首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The Frontier Mountain (FRO) 93001 meteorite is a 4.86 g fragment of an unshocked, medium‐ to coarse‐grained rock from the acapulcoite‐lodranite (AL) parent body. It consists of anhedral orthoenstatite (Fs13.3 ± 0.4Wo3.1 ± 0.2), augite (Fs6.1 ± 0.7Wo42.3 ± 0.9; Cr2O3 = 1.54 ± 0.03), and oligoclase (Ab80.5 ± 3.3Or3.1 ± 0.6) up to >1 cm in size enclosing polycrystalline aggregates of fine‐grained olivine (average grain size: 460 ± 210 μm) showing granoblastic textures, often associated with Fe,Ni metal, troilite, chromite (cr# = 0.91 ± 0.03; fe# = 0.62 ± 0.04), schreibersite, and phosphates. Such aggregates appear to have been corroded by a melt. They are interpreted as lodranitic xenoliths. After the igneous (the term “igneous” is used here strictly to describe rocks or minerals that solidified from molten material) lithology intruding an acapulcoite host in Lewis Cliff (LEW) 86220, FRO 93001 is the second‐known silicate‐rich melt from the AL parent asteroid. Despite some similarities, the silicate igneous component of FRO 93001 (i.e., the pyroxene‐plagioclase mineral assemblage) differs in being coarser‐grained and containing abundant enstatite. Melting‐crystallization modeling suggests that FRO 93001 formed through high‐degree partial melting (≥35 wt%; namely, ≥15 wt% silicate melting and ?20 wt% metal melting) of an acapulcoitic source rock, or its chondritic precursor, at temperatures ≥1200 °C, under reducing conditions. The resulting magnesium‐rich silicate melt then underwent equilibrium crystallization; prior to complete crystallization at ?1040 °C, it incorporated lodranitic xenoliths. FRO 93001 is the highest‐temperature melt from the AL parent‐body so far available in laboratory. The fact that FRO 93001 could form by partial melting and crystallization under equilibrium conditions, coupled with the lack of quench‐textures and evidence for shock deformation in the xenoliths, suggests that FRO 93001 is a magmatic rock produced by endogenic heating rather than impact melting.  相似文献   

2.
Abstract— The production of 3He, 21Ne, and 22Ne in meteoroids of various sizes and in the lunar surface was investigated. The LAHET code system, a purely physical model for calculating cosmic‐ray particle fluxes, was used to simulate cosmic‐ray particle interactions with extraterrestrial matter. We discuss the depth and size dependence of the shielding parameter 22Ne/21Ne, which is used for reconstruction of pre‐atmospheric sizes, depth, and exposure histories. The 22Ne/21Ne ratio decreases with increasing depth or pre‐atmospheric size but then increases with depth in very large objects. This increase with depth in the 22Ne/21Ne ratio means that this ratio is a poor indicator of shielding in some large objects. The dependence of 3He/21Ne as function of 22Ne/21Ne was also calculated, and differences between the calculations and the Bern line are discussed.  相似文献   

3.
Abstract— Lake El'gygytgyn, Chukotka, Russia, lies in a ~18 km crater of presumably impact origin. The crater is sited in Cretaceous volcanic rocks of the Okhotsk‐Chukotka volcanic belt. Laser 40Ar/39Ar dating of impact‐melted volcanic rocks from the rim of Lake El'gygytgyn yields a 10‐sample weighted plateau age of 3.58 ± 0.04 Ma. The Ar step‐heating method was critical in this study in identifying inherited Ar in the samples due to incomplete degassing of the Cretaceous volcanic rocks during impact melting. This age is consistent with, but more precise than, previous K‐Ar and fission‐track ages and indicates an “instantaneous” formation of the crater. This tight age control, in conjunction with the presence of impactites, shocked quartz, and other features, is consistent with an impact origin for the structure and seems to discount internal (volcanogenic) origin models.  相似文献   

