a combination of aspects of different hypotheses that includes the interaction of elastic waves, as supported by numerical modeling results and which reasonably explains the variety of shatter cone shapes, the range of striation geometries and angles, and the relationship of closely spaced fracture systems with the striated surfaces. In the light of the currently available theoretical basis for the formation of shatter cones, the results of this investigation lead to the conclusion that shatter cones are tensile fractures and might have formed during shock unloading, after the passage of the shock wave through the target rocks.  相似文献   

13.
Haughton is a ~24 Myr old midsize (apparent diameter 23 km) complex impact structure located on Devon Island in Nunavut, Canada. The center of the structure shows a negative gravity anomaly of ?12 mGal coupled to a localized positive magnetic field anomaly of ~900 nT. A field expedition in 2013 led to the acquisition of new ground magnetic field mapping and electrical resistivity data sets, as well as the first subsurface drill cores down to 13 m depth at the top of the magnetic field anomaly. Petrography, rock magnetic, and petrophysical measurements were performed on the cores and revealed two different types of clast‐rich polymict impactites: (1) a white hydrothermally altered impact melt rock, not previously observed at Haughton, and (2) a gray impact melt rock with no macroscopic sign of alteration. In the altered core, gypsum is present in macroscopic veins and in the form of intergranular selenite associated with colored and zoned carbonate clasts. This altered core has a natural remanent magnetization (NRM) four to five times higher than materials from the other core but the same magnetic susceptibility. Their magnetization is still higher than the surrounding crater‐fill impact melt rocks. X‐ray fluorescence data indicate a similar proportion of iron‐rich phases in both cores and an enrichment in silicates within the altered core. In addition, alternating‐field demagnetization results show that one main process remagnetized the rocks. These results support the hypothesis that intense and possibly localized post‐impact hydrothermal alteration enhanced the magnetization of the clast‐rich impact melt rocks by crystallization of magnetite within the center of the Haughton impact structure. Subsequent erosion was followed by in situ concentration in the subsurface leading to large magnetic gradient on surface.  相似文献   

14.
The Glasford structure in Illinois (USA) was recognized as a buried impact crater in the early 1960s but has never been reassessed in light of recent advances in planetary science. Here, we document shatter cones and previously unknown quartz microdeformation features that support an impact origin for the Glasford structure. We identify the 4 km wide structure as a complex buried impact crater and describe syn‐ and postimpact deposits from its annular trough. We have informally designated these deposits as the Kingston Mines unit (KM). The fossils and sedimentology of the KM indicate a marine depositional setting. The various intervals within the KM constitute a succession of breccia, carbonate, sandstone, and shale similar to marine sedimentary successions preserved in other craters. Graptolite specimens retrieved from the KM place the time of deposition at approximately 455 ± 2 Ma (Late Ordovician, Sandbian). This age determination suggests a possible link between the Glasford impact and the Ordovician meteorite shower, an increase in the rate of terrestrial meteorite impacts attributed to the breakup of the L‐chondrite parent body in the main asteroid belt.  相似文献   

15.
Riachão, located at S7°42′/W46°38′ in Maranhão State, northeastern Brazil, is a complex impact structure of about 4.1 km diameter, formed in Pennsylvanian to Permian sedimentary rocks of the Parnaíba Basin sequence. Although its impact origin was already proposed in the 1970s, information on its geology and shock features is still scarce in the literature. We present here the main geomorphological and geological characteristics of the Riachão impact structure obtained by integrated geophysical and remote sensing analysis, as well as geological field work and petrographic analysis. The identified lithostratigraphic units consist of different levels of the Pedra de Fogo Formation and, possibly, the Piauí Formation. Our petrographic analysis confirms the presence of shock‐diagnostic planar microdeformation structures in quartz grains of sandstone from the central uplift as evidence for an impact origin of the Riachão structure. The absence of crater‐filling impact breccias and melt rocks, shatter cones, as well as the restricted occurrence of microscopic shock effects, suggests that intense and relatively deep erosion has occurred since crater formation.  相似文献   

