首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
白云鄂博矿区北部韧性剪切带特征及其构造意义   总被引:1,自引:0,他引:1  
在白云鄂博主矿北西约6.5km处的查干楚鲁一带,有一条近东西向延伸的断层带,前人在该带中部识别出了蛇绿岩混杂堆积。本文作者在蛇绿岩东部的大理岩质糜棱岩中发现鞘褶皱、拉伸线理及旋转碎斑系等变形构造,在大理岩周围发现石英岩型宏观压力影构造,在变质石英砂岩中识别出褶劈理以及方解石脉等相关构造,在这条东西向断裂带北边发现典型的黄铁矿型压力影。根据上述特征判断,查干楚鲁一带为一条近东西向延伸的韧性剪切带,同时具有NEE—SWW向逆左旋走滑的特征。该带揭示出蒙古洋板块与华北板块在晚古生代汇聚拼合的基本格局。  相似文献   

2.
This study combines microstructural observations with Raman spectroscopy on carbonaceous material (RSCM), phase equilibria modelling and U–Pb dating of titanite to delineate the metamorphic history of a well‐exposed section through the South Tibetan Detachment System (STDS) in the Dzakaa Chu valley of Southern Tibet. In the hanging wall of the STDS, undeformed Tibetan Sedimentary Series rocks consistently record peak metamorphic temperatures of ~340 °C. Temperatures increase down‐section, reaching ~650 °C at the base of the shear zone, defining an apparent metamorphic field gradient of ~310 °C km?1 across the entire structure. U–Th–Pb geochronological data indicate that metamorphism and deformation at high temperatures occurred over a protracted period from at least 20 to 13 Ma. Deformation within this 1‐km‐thick zone of distributed top‐down‐to‐the‐northeast ductile shear included a strong component of vertical shortening and was responsible for significant condensing of palaeo‐isotherms along the upper margin of the Greater Himalayan Series (GHS). We interpret the preservation of such a high metamorphic gradient to be the result of a progressive up‐section migration in the locus of deformation within the zone. This segment of the STDS provides a detailed thermal and kinematic record of the exhumation of footwall GHS rocks from beneath the southern margin of the Tibetan plateau.  相似文献   

3.
阳山金矿产于勉阳-略阳板块缝合带中,经历了以逆冲推覆构造为主的复杂构造改造。通过构造研究把阳山金矿内的构造分出四期。第一期构造变形表现为由北向南逆冲,为韧性变形,构造置换明显、完全,形成透入性面理,剪切褶皱、无根褶皱、S-C组构、压力影、旋转碎斑、多米诺骨牌、石香肠等构造发育,构造岩为糜棱岩、超糜棱岩、构造片岩,并伴随有大规模的花岗岩岩浆活动,形成于三叠纪末-早侏罗世。第二期构造变形为由南向北的伸展构造,主要表现对第一期面理的改造和再利用,多为韧性变形,可见剪切褶皱、旋转碎斑等构造,构造岩为糜棱岩,顺层张性石英脉的发育,并伴随有大规模的岩浆活动,形成于侏罗纪末-早白垩世早期。第三期构造为脆韧性变形,为由南向的北逆冲推覆构造,主要表现为对先期构造的改造,使阳山金矿区南部面理产状发生倒转,形成膝折构造,构造岩为糜棱岩、初糜棱岩,形成于早白垩世晚期。第四期构造为表层次脆性的由南向北的伸展构造,形成构造角砾岩、碎裂岩等脆性构造岩,同时有石英脉和方解石脉顺断层侵入,本期构造形成于古近纪。  相似文献   

4.
The NE-trending Bayanwula Shan–Lang Shan is an important tectonic belt lying between the North China Plate (NCP) to the east and the Alxa block to the west. An understanding of its nature and the timing of deformation are essential to understand the relationship between the NCP and the Alxa block. Two phases of ductile deformation have been observed in this belt. Large-scale top-to-the-west ductile thrusting characterized the early deformation in the Bayanwula Shan–Lang Shan. Nearly east–west trending quartz stretching lineations and lineations formed by amphibole and biotite are well developed. Different types of sheath and oblique folds with east–west trending fold hinges are also developed in the region. The shear strain of this ductile thrust is up to 17. The ductile deformation may have resulted from the top-to-the-west thrusting of the northern part of the NCP over the Alxa block, and may have occurred ca. 351 Ma (biotite 40Ar/39Ar age). Later ductile deformation was expressed as NE-trending sinistral shear along the entire Bayanwula Shan–Lang Shan and likely occurred ca. 250 Ma (biotite and muscovite 40Ar/39Ar ages); this shear may have resulted from the collision between the Yangtze and North China plates to the south during the Triassic. Combined with recently obtained detrital zircon U–Pb ages for the area, the ductile deformation events in the eastern Alxa block indicate that the block may not have been part of the NCP, at least before the end of the Devonian. Both blocks were located in the Paleo-Asian Ocean during the Paleozoic and collided or amalgamated with each other at the end of the Devonian.  相似文献   