4.
Northwest Africa (NWA) 7397 is a newly discovered, enriched, lherzolitic shergottite, the third described example of this group. This meteorite consists of two distinct textural lithologies (1) poikilitic—comprised of zoned pyroxene oikocrysts, with chadacrysts of chromite and olivine, and (2) nonpoikilitic—comprised of olivine, low‐Ca and high‐Ca pyroxene, maskelynite, and minor abundances of merrillite, spinel, ilmenite, and pyrrhotite. The constant Ti/Al ratios of pyroxene oikocrysts suggests initial crystallization of the poikilitic lithology at depth (equivalent to pressures of approximately 10 kbar), followed by crystallization of the nonpoikilitic lithology at shallower levels. Oxygen fugacity conditions become more oxidizing during crystallization ranging from fO2 conditions of approximately QFM‐2 to QFM‐0.7. Magma calculated to be in equilibrium with the major rock‐forming minerals is LREE‐enriched relative to depleted or intermediate shergottites and has flat overall profiles. Therefore, we suggest that the parental magma for NWA 7397 had sampled an enriched, oxidized, Martian geochemical source, similar to that of other enriched basaltic and olivine‐phyric shergottites. We present a polybaric formation model for the lherzolitic shergottite NWA 7397, to account for the petrologic constraints. Three successive stages in the development of NWA 7397 are discussed (1) formation of a REE‐enriched parental magma from a distinct Martian mantle reservoir; (2) magma ponding and development of a staging chamber concomitant with initial crystallization of the poikilitic lithology; and (3) magma ascent to the near surface, with entrainment of cumulates from the staging chamber and subsequent crystallization of the nonpoikilitic lithology en route to the surface.  相似文献   

5.
Abstract— –Shock‐metamorphosed rock fragments have been found in the Australasian microtektite layer from the South China Sea. Previous X‐ray diffraction (XRD) studies indicate that the most abundant crystalline phases in the rock fragments are coesite, quartz, and a 10 Å phase (mica/clay?). In addition, the presence of numerous other phases was suggested by scanning electron microscopy (SEM) and energy‐dispersive X‐ray (EDX) analysis. In the present research, ten of the rock fragments, which had previously been studied using SEM/EDX, were studied by micro‐Raman spectroscopy. The presence of K‐feldspar, plagioclase, rutile, ilmenite, titanite, magnetite, calcite, and dolomite were confirmed. In addition, the high‐pressure TiO2 polymorph with an α‐PbO2 structure (i.e., TiO2II) was found in several rock fragments. Two grains previously thought to have been zircon, based on their compositions, were found to have Raman spectra that do not match the Raman spectra of zircon, reidite, or any of the possible decomposition products of zircon or their high‐pressure polymorphs. We speculate that the ZrSiO4 phase might be a previously unknown high‐pressure polymorph of zircon or one of its decomposition products (i.e., ZrO2 or SiO2). The presence of coesite and TiO2 II, and partial melting and vesiculation suggest that the rock fragments containing the unknown ZrSiO4 phase must have experienced shock pressures between 45 and 60 GPa. We conclude that micro‐Raman spectroscopy, in combination with XRD and SEM/EDX, is a powerful tool for the study of small, fine‐grained impact ejecta.  相似文献   

6.
Abstract— The thermal and shock histories of ureilites can be divided into four periods: 1) formation, 2) initial shock, 3) post‐shock annealing, and 4) post‐annealing shock. Period 1 occurred ?4.55 Ga ago when ureilites formed by melting chondritic material. Impact events during period 2 caused silicate darkening, undulose to mosaic extinction in olivines, and the formation of diamond, lonsdaleite, and chaoite from indigenous carbonaceous material. Alkali‐rich fine‐grained silicates may have been introduced by impact injection into ureilites during this period. About 57% of the ureilites were unchanged after period 2. During period 3 events, impact‐induced annealing caused previously mosaicized olivine grains to become aggregates of small unstrained crystals. Some ureilites experienced reduction as FeO at the edges of olivine grains reacted with C from the matrix. Annealing may also be responsible for coarsening of graphite in a few ureilites, forming euhedral‐appearing, idioblastic crystals. Orthopyroxene in Meteorite Hills (MET) 78008 may have formed from pigeonite by annealing during this period. The Rb‐Sr internal isochron age of ?4.0 Ga for MET 78008 probably dates the annealing event. At this late date, impacts are the only viable heat source. About 36% of ureilites experienced period 3 events, but remained unchanged afterwards. During period 4, ?7% of the ureilites were shocked again, as is evident in the polymict breccia, Elephant Moraine (EET) 83309. This rock contains annealed mosaicized olivine aggregates composed of small individual olivine crystals that exhibit undulose extinction. Ureilites may have formed by impact‐melting chondritic material on a primitive body with heterogeneous O isotopes. Plagioclase was preferentially lost from the system due to its low impedance to shock compression. Brief melting and rapid burial minimized the escape of planetary‐type noble gases from the ureilitic melts. Incomplete separation of metal from silicates during impact melting left ureilites with relatively high concentrations of trace siderophile elements.  相似文献   

7.
Abstract– Hibonite‐bearing Ca,Al‐rich inclusions (CAIs) usually occur in CM and CH chondrites and possess petrographic and isotopic characteristics distinctive from other typical CAIs. Despite their highly refractory nature, most hibonite‐bearing CAIs have little or no 26Mg excess (the decay product of 26Al), but do show wide variations of Ca and Ti isotopic anomalies. A few spinel‐hibonite spherules preserve evidence of live 26Al with an inferred 26Al/27Al close to the canonical value. The bimodal distribution of 26Al abundances in hibonite‐bearing CAIs has inspired several interpretations regarding the origin of short‐lived nuclides and the evolution of the solar nebula. Herein we show that hibonite‐bearing CAIs from Ningqiang, an ungrouped carbonaceous chondrite, also provide evidence for a bimodal distribution of 26Al. Two hibonite aggregates and two hibonite‐pyroxene spherules show no 26Mg excesses, corresponding to inferred 26Al/27Al < 8 × 10?6. Two hibonite‐melilite spherules are indistinguishable from each other in terms of chemistry and mineralogy but have different Mg isotopic compositions. Hibonite and melilite in one of them display positive 26Mg excesses (up to 25‰) that are correlated with Al/Mg with an inferred 26Al/27Al of (5.5 ± 0.6) × 10?5. The other one contains normal Mg isotopes with an inferred 26Al/27Al < 3.4 × 10?6. Hibonite in a hibonite‐spinel fragment displays large 26Mg excesses (up to 38‰) that correlate with Al/Mg, with an inferred 26Al/27Al of (4.5 ± 0.8) × 10?5. Prolonged formation duration and thermal alteration of hibonite‐bearing CAIs seem to be inconsistent with petrological and isotopic observations of Ningqiang. Our results support the theory of formation of 26Al‐free/poor hibonite‐bearing CAIs prior to the injection of 26Al into the solar nebula from a nearby stellar source.  相似文献   

8.
The orbital elements of HD 54901, HD 120544 and HD 123280, three nearby F‐type spectroscopic binaries, are presented. They are based on observations made between 1982 and 2004 with the CORAVEL instrument of Observatoire de Haute‐Provence. Physical parameters are derived for the two components of HD 54901 (SB2) and for the primaries of HD 120544 and HD 123280. The rotation‐revolution synchronism of the detected components is investigated. Pseudosynchronism is very likely achieved by the F7 V secondary component of HD 54901, whereas the F2/3 IV primary has not yet reached this stage. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Abstract— The 15 km diameter Ames structure in northwestern Oklahoma is located 2.75 km below surface in Cambro‐Ordovician Arbuckle dolomite, which is overlain by Middle Ordovician Oil Creek Formation shale. The feature is marked by two concentric ring structures, with the inner ring of about 5 km diameter probably representing the collapsed remnant of a structural uplift composed of brecciated Precambrian granite and Arbuckle dolomite. Wells from both the crater rim and the central uplift are oil‐ and gas‐producing, making Ames one of the economically important impact structures. Petrographic, geochemical, and age data were obtained on samples from the Nicor Chestnut 18‐4 drill core, off the northwest flank of the central uplift. These samples represent the largest and best examples of impact‐melt breccia obtained so far from the Ames structure. They contain carbonate rocks, which are derived from the target sequence. The chemical composition of the impact‐melt breccias is similar to that of target granite, with variable carbonate admixture. Some impact‐melt rocks are enriched in siderophile elements indicating the possible presence of a meteoritic component. Based on stratigraphic arguments, the age of the crater was estimated at 470 Ma. Previous 40Ar‐39Ar dating attempts of impact‐melt breccias from the Dorothy 1–19 core yielded plateau ages of about 285 Ma, which is in conflict with the stratigraphic age. The new 40Ar‐39Ar age data obtained on the melt breccias from the Nicor Chestnut core by ultraviolet (UV) laser spot analysis resulted in a range of ages with maxima around 300 Ma. These data could reflect processes related either the regional Nemaha Uplift or resetting due to hot brines active on a midcontinent‐wide scale, perhaps related to the Alleghenian and Ouachita orogenies. The age data indicate an extended burial phase associated with thermal overprint during Late Pennsylvanian‐Permian.  相似文献   

10.
11.
Abstract— We report the magnetostratigraphy of the sedimentary sequence between the impact breccias and the post‐impact carbonate sequence conducted on samples recovered by Yaxcopoil‐1 (Yax‐1). Samples of impact breccias show reverse polarities that span up to ~56 cm into the post‐impact carbonate lithologies. We correlate these breccias to those of PEMEX boreholes Yucatán‐6 and Chicxulub‐1, from which we tied our magnetostratigraphy to the radiometric age from a melt sample from the Yucatán‐6 borehole. Thin section analyses of the carbonate samples showed a significant amount of dark minerals and glass shards that we identified as the magnetic carriers; therefore, we propose that the mechanism of magnetic acquisition within the carbonate rocks for the interval studied is detrital remanent magnetism (DRM). With these samples, we constructed the scale of geomagnetic polarities where we find two polarities within the sequence, a reverse polarity event within the impact breccias and the base of the post‐impact carbonate sequence (up to 794.07 m), and a normal polarity event in the last ~20 cm of the interval studied. The polarities recorded in the sequence analyzed are interpreted to span from chron 29r to 29n, and we propose that the reverse polarity event lies within the 29r chron. The magnetostratigraphy of the sequence studied shows that the horizon at 794.11 m deep, interpreted as the K/T boundary, lies within the geomagnetic chron 29r, which contains the K/T boundary.  相似文献   

12.
Abstract— We report in situ magnesium isotope measurements of 7 porphyritic magnesium‐rich (type I) chondrules, 1 aluminum‐rich chondrule, and 16 refractory inclusions (14 Ca‐Al‐rich inclusions [CAIs] and 2 amoeboid olivine aggregates [AOAs]) from the ungrouped carbonaceous chondrite Acfer 094 using a Cameca IMS 6f ion microprobe. Both AOAs and 9 CAIs show radiogenic 26Mg excesses corresponding to initial 26Al/27Al ratios between ~5 × 10?5 ~7 × 10?5 suggesting that formation of the Acfer 094 CAIs may have lasted for ~300,000 years. Four CAIs show no evidence for radiogenic 26Mg; three of these inclusions (a corundum‐rich, a grossite‐rich, and a pyroxene‐hibonite spherule CAI) are very refractory objects and show deficits in 26Mg, suggesting that they probably never contained 26Al. The fourth object without evidence for radiogenic 26Mg is an anorthite‐rich, igneous (type C) CAI that could have experienced late‐stage melting that reset its Al‐Mg systematics. Significant excesses in 26Mg were observed in two chondrules. The inferred 26Al/27Al ratios in these two chondrules are (10.3 ± 7.4) × 10?6 (6.0 ± 3.8) × 10?6 (errors are 2σ), suggesting formation 1.6+1.2‐0.6 and 2.2+0.4‐0.3 Myr after CAIs with the canonical 26Al/27Al ratio of 5 × 10?5. These age differences are consistent with the inferred age differences between CAIs and chondrules in primitive ordinary (LL3.0–LL3.1) and carbonaceous (CO3.0) chondrites.  相似文献   

13.
Abstract– We studied the mineralogy, petrology, and bulk, trace element, oxygen, and noble gas isotopic compositions of a composite clast approximately 20 mm in diameter discovered in the Larkman Nunatak (LAR) 04316 aubrite regolith breccia. The clast consists of two lithologies: One is a quench‐textured intergrowth of troilite with spottily zoned metallic Fe,Ni which forms a dendritic or cellular structure. The approximately 30 μm spacings between the Fe,Ni arms yield an estimated cooling rate of this lithology of approximately 25–30 °C s?1. The other is a quench‐textured enstatite‐forsterite‐diopside‐glass vitrophyre lithology. The composition of the clast suggests that it formed at an exceptionally high degree of partial melting, perhaps approaching complete melting, and that the melts from which the composite clast crystallized were quenched from a temperature of approximately 1380–1400 °C at a rate of approximately 25–30 °C s?1. The association of the two lithologies in a composite clast allows, for the first time, an estimation of the cooling rate of a silicate vitrophyre in an aubrite of approximately 25–30 °C s?1. While we cannot completely rule out an impact origin of the clast, we present what we consider is very strong evidence that this composite clast is one of the elusive pyroclasts produced during pyroclastic volcanism on the aubrite parent body ( Wilson and Keil 1991 ). We further suggest that this clast was not ejected into space but retained on the aubrite parent body by virtue of the relatively large size of the clast of approximately 20 mm. Our modeling, taking into account the size of the clast, suggests that the aubrite parent body must have been between approximately 40 and 100 km in diameter, and that the melt from which the clast crystallized must have contained an estimated maximum range of allowed volatile mass fractions between approximately 500 and approximately 4500 ppm.  相似文献   

14.
Abstract– Single crystal (U‐Th)/He dating was applied to 24 apatite and 23 zircon grains from the Wetumpka impact structure, Alabama, USA. This small approximately 5–7.6 km impact crater was formed in a shallow marine environment, with no known preserved impact melt, thus offering a challenge to common geochronological techniques. A mean (U‐Th)/He apatite and zircon age of 84.4 ± 1.4 Ma (2σ) was obtained, which is within error of the previously estimated Late Cretaceous impact age of approximately 83.5 Ma. In addition, helium diffusion modeling of apatite and zircon grains during fireball/contact, shock metamorphism, and hydrothermal events was undertaken, to show the influence of these individual thermal processes on resetting (U‐Th)/He ages in the Wetumpka samples. This study has shown that the (U‐Th)/He geochronological technique has real potential for dating impact structures, especially smaller and eroded impact structures that lack impact melt lithologies.  相似文献   

15.
Abstract— Petrographic, compositional, and isotopic characteristics were studied for three calcium‐aluminum‐rich inclusions (CAIs) and four plagioclase‐bearing chondrules (three of them Al‐rich) from the Axtell (CV3) chondrite. All seven objects have analogues in Allende (CV3) and other primitive chondrites, yet Axtell, like most other chondrites, contains a distinctive suite of CAIs and chondrules. In common with Allende CAIs, CAIs in Axtell exhibit initial 26Al/27Al ratios ((26Al/27Al)0) ranging from ~5 × 10?5 to <1.1 × 10?5, and plagioclase‐bearing chondrules have (26Al/27Al)0 ratios of ~3 × 10?6 and lower. One type‐A CAI has the characteristics of a FUN inclusion. The Al‐Mg data imply that the plagioclase‐bearing chondrules began to form >2 Ma after the first CAIs. As in other CV3 chondrites, some objects in Axtell show evidence of isotopic disturbance. Axtell has experienced only mild thermal metamorphism (<600 °C), probably not enough to disturb the Al‐Mg systematics. Its CAIs and chondrules have suffered extensive metasomatism, probably prior to final accretion. These data indicate that CAIs and chondrules in Axtell (and other meteorites) had an extended history of several million years before their incorporation into the Axtell parent body. These long time periods appear to require a mechanism in the early solar system to prevent CAIs and chondrules from falling into the Sun via gas drag for several million years before final accretion. We also examined the compositional relationships among the four plagioclase‐bearing chondrules (two with large anorthite laths and two barred‐olivine chondrules) and between the chondrules and CAIs. Three processes were examined: (1) igneous differentiation, (2) assimilation of a CAI by average nebular material, and (3) evaporation of volatile elements from average nebular material. We find no evidence that igneous differentiation played a role in producing the chondrule compositions, although the barred olivine compositions can be related by addition or subtraction of olivine. Methods (2) and (3) could have produced the composition of one chondrule, AXCH‐1471, but neither process explains the other compositions. Our study indicates that plagioclase‐bearing objects originated through a variety of processes.  相似文献   

16.
Abstract— Eighteen new lithic fragments from the Soviet Luna missions have been analyzed with electron microprobe and 40Ar‐39Ar methods. Luna 16 basalt fragments have aluminous compositions consistent with previous analyses, but have two distinct sets of well‐constrained ages (3347 ± 24 Ma, 3421 ± 30 Ma). These data, combined with other Luna 16 basalt ages, imply that there were multiple volcanic events filling Mare Fecunditatis. The returned basalt fragments have relatively old cosmicray exposure (CRE) ages and may have been recovered from the ejecta blanket of a young (1 Ga), nearby crater. A suite of highlands rocks (troctolites and gabbros) is represented in the new Luna 20 fragments. One fragment is the most compositionally primitive (Mg# = 91–92) spinel troctolite yet found. Both troctolites have apparent crystallization ages of 4.19 Ga; other rocks in the suite have progressively younger ages and lower Mg#s. The age and composition progression suggests that these rocks may have crystallized from a single source magma, or from similar sources mobilized at the same time. Within the new Luna 24 basalt fragments is a quench‐textured olivine vitrophyre with the most primitive composition yet analyzed for a Luna 24 basalt, and several much more evolved olivine‐bearing basalts. Both new and previously studied Luna 24 very low‐Ti (VLT) basalt fragments have a unimodal age distribution (3273 ± 83 Ma), indicating that most returned samples come from a single extrusive episode within Mare Crisium much later than the Apollo 17 VLT basalts (3.6–3.7 Ga).  相似文献   

17.
The dust‐to‐gas ratios in three different samples of luminous, ultraluminous, and hyperluminous infrared galaxies are calculated by modelling their radio to soft X‐ray spectral energy distributions (SED) using composite models which account for the photoionizing radiation from H II regions, starbursts, or AGNs, and for shocks. The models are limited to a set which broadly reproduces the mid‐IR fine structure line ratios of local, IR bright, starburst galaxies. The results show that two types of clouds contribute to the IR emission. Those characterized by low shock velocities and low preshock densities explain the far‐IR dust emission, while those with higher velocities and densities contribute to the mid‐IR dust emission. Clouds with shock velocities of 500 km s–1 prevail in hyperluminous infrared galaxies. An AGN is found in nearly all of the ultraluminous infrared galaxies and in half of the luminous infrared galaxies of the sample. High IR luminosities depend on dust‐to‐gas ratios as high as ∼0.1 by mass, however most hyperluminous IR galaxies show dustto‐gas ratios much lower than those calculated for the luminous and ultraluminous IR galaxies. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
19.
Abstract– An anomalous Ca‐Al‐Fe‐rich spherical inclusion (CAFI) was found in the Vigarano CV3 chondrite. The CAFI has an igneous texture and contains large amounts of almost pure and coarse‐grained hercynite grains (approximately 56 vol%) as well as refractory phases such as grossite and perovskite. However, melilite and Mg‐spinel, which are common in ordinary Ca‐Al‐rich inclusions, are very rare (<1 vol%). Another unique characteristic of the CAFI is the presence in its core of dmitryivanovite (CaAl2O4), which was formed by shock metamorphism of a low‐pressure form of CaAl2O4 that was originally crystallized from a molten droplet. The fine‐grained hercynite and unidentified aluminous phase in the rim of the CAFI may have been produced from grossite during aqueous alteration in the Vigarano parent body.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号