16.
Abstract– The Vista Alegre structure, centered at 25°57′S and 52°41′W, has been recently proposed as a meteorite impact structure. The 9.5 km‐diameter structure is located in the Paraná state of southern Brazil, within the Paraná Basin, which contains one of the largest and most extensive flood basalt provinces on Earth. The Paraná flood basalts belong to the Serra Geral Formation and are temporally related to the opening of the South Atlantic Ocean, having been dated at about 133–132 Ma. Tholeiitic basalts dominate the western portion of Paraná state, with some minor rhyodacites. Morphologically, Vista Alegre has a prominent circular outline, in the form of an incomplete ring of escarpments, and an inner depression. The presence of a central uplift is not obvious, but it is inferred by the occurrence of deformed sandstone blocks near the center of the structure. These sandstones are possibly related to the Triassic Pirambóia Formation and/or to the Cretaceous Botucatu Formation. These units are normally at stratigraphic depths of about 700–800 m below the present surface in this portion of the Paraná Basin. The structure appears to be in an advanced erosion stage and its interior is occupied by a soil cover several meters thick, extensively used for agriculture. As a result there are limited outcrops in the interior of the structure, all of polymict breccias, some of them melt‐bearing. We report the extensive occurrence of shatter cones, in the form of fine‐grained rock clasts within the polymict breccias. The shatter cone‐bearing breccias occur at different locations within the structure, separated by several kilometers. The nested shatter cones range in size from about 0.5 to 20 cm for individual cones, and up to half a meter for complete assemblages. The shatter cones formed in fine‐grained Parana flood basalt and might be the first examples of shatter cones in such a rock type. In addition, planar deformation features (PDFs) were found in quartz grains within sedimentary rock clasts of the polymict breccia. These findings confirm the impact origin of the Vista Alegre structure.  相似文献   

17.
The Maâdna structure is located approximately 400 km south of Algiers (33°19′ N, 4°19′ E) and emplaced in Upper‐Cretaceous to Eocene limestones. Although accepted as an impact crater on the basis of alleged observations of shock‐diagnostic features such as planar deformation features (PDFs) in quartz grains, previous works were limited and further studies are desirable to ascertain the structure formation process and its age. For this purpose, the crater was investigated using a multidisciplinary approach including field observations, detailed cartography of the different geological and structural units, geophysical surveys, anisotropy of magnetic susceptibility, paleomagnetism, and petrography of the collected samples. We found that the magnetic and gravimetric profiles highlight a succession of positive and negative anomalies, ones that might indicate the occurrence of a causative material which is at least in part identical. Geophysical analysis and modeling suggest the presence of this material within the crater at a depth of about 100 m below the surface. Using soil magnetic susceptibility measurements, the shallowest magnetized zone in the central part of the crater is identified as a recently deposited material. Paleomagnetic and rock magnetic experiments combined with petrographic observations show that detrital hematite is the main magnetic carrier although often associated with magnetite. A primary magnetization is inferred from a stable remanence with both normal and reverse directions, carried by these two minerals. Although this is supposed to be a chemical remagnetization, its normal polarity nature is considered to be a Pliocene component, subsequent to the crater formation. The pole falls onto the Miocene‐Pliocene part of the African Apparent Polar Wander Path (APWP). Consequently, we estimate the formation of the Maâdna crater to have occurred during the time period extending from the Late Miocene to the Early Pliocene. Unfortunately, our field and laboratory investigations do not allow us to confirm an impact origin for the crater as neither shatter cones, nor shocked minerals, were found. A dissolved diapir with inverted relief is suggested as an alternative to the impact hypothesis, which can still be considered as plausible. Only a drilling may provide a definite answer.  相似文献   

18.
Field investigations in the eroded central uplift of the ≤30 km Keurusselkä impact structure, Finland, revealed a thin, dark melt vein that intersects the autochthonous shatter cone‐bearing target rocks near the homestead of Kirkkoranta, close to the center of the impact structure. The petrographic analysis of quartz in this melt breccia and the wall rock granite indicate weak shock metamorphic overprint not exceeding ~8–10 GPa. The mode of occurrence and composition of the melt breccia suggest its formation as some kind of pseudotachylitic breccia. 40Ar/39Ar dating of dark and clast‐poor whole‐rock chips yielded five concordant Late Mesoproterozoic miniplateau ages and one plateau age of 1151 ± 10 Ma [± 11 Ma] (2σ; MSWD = 0.11; = 0.98), considered here as the statistically most robust age for the rock. The new 40Ar/39Ar age is incompatible with ~1.88 Ga Svecofennian tectonism and magmatism in south‐central Finland and probably reflects the Keurusselkä impact, followed by impact‐induced hydrothermal chloritization of the crater basement. In keeping with the crosscutting relationships in the outcrop and the possible influence of postimpact alteration, the Late Mesoproterozoic 40Ar/39Ar age of ~1150 Ma should be treated as a minimum age for the impact. The new 40Ar/39Ar results are consistent with paleomagnetic results that suggested a similar age for Keurusselkä, which is shown to be one of the oldest impact structures currently known in Europe and worldwide.  相似文献   

19.
Shatter cones are one of the most widely recognized pieces of evidence for meteorite impact events on Earth, but the process responsible for their formation is still debated. Evidence of melting on shatter cone surfaces has been rarely reported in the literature from terrestrial impact craters but has been recently observed in impact experiments. Although several models for shatter cones formation have been proposed, so far, no one can explain all the observed features. Shatter cones' from the Vista Alegre impact structure, Brazil, formed in fine‐grained basalt of the Jurassic‐Cretaceous Serra Geral Formation (Paraná large igneous province). A continuous quenched melt film, consisting of a crystalline phase, mica, and amorphous material, decorates the striated surface. Ultracataclasites, containing subrounded pyroxene clasts in an ultrafine‐grained matrix, occur subparallel to the striated surface. Several techniques were applied to characterize the crystalline phase in the melt, including Raman spectroscopy and transmission electron microscopy. Results are not consistent with any known mineral, but they do suggest a possible rare or new type of clinopyroxene. This peculiar evidence of melting and cataclasis in relation with shatter cone surfaces is interpreted as the result of tensile fracturing at the tip of a fast propagating shock‐induced rupture, which led to the formation of shatter cones at the tail of the shock front, likely during the early stage of the impact events.  相似文献   

20.
We have investigated the Ash Shutbah circular structure in central Saudi Arabia (21°37′N 45°39′E) using satellite imagery, field mapping, thin‐section petrography, and X‐ray diffraction of collected samples. The approximately 2.1 km sized structure located in flat‐lying Jurassic Tuwaiq Mountain Limestone has been nearly peneplained by erosional processes. Satellite and structural data show a central area consisting of Dhruma Formation sandstones with steep bedding and tight folds plunging radially outward. Open folding occurs in displaced, younger Tuwaiq Mountain Limestone Formation blocks surrounding the central area, but is absent outside the circular structure. An approximately 60 cm thick, unique folded and disrupted orthoquartzitic sandstone marker bed occurring in the central area of the structure is found 140 m deeper in undisturbed escarpment outcrops located a few hundred meters west of the structure. With exception of a possible concave shatter cone found in the orthoquartzite of the central area, other diagnostic shock features are lacking. Some quartz‐rich sandstones from the central area show pervasive fracturing of quartz grains with common concussion fractures. This deformation was followed by an event of quartz dissolution and calcite precipitation consistent with local sea‐ or groundwater heating. The combination of central stratigraphic uplift of 140 m, concussion features in discolored sandstone, outward‐dipping concentric folds in the central area, deformation restricted to the rocks of the ring structure, a complex circular structure of 2.1 km diameter that appears broadly consistent with what one would expect from an impact structure in sedimentary targets, and a possible shatter cone all point to an impact origin of the Ash Shutbah structure. In fact, the Ash Shutbah structure appears to be a textbook example of an eroded, complex impact crater located in flat‐lying sedimentary rocks, where the undisturbed stratigraphic section can be studied in escarpment outcrops in the vicinity of the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号