5.
The Dabie and Sulu orogens between the North China and the Yangtze cratons were left-laterally offset about 4(H) km along the NE-striking Tan-Lu Fault Zone. The fault zone terminates abruptly at the southeastern corner of the Dabie Orogen, suggesting unique origin of the fault zone which remains controversial. Structures in the Zhangbaling Croup and Feidong Complex in the Zhangbaling Uplift formed in a flat-lying ductile detachment zone with a shear sense of top to the SSW. Whereas, the Tan-Lu shear zone in the l.ujiang area exhibits as a sinistral ductile shear zone. Thus, the Tan-Lu Fault Zone in the east of the Dabie Orogen experienced two phases of deformation. The first phase deformation exhibits as sinistral ductile shear belts, the sinistral ductile shear zone was then involved in the NK-SW trending tightly folds and thrusts deformation. The Susong Complex and Zhangbaling Group in the Dabie Orogens exhibit as exhumation structures. According previous muscovite 4'Ar/,>Ar ages and deformation of syn-collisional folds and thrusts, we propose an indentation-induced continent-Tearing model for the initialization the Tan-Lu Fault Zone.  相似文献   

6.
The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the Central Tianshan belt in Xinjiang, NW China and is composed of mylonitized Early Palaeozoic greywacke, volcanic rocks, ophiolitic blocks as a mélange complex, HP/LT-type bleuschist blocks and mylonitized Neoproterozoic schist, gneiss and orthogneiss. Nearly vertical mylonitic foliation and sub-horizontal stretching lineation define its strike-slip feature; various kinematic indicators, such as asymmetric folds, non-coaxial asymmetric macro- to micro-structures and C-axis fabrics of quartz grains of mylonites, suggest that it is a dextral strike-slip ductile shear zone oriented in a nearly E-W direction characterized by "flower" strusture with thrusting or extruding across the zone toward the two sides and upright folds with gently plunging hinges. The Aqqikkudug-Weiya zone experienced at least two stages of ductile shear tectonic evolution: Early Palaeozoic north vergent thrusting ductile shear and Late Carboniferous-Early Permian strike-slip deformation. The strike-slip ductile shear likely took place during Late Palaeozoic time, dated at 269(5 Ma by the40Ar/39Ar analysis on neo-muscovites. The strike-slip deformation was followed by the Hercynian violent S-type granitic magmatism. Geodynamical analysis suggests that the large-scale dextral strike-slip ductile shearing is likely the result of intracontinental adjustment deformation after the collision of the Siberian continental plate towards the northern margin of the Tarim continental plate during the Late Carboniferous. The Himalayan tectonism locally deformed the zone, marked by final uplift, brittle layer-slip and step-type thrust faults, transcurrent faults and E-W-elongated Mesozoic-Cenozoic basins.  相似文献   

7.
The South Tibetan detachment system (STDS) in the Himalayan orogen is an example of normal‐sense displacement on an orogen‐parallel shear zone during lithospheric contraction. Here, in situ monazite U(–Th)–Pb geochronology is combined with metamorphic pressure and temperature estimates to constrain pressure–temperature–time (P–T–t) paths for both the hangingwall and footwall rocks of a Miocene ductile component of the STDS (outer STDS) now exposed in the eastern Himalaya. The outer STDS is located south of a younger, ductile/brittle component of the STDS (inner STDS), and is characterized by structurally upward decreasing metamorphic grade corresponding to a transition from sillimanite‐bearing Greater Himalayan sequence rocks in the footwall with garnet that preserves diffusive chemical zoning to staurolite‐bearing Chekha Group rocks in the hangingwall, with garnet that records prograde chemical zoning. Monazite ages indicate that prograde garnet growth in the footwall occurred prior to partial melting at 22.6 ± 0.4 Ma, and that peak temperatures were reached following c. 20.5 Ma. In contrast, peak temperatures were reached in the Chekha Group hangingwall by c. 22 Ma. Normal‐sense (top‐to‐the‐north) shearing in both the hangingwall and footwall followed peak metamorphism from c. 23 Ma until at least c. 16 Ma. Retrograde P–T–t paths are compatible with modelled P–T–t paths for an outer STDS analogue that is isolated from the inner STDS by intervening extrusion of a dome of mid‐crustal material.  相似文献   

8.
特提斯喜马拉雅带以广泛发育近E-W向和近S-N向断裂以及北喜马拉雅片麻岩穹隆带为典型特征.藏南错那洞穹隆位于特提斯喜马拉带的东部,是近两年新发现并厘定的穹隆构造.该穹隆从外向内主要由3部分组成:上部单元(盖层)、中部单元(滑脱系)和下部单元(核部),其中滑脱系主要由一套强烈变形的片岩、伟晶岩、花岗岩、大理岩和矽卡岩组成,片岩包括含石榴石云母片岩、含石榴石十字石云母片岩、含蓝晶石石榴石十字石片岩、含矽线石蓝晶石石榴石片岩和云母石英片岩.野外构造变形特征表明滑脱系为一条强烈变形的韧性剪切带,发育大量的鞘褶皱、"Z"形揉褶皱和眼球状构造、石榴石的旋转碎斑、S-C组构和压力影构造.错那洞穹隆记录了4期构造变形:第1期由北向南的逆冲挤压构造、第2期由南向北的韧性伸展构造、第3期近E-W向的韧性伸展构造变形和第4期成穹后的脆性垮塌构造.通过对滑脱系中含石榴石云母片岩的白云母进行Ar-Ar同位素测年,获得坪年龄为14.0±0.2 Ma,等时线年龄为13.7±0.5 Ma,二者基本一致,同时微观构造特征显示石英呈亚颗粒旋转重结晶(SGR),其韧性变形的温度为450~550℃,该变形温度高于白云母的封闭温度.因此,白云母Ar-Ar坪年龄(14.0±0.2 Ma)代表错那洞穹隆近E-W向伸展变形的时间,也即近S-N向桑日-错那裂谷的活动时间.结合构造变形和年代学特征,认为错那洞穹隆是STDS向北伸展拆离的主导机制叠加后期近E-W向韧性伸展活动的结果.   相似文献   

9.
Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt. The Ghadir Shear Belt is a 35 km-long, NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic. Within this shear belt, strain is highly partitioned into shortening, oblique, extensional and strike-slip structures at multiple scales. Moreover, strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains. In the East Ghadir and Ambaut shear belts, the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated. These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones. The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones. The earlier fabric(S1), is locally recognized in low strain areas and SW-ward thrusts. S2 is associated with a shallowly plunging stretching lineation(L2), and defines ~NW-SE major upright macroscopic folds in the East Ghadir shear belt. F2 folds are superimposed by ~NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation. F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt. The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones. Dextral ENEstriking shear zones were subsequently active at ca. 595 Ma, coeval with sinistral shearing along NW-to NNW-striking shear zones. The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt. Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments. Upright folds, fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning. The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.  相似文献   

10.
通过野外调研和显微构造测试,分析了新疆哈密库姆塔格沙垄北段韧性剪切带几何学、运动学和动力学特征,探讨了韧性剪切带的演化及其地质意义,详细研究了韧性剪切带S-C面理、波状消光、变形条带、变形纹、机械双晶、亚颗粒、动态重结晶颗粒、核幔结构、压力影、旋转碎斑系、显微裂隙和石英、方解石c轴组构等显微构造特征,并对其形成机制进行了解析。  相似文献   

11.
柴北缘锡铁山地区滩间山群构造变形分析   总被引:2,自引:0,他引:2  
初步构造变形分析表明 ,柴北缘锡铁山地区的早古生代变质火山岩系 -滩间山群在加里东期碰撞造山过程中经历了两期构造变形 :第一期为垂直造山带的挤压缩短变形 ,形成一系列紧闭褶皱、区域片理和大型韧性剪切带 ;第二期为平行造山带的挤压缩短变形 ,形成区域透入性共轭破劈理或膝折带。这两期变形是柴北缘加里东期碰撞造山带的斜向碰撞造山过程中不同阶段变形特征的体现。这种构造型式可能对于认识斜向碰撞造山带的构造动力学的转换过程具有重要意义。  相似文献   

12.
胶南地区的伸展作用——以胶南—诸城一带为例   总被引:11,自引:0,他引:11  
胶南地区的胶南—诸城一带存在两期不同方向的伸展构造。早期以形成近EN向的拉伸线理为特征,并在不同构造层次上显示出不同的变形。出露于研究区中部桃林尚庄隆起的含榴辉岩片麻岩中,主要以LS的组构为特征,显示出早期伸展作用下地壳岩石的垂直轴缩短、EW向拉伸的共轴应变;而在把下地壳含榴辉岩片麻岩与以变沉积岩为主的中上地壳岩石分开的韧性滑脱带上,此期伸展作用则表现为从东向西剪切的非共轴简单剪切变形,具有近水平的拉伸线理及近水平的EW向剪切褶皱和鞘褶皱枢纽。晚期伸展作用表现为近SN的伸展垮塌作用,形成向北和向南倾斜的两条韧性正剪切带,且遭受低角闪岩高绿片岩相条件下的透入性均匀简单剪切变形,剪切方向分别向北和向南。  相似文献   

13.
The progressive deformation of the Singhbhum Shear Zone (SSZ) involved the initiation of a mylonitic foliation, its deformation by three generations of reclined folds and superposition of two later groups of folds, i.e., a group of asymmetric folds with subhorizontal or gently plunging axes and a group of gentle and open, transverse and more or less upright folds. The occurrence of sheath folds and U-shaped deformed lineations indicate that the reclined folds were produced by rotation of fold hinges through large angles. The total displacement along the SSZ was compounded of displacements along numