首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Xiaohongshilazi deposit located in central Jilin Province, Northeast China, is a newly discovered and medium‐scale Pb–Zn–(Ag) deposit with ore reserves of 34,968 t Pb, 100,150 t Zn, and 158 t Ag. Two‐stage mineralization has been identified in this deposit. Stratiform volcanic‐associated massive sulfide (VMS) Pb–Zn mineralization interbedding with the marine volcanic rocks of the Late Carboniferous–Early Permian Daheshen Formation was controlled by the premineralization E–W‐trending faults. Vein‐type Pb–Zn–(Ag) mineralization occurs within or parallel to the granodiorite and diorite porphyries controlled by the major‐mineralization N–S‐trending faults that cut the stratiform mineralization and volcanic rocks. To constrain the age of vein‐type Pb–Zn–(Ag) mineralization and determine the relationship between mineralization and magmatism, we conducted LA–ICP–MS U–Pb dating on zircon from the ore‐bearing granodiorite and diorite porphyries and Rb–Sr dating on metal sulfide. Granodiorite and diorite porphyries yield zircon U–Pb weighted‐mean 206Pb/238U ages of 203.6 ± 1.8 Ma (Mean Standard Weighted Deviation [MSWD] = 1.8) and 225.6 ± 5.1 Ma (MSWD = 2.3), respectively. Sulfides from four vein‐type ore samples yield a Rb–Sr isochron age of 195 ± 17 Ma (MSWD = 4.0). These results indicate a temporal relationship between the granodiorite porphyry and vein‐type Pb–Zn–(Ag) mineralization. The granodiorite associated with vein‐type mineralization has high SiO2 (68.99–70.49 wt.%) and Na2O (3.9–4.2 wt.%; Na2O/K2O = 1.07–1.10) concentrations, and A/CNK values of 0.95–1.04; consequently, the intrusion is classified as a high‐K, calc‐alkaline, metaluminous I‐type granite. The granodiorite porphyry is enriched in large‐ion lithophile elements (e.g. Rb, Th, U, and K) and light REE and is depleted in high‐field‐strength elements (e.g. Nb, Ta, P, and Ti) and heavy REE, indicating that it represents a subduction‐related rock that formed at an active continental margin. Furthermore, the granodiorite porphyry has Mg# values of 31–34, indicating a lower crustal source. Based on petrological and geochemical features, we infer that the ore‐bearing granodiorite porphyry was derived from the partial melting of the lower crust. In summary, mineralization characteristics, cross‐cutting relationships, geochronological data, and regional tectonic evolution indicate that the region was the site of VMS Pb–Zn mineralization that produced stratiform orebodies within the Late Carboniferous–Early Permian marine volcanic rocks of the Daheshen Formation, followed by mesothermal magmatic hydrothermal vein‐type Pb–Zn–(Ag) mineralization associated with granodiorite porphyry induced by the initial subduction of the Paleo‐Pacific Plate beneath the Eurasia Plate during the Late Triassic–Early Jurassic.  相似文献   

2.
Abstract: Dajing is a large-scale tin–polymetallic ore deposit in north China with Sn, Cu, Pb, Zn, Ag, and minor elements such as Co and In. The deposit is controlled by a passage-host structure system. Two groups of NE direction faults such as F2 and F1 are characterized by sinistral and multiphase activities, and the syn-ore NE faults with their derivative faults nearly in N-S direction constitute an important structure system as channelway for ore fluid. Around F2 fault (mineralization center), metallic elements display horizontal zoning outwards from Sn, Cu to Cu, Sn, Pb, Zn, Ag and to Pb, Zn, Ag. Controlled by sinistral pull-apart vein system, the WNW direction host structure yielded the ore vein to "W" shape on horizontal plan while to staircase shape on vertical profile. Multiperiodic activities of the host structures system lead to multistage of ore mineralization. Four mineralization stages are recognized in the main mineralization, i.e. 1) cassiterite–arsenopyrite–quartz stage, 2) cassiterite-sulfide (or Cu–poly–metallic mineralization) stage, 3) massive pyrite stage, and 4) galena-sphalerite stage. Besides, fluid activities are identified here at the pre-mineral stage of the formation of quartz veins and sheared deformation, and at the post-mineral stage of quartz–calcite–fluorite deposition.
The earlier tin-rich ore solution raised from NE faults and its nearly N-S derivatives filled the NW-WNW direction fractures, and formed tin ore veins. Subsequent mineralization of Cu-polymetallic stage, pyrite stage and galena-sphalerite stage, overlapping on the same fracture system, sequentially expanded outwards from the fractures, and produced different kinds of ore types and mineralization zoning.  相似文献   

3.
New kinematic and structural data from the tectonic windows of eastern Crete and the Dodecanese Islands combined with strain and quartz fabric analysis have enabled us to determine a detailed structural evolution of the region and to present a plate tectonic scenario for the southeast Hellenides. During the Early Mesozoic, the southeastern part of Apulia was separated from North Africa and the adjacent microplates by WNW‐trending rift zones and NE‐trending transfer faults. Displacement along the transfer faults has locally reoriented these rift zones into an ENE–WSW direction. Finite strain and quartz fabric asymmetry data indicate that in Late Cenozoic time, NNW‐directed nappe movements caused a nearly coaxial deformation along the ENE–WSW trending rift segments and non coaxial top‐to‐the‐southeast shearing along the WNW‐trending rift segments, as well as along the pre‐existing NE‐trending transfer faults. Tectonic style along the margin varies in response to the obliquity of the principal shortening direction with respect to the margin. These variations could be due to the pre‐convergence geometry of the southern margin of Eurasia and to local strain partitioning effects. Furthermore, a tectonic model is presented in which syncompressional uplift and vertical buoyancy of the subducted crustal slice caused the rapid exhumation of metamorphic units in the south Hellenides. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The Mosha and North Tehran faults correspond to the nearest seismic sources for the northern part of the Tehran megacity. The present-day structural relationships and the kinematics of these two faults, especially at their junction in Lavasanat region, is still a matter of debate. In this paper, we present the results of a morphotectonic analysis (aerial photos and field investigations) within the central part of the Mosha and eastern part of the North Tehran faults between the Mosha valley and Tehran City. Our investigations show that, generally, the traces of activity do not follow the older traces corresponding to previous long-term dip–slip thrusting movements. The recent faulting mainly occurs on new traces trending E–W to ENE–WSW affecting Quaternary features (streams, ridges, risers, and young glacial markers) and cutting straight through the topography. Often defining en-echelon patterns (right- and left-stepping), these new traces correspond to steep faults with either north- or south-dipping directions, along which clear evidences for left-lateral strike–slip motion are found. At their junction zone, the two sinistral faults display a left-stepping en-echelon pattern defining a positive flower structure system clearly visible near Ira village. Further west, the left-lateral strike–slip motion is transferred along the ENE–WSW trending Niavaran fault and other faults. The cumulative offsets associated with this left-lateral deformation is small compared with the topography associated with the previous Late Tertiary thrusting motion, showing that it corresponds to a recent change of kinematics.  相似文献   

5.
《Geodinamica Acta》2003,16(2-6):131-147
Combining fieldwork and surface data, we have reconstructed the Cenozoic structural and tectonic evolution of the Northern Bresse. Analysis of drainage network geometry allowed to detect three major fault zones trending NE–SW, E–W and NW–SE, and smooth folds with NNE trending axes, all corroborated with shallow well data in the graben and fieldwork on edges. Cenozoic paleostress succession was determined through fault slip and calcite twin inversions, taking into account data of relative chronology. A N–S major compression, attributed to the Pyrenean orogenesis, has activated strike-slip faults trending NNE along the western edge and NE–SW in the graben. After a transitional minor E–W trending extension, the Oligocene WNW extension has structured the graben by a collapse along NNE to NE–SW normal faults. A local NNW extension closes this phase. The Alpine collision has led to an ENE compression at Early Miocene. The following WNW trending major compression has generated shallow deformation in Bresse, but no deformation along the western edge. The calculation of potential reactivation of pre-existing faults enables to propose a structural sketch map for this event, with a NE–SW trending transfer fault zone, inactivity of the NNE edge faults, and possibly large wavelength folding, which could explain the deposit agency and repartition of Miocene to Quaternary deformation.  相似文献   

6.
福建省上杭县罗卜岭斑岩铜钼矿床构造控矿规律研究   总被引:6,自引:0,他引:6  
赖晓丹  祁进平 《地质学报》2014,88(10):1904-1916
罗卜岭铜(钼)矿区位于紫金山矿田的东北部,是与晚中生代花岗闪长斑岩体有关的隐伏斑岩型铜钼矿床;主要斑岩矿体产于绿泥石化-绢英岩化和(弱)钾化-绢英岩化带中,矿石矿物组合为黄铜矿+辉钼矿;少量过渡类型矿体产于高级泥化带中,矿石矿物组合为蓝辉铜矿+铜蓝+辉钼矿。罗卜岭矿区地表露头含矿裂隙的统计结果显示,罗卜岭成矿晚期的含矿裂隙具有明显的方向性。远离斑岩体的含矿裂隙与其附近的区域构造方位或侵入体走向相近,表明受到北东向区域构造活动控制;而斑岩体西侧露头附近的含矿裂隙呈放射状,主要受到斑岩体侵入作用的影响。深部隐伏矿体则受到区域断裂和花岗闪长(斑)岩侵入体的共同控制,具体表现为:垂向上,以隐伏似斑状花岗闪长岩为中心,由深至浅,矿体铜钼品位比值依次变大,显示了Mo\Cu-Mo\Cu(Mo)的元素垂向分带;平面上,铜、钼元素沿着北东向、北西向断裂和岩体接触带附近有明显富集;斑岩型铜钼矿体主要产于似斑状花岗闪长岩外接触带的花岗闪长斑岩中,形态和产状受到区域北东向断裂或岩体接触带构造影响;蓝辉铜矿体主要产于罗卜岭花岗闪长斑岩外接触带的花岗闪长岩体内,形态和产状受接触带控制。区域构造和斑岩侵入体对斑岩型铜钼矿化有不同的影响,浅部铜、钼矿化受区域断裂构造控制作用明显,而深部矿体主要受花岗闪长(斑)岩体和断裂构造共同控制。区域上北东向背斜构造和北东、北西向断裂构造控制了花岗闪长质侵入岩体的侵位,矿区尺度的断裂构造对斑岩体的就位和成矿作用有一定的影响,罗卜岭花岗闪长斑岩体及其接触带则直接控制了斑岩型矿体的产出,这一规律对紫金山矿田深部和外围隐伏斑岩型矿体的勘查工作具有重要的参考意义。  相似文献   

7.
云南羊拉铜矿床矿物组成、地球化学特征及其地质意义   总被引:3,自引:0,他引:3  
云南羊拉铜矿床位于金沙江构造带中部,是三江地区一个十分典型的大型铜矿床。羊拉铜矿床的金属矿物为黄铜矿、黄铁矿、磁黄铁矿、方铅矿、自然铋、辉铋矿、毒砂、辉砷钴矿、辉钼矿等,根据金属矿物的共生组合,推测羊拉铜矿床为中高温热液矿床。羊拉铜矿床与羊拉花岗闪长岩体具有密切的成因联系,通过对羊拉铜矿床铜矿石稀土元素、微量元素的分布特征和羊拉花岗闪长岩的对比及S、Pb同位素组成的研究,表明成矿物质主要来源于地幔,部分来源于岩浆。早二叠世晚期金沙江洋盆向西俯冲形成了一系列逆断层。同时,金沙江洋盆向西低角度俯冲导致下地壳部分熔融,引发大规模的火山岩浆作用。在晚三叠世早期,构造背景由挤压环境到伸展环境的转折期,这些逆断层具有张性的特点,为后期的成矿热液提供了有利的容矿构造。持续上升的岩浆为地幔楔内的成矿流体提供了通道,岩浆内的部分成矿流体进入羊拉花岗闪长岩体附近的逆断层富集成矿。  相似文献   

8.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

9.
Intracratonic South Rewa Gondwana Basin occupies the northern part of NW–SE trending Son–Mahanadi rift basin of India. The new gravity data acquired over the northern part of the basin depicts WNW–ESE and ENE–WSW anomaly trends in the southern and northern part of the study area respectively. 3D inversion of residual gravity anomalies has brought out undulations in the basement delineating two major depressions (i) near Tihki in the north and (ii) near Shahdol in the south, which divided into two sub-basins by an ENE–WSW trending basement ridge near Sidi. Maximum depth to the basement is about 5.5 km within the northern depression. The new magnetic data acquired over the basin has brought out ENE–WSW to E–W trending short wavelength magnetic anomalies which are attributed to volcanic dykes and intrusive having remanent magnetization corresponding to upper normal and reverse polarity (29N and 29R) of the Deccan basalt magnetostratigrahy. Analysis of remote sensing and geological data also reveals the predominance of ENE–WSW structural faults. Integration of remote sensing, geological and potential field data suggest reactivation of ENE–WSW trending basement faults during Deccan volcanism through emplacement of mafic dykes and sills. Therefore, it is suggested that South Rewa Gondwana basin has witnessed post rift tectonic event due to Deccan volcanism.  相似文献   

10.
《Resource Geology》2018,68(3):258-274
The Dabaoshan deposit in Northern Guangdong Province, South China, is a Cu–Mo–W–Pb–Zn polymetallic deposit, located in the southern part of the Qin–Hang porphyry–skarn Cu–Mo ore belt. The deposit mainly comprises porphyry Mo and stratiform skarn Cu ore deposits. The genesis of the Cu ore deposit has been ascribed to a typical skarn ore deposit formed by the metasomatism of Devonian carbonate rock layers or to a volcanic rock‐hosted massive sulfide deposit formed by marine exhalation. In this paper, we report on the homogenization temperatures and salinities of fluid inclusions and C, H, O, S, and Pb isotopic compositions of fluids and minerals in this deposit. Homogenization temperatures and salinities of fluid inclusions in garnet, diopside, quartz, and calcite provide information on the skarnification, mineralization, and postmineralization stages. The data show that ore‐forming fluids experienced a continuous transition from high temperatures and salinities to low temperatures and salinities over the entire period of mineralization. C, H, and O isotopic compositions indicate that ore‐forming fluids were derived mainly from magmatic water. O isotopic compositions indicate that ore‐forming fluids mingled with atmospheric water during the last stage of mineralization. Sulfur in the ore came mainly from deep magmatic sources. Pb isotopic compositions in the orebody show that almost all the lead in the ore was derived from magma with a crustal source. Combined geological, geophysical, and geochemical data were achieved before we proposed that the Dabaoshan porphyry–skarn Cu–Mo–W–Pb–Zn deposit, as one member of the Qin–Hang porphyry–skarn Cu–Mo ore belt, formed during the Jurassic subduction of the paleo‐Pacific plate beneath the Eurasian continent at quite low angle. NE‐ and EW‐trending structures controlled the emplacement of magmatic rocks in the South China region. In the mining area, the Xiangguanping Fault and its branches were the main conduits for magmatic crystallization and mineralization. The many subfaults, folds, and interlayer fracture zones on both sides of the main fault provided the requisite space for the ore and, together, were the controlling structures of the orebody.  相似文献   

11.
The research on Paleozoic tectonics and endogenic metallogeny in the Tianshan-Altay region of Central Asia is an important and significant project. The Altay region, as a collision zone of the Early Paleozoic(500–397 Ma), and the Tianshan region, as a collision zone of the early period in the Late Paleozoic(Late Devonian-Early Carboniferous, 385–323 Ma), are all the result of nearly N-S trending shortening and collision(according to recent magnetic orientation). In the Late Devonian-Early Carboniferous period(385–323 Ma), regional NW trending faults displayed features of dextral strike-slip motion in the Altay and Junggar regions. In the Tianshan region, nearly EW-trending regional faults are motions of the thrusts. However, in the Late Carboniferous-Early Permian period(323–260 Ma), influenced by the long-distance effect induced from the Ural collision zone, those areas suffered weaker eastward compression, the existing NW trending faults converted into sinistral strike-slip in the Altay and Junggar regions, and the existing nearly E-W trending faults transferred into dextral strike-slip faults in the Tianshan region. The Rocks of those regions in the Late Carboniferous-Early Permian period(323–260 Ma) were moderately ruptured to a certain tension-shear, and thus formed a number of world famous giant endogenic metal ore deposits in the Tianshan-Altay region. As to the Central Asian continent, the most powerful collision period may not coincide with the most favorable endogenic metallogenic period. It should be treated to "the orogenic metallogeny hypothesis" with caution in that region.  相似文献   

12.
曲家金矿位于胶东焦家成矿带中段,为新城金矿和马塘金矿的深部延深,矿体赋存深度300~1300 m。对区内32个钻孔岩心样品进行了取样,获得了34个元素的分析数据,研究了各元素的浓度分带及成分分带。发现多元素在此深度范围内除沿矿体轴向有迁移成晕外,在垂向上也有迁移和成晕现象,这对于穿透性地球化学和原生晕找矿机理研究有重要意义。同时发现成矿元素在成矿带轴向和垂向上的扩散受多种因素影响,包括矿体部位,成矿热液中元素浓度、热液的温度压力、围岩化学活性和可渗透性等,在空间分布上具有复杂性。原生晕的高浓度带主要沿断裂蚀变带分布。用格里戈良法和重心法确定的轴向成分分带,在深部有头晕元素与尾晕元素的叠加,预示深部仍存在隐伏金矿体,这与西部邻近招贤勘查区深部发现金矿体的勘查结果相符。垂向上从浅到深成分分带性存在差异,垂向上易在浅部浓集的元素为Se、Cd、Mo、Hg、Bi、S、F、Cu、Ag,成矿带附近浓集的元素为Sb、As、Au、W等,As、Sb在垂向上的迁移能力弱,主要沿轴向迁移。当浅部多个元素同时达到K2O≥4.57×10–2,Au≥0.8×10–9,Ag≥0.057×10–6,Cu≥2.5×10–6,Bi≥0.08×10–6,Hg≥17×10–9,S≥0.0583×10–2,Mo≥0.74×10–6,W≥0.55×10–6时,指示深部发现金矿体的可能性较大,Hg·Ag/(As·W)、Bi·Hg/(As·Au)指数可用来判断金矿体的埋深。  相似文献   

13.
The mineral composition and geochemical characteristics of the ores of the Malinovskoe gold-ore deposit are studied by the data from mining works (ditches, cleanings, and boreholes). It is found that the ore–magma system of the deposit was formed in several stages of mineralization characterized by two phases of magmatism differing in age. In terms of the set of features (the geological–structural position of the deposit, as well as the material composition and geochemical characteristics of the ores), the deposit is attributed to the gold–tourmaline type of mineralization associated spatially and genetically with the “raremetal” granitoid magmatism. This type has not previously been found in Primorskii Krai. The studies of the material composition and geochemical characteristics of the ores allow us to ascertain the correlations between the elements along with the reasons of their origination. By analogy with other gold-ore formations of the Russian Far East, the mineralogical and geochemical model of the deposit is developed (Be–Sn–Cr–Ba–Au–Cu–Mo–Pb–V–Ti–Co–W–Ag–Bi–Ni–Mn–Sr–Zn–Sb–As modeling element series of vertical zoning), which enables us to estimate the levels of the erosion section of the ore bodies and to evaluate their prospects. It is found that the most productive associations in the deposit are the gold–bismuth geochemical association (Au–Ag–Bi–Cu–As–Co) and, to a lesser degree, the gold–tungsten association (W–Au–Ag–Cu–Bi–As).  相似文献   

14.
西藏多不杂斑岩铜金矿床地质与蚀变   总被引:7,自引:0,他引:7  
祝向平 《地质与勘探》2012,48(2):199-206
[摘 要]西藏多不杂斑岩铜金矿是近年来新发现的一个矿床,位于班公湖-怒江成矿带西段。多不杂矿床内发育三期花岗闪长斑岩,侵入到侏罗系曲色组变砂岩中,北东向断层是多不杂矿床的主要控岩断层。多不杂矿床由内向外发育钾化、绢英岩化、青磐岩化,钾化主要发育于第一期花岗闪长斑岩出露区域,绢英岩化环绕钾化带发育,并叠加在钾化带之上,青磐岩化在矿床西侧的玄武安山岩和南侧的火山角砾岩中呈团块状发育。多不杂矿床的的铜矿化以黄铜矿矿化为主,金矿化与铜矿化密切共生。黄铜矿化主要发育于第一期花岗闪长斑岩及其与变砂岩接触带内,第一期花岗闪长斑岩为多不杂矿床的成矿斑岩。  相似文献   

15.
Structural data as well as U–Pb zircon and 40Ar/39Ar biotite and muscovite ages were collected from the Rolvsnes granodiorite in western Norway. The granodiorite intruded at c. 466 Ma, cooled quickly and escaped later viscous deformation. Brittle top‐to‐the‐NNW thrust faults (Set I) and WNW–ESE striking dextral strike‐slip faults (Set II) formed in a NNW–SSE transpressional regime. 40Ar/39Ar dating of synkinematic mica from both sets reveals a c. 450 Ma (Late Ordovician) age of faulting, which constrains early‐Caledonian brittle deformation. Set I and II faults are overprinted by a set of lower‐grade, variably oriented chlorite‐ and epidote‐coated faults (Set III) constraining WNW–ESE shortening. A lamprophyric dyke oriented compatibly with this stress field intruded at c. 435 Ma (Silurian), indicating that Set III formed at the onset of the Scandian Baltica–Laurentia collision. The preservation of Caledonian brittle structures indicates that the Rolvsnes granodiorite occupied a high tectonic level throughout the Caledonian orogeny.  相似文献   

16.
The Zhaxikang Pb-Zn-Ag-Sb deposit, the largest polymetallic deposit known in the Himalayan Orogen of southern Tibet, is characterized by vein-type mineralization that hosts multiple mineral assemblages and complicated metal associations. The deposit consists of at least six steeply dipping veintype orebodies that are hosted by Early Jurassic black carbonaceous slates and are controlled by a Cenozoic N–S-striking normal fault system. This deposit records multiple stages of mineralization that include an early period(A) of massive coarse-grained galena–sphalerite deposition and a later period(B) of Sb-bearing vein-type mineralization. Period A is only associated with galena–sphalerite mineralization, whereas period B can be subdivided into ferrous rhodochrosite–sphalerite–pyrite, quartz–sulfosalt–sphalerite, calcite–pyrite, quartz–stibnite, and quartz-only stages of mineralization. The formation of brecciated galena and sphalerite ores during period A implies reworking of pre-existing Pb–Zn sulfides by Cenozoic tectonic deformation, whereas period B mineralization records extensive openspace filling during ore formation. Fluid inclusion microthermometric data indicate that both periods A and B were associated with low–medium temperature(187–267°C) and low salinity(4.00–10.18% wt. Na Cl equivalent) ore-forming fluids, although variations in the physical–chemical nature of the period B fluids suggest that this phase of mineralization was characterized by variable water/rock ratios. Microprobe analyses indicate that Fe concentrations in sphalerite decrease from period A to period B, and can be divided into three groups with Fe S concentrations of 8.999–9.577, 7.125–9.109, 5.438–1.460 mol.%. The concentrations of Zn, Sb, Pb, and Ag within orebodies in the study area are normally distributed in both lateral and vertical directions, and Pb, Sb, and/or Ag concentrations are positive correlation within the central part of these orebodies, but negatively correlate in the margins. Sulfide S isotope compositions are highly variable(4‰–13‰), varying from 4‰ to 11‰ in period A and 10‰ to 13‰ in period B. The Pb isotope within these samples is highly radiogenic and defines linear trends in 206 Pb/204 Pb vs. 207 Pb/204 Pb and 206 Pb/204 Pb vs. 208 Pb/204 Pb diagrams, respectively. The S and Pb isotopic characteristics indicate that the period B orebodies formed by mixing of Pb–Zn sulfides and regional Sbbearing fluids. These features are indicative of overprinting and remobilization of pre-existing Pb–Zn sulfides by Sb-bearing ore-forming fluids during a post-collisional period of the Himalayan Orogeny. The presence of similar ore types in the north Rhenish Massif that formed after the Variscan Orogeny suggests that Zhaxikang-style mineralization may be present in other orogenic belts, suggesting that this deposit may guide Pb–Zn exploration in these areas.  相似文献   

17.
滇西哀牢山老王寨金矿床控矿构造样式   总被引:3,自引:3,他引:3  
张闯  杨立强  赵凯  刘江涛  李坡 《岩石学报》2012,28(12):4109-4124
哀牢山金矿带是我国最重要的新生代造山型金矿带,老王寨金矿床是该矿带中已发现规模最大的金矿床。该矿床中金矿化的产出受NW向九甲-安定断裂和NWW向老王寨-营盘山背斜联合控制,金矿体定位于老王寨-营盘山背斜两翼NW-NWW向层间接触带或脉岩与地层交界面等构造薄弱部位的左行剪切逆断裂带中。成矿前,区域NNE-SSW向挤压构造应力场导致轴向NWW的老王寨-营盘山背斜形成,背斜形成晚期在其两翼形成NW-NWW向的次级断裂。成矿作用过程中,在NEE-SWW向挤压构造背景下,NWW向老王寨-营盘山背斜的转折端和两翼呈背驮式叠瓦状排列的NW-NWW向左行剪切逆断裂为有利容矿空间。之后,构造体制转变为近SN向挤压,形成少量NE向左行剪切断裂,对已有NW向矿体略有破坏。走滑断裂是哀牢山造山带最具特色的构造型式,也是区域最重要的控矿构造样式,在老王寨金矿床主要体现为控制金矿化产出的NW-NWW向左行剪切逆断裂大规模发育于NWW向老王寨-营盘山背斜构造的两翼,对应于区域构造动力体制转换晚期,印度与欧亚大陆斜碰撞导致的区域大规模走滑断层最发育时期。  相似文献   

18.
安徽休宁-歙县东南部地区金多金属矿控矿构造研究   总被引:1,自引:1,他引:0  
通过分析皖南休宁天井山金矿床和小贺铅锌矿床的构造控矿因素,认为燕山晚期花岗岩和北东向断裂是安徽休宁—歙县东南部地区金多金属矿形成最重要的控矿因素。歙县南源口和休宁桃溪两个地段的构造分析表明,该区中生代以来至少经历四期构造变形,其中早期向北西的逆冲推覆和北—北东向左行平移断层是成矿前构造;燕山晚期北东向高角度正断层控制燕山晚期花岗岩类侵入和成矿,是成矿期构造;随后的右行平移断层为成矿后构造。  相似文献   

19.
The NW–SE shortening between the African and the Eurasian plates is accommodated in the eastern Betic Cordillera along a broad area that includes large N‐vergent folds and kilometric NE–SW sinistral faults with related seismicity. We have selected the best exposed small‐scale tectonic structures located in the western Huércal‐Overa Basin (Betic Cordillera) to discuss the seismotectonic implications of such structures usually developed in seismogenic zones. Subvertical ESE–WNW pure dextral faults and E–W to ENE–ESW dextral‐reverse faults and folds deform the Quaternary sediments. The La Molata structure is the most impressive example, including dextral ESE–WNW Neogene faults, active southward‐dipping reverse faults and associated ENE–WSW folds. A molar M1 assigned to Mimomys savini allows for precise dating of the folded sediments (0.95–0.83 Ma). Strain rates calculated across this structure give ~0.006 mm a?1 horizontal shortening from the Middle Pleistocene up until now. The widespread active deformations on small‐scale structures contribute to elastic energy dissipation around the large seismogenic zones of the eastern Betics, decreasing the seismic hazard of major fault zones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper we present titanite U–Pb (both single crystal CA ID‐TIMS and in situ LA ICP‐MS) data, coupled with ore and gangue mineralogy and geochemical (both lithogeochemistry and microanalysis) data from the Nucleus Au–Ag–Bi–Cu deposit, in the Yukon (Canada) portion of the Tintina Au province. Arsenic‐bearing Au–Ag–Bi–Cu mineralization at Nucleus consists of two distinct styles of mineralization including: (i) reduced Au skarn and sulfide replacement; and (ii) a relatively shallow‐emplaced (as supported by textures and temperature of formation), vein‐controlled mineralization occurring mainly as veins and veinlets of various shapes (sheeted, single, stockworks, and crustiform), breccias, and disseminations. Whereas Au, Bi, and Cu mineralization from skarn is associated with hydrous retrograde alteration phases (actinolite, ferro‐actinolite, hastingsite, cannilloite, and hornblende), numerous alteration types are associated with the vein‐controlled style of mineralization and these include: biotite, phyllic, argillic, propylitic, carbonate, and quartz (silicification) alterations. The mineralization–alteration processes took place over a wide temperature range that is bracketed between 340 and 568°C, as indicated by chlorite and arsenopyrite geothermometers. The Au‐rich Nucleus deposit is characterized by anomalously high content of As and Bi (as much as 1 %), and whereas Au moderately correlates with Bi (r = 0.40) in the skarn mineralization style (where native Au is spatially associated with native Bi and Bi‐bearing sulfides), the two elements correlate poorly (r = 0.14) in the vein‐controlled type, in which native Bi‐ and Bi‐sulfide‐bearing veins are locally observed. Sphalerite from the vein‐controlled mineralized type is Fe‐rich (9.92–10.54 mol % FeS) indicative of low sulfidation conditions, as well as high temperature, with the latter further supported by arsenopyrite geothermometry (up to 491°C), low Ag content (3–7 wt.%) in Au, and the high gold fineness (926–964). Whereas molybdenite Re–Os ages from quartz‐molybdenite veins range from 75.8 to 76.2 ± 0.3 Ma, titanite from the skarn type mineralization recorded CA ID‐TIMS and LA ICP‐MS U–Pb ages of 182.6 ± 2.4 Ma and 191.0 ± 1.5 Ma, respectively, thus precluding any genetic link between the two spatially associated styles of mineralization from the Nucleus deposit area. The Au–Ag–Bi–Cu Nucleus deposit is therefore regarded as a superposed system in which two mineralization types, without any petrogenetic relationship, overlapped, possibly with remobilization of early‐formed mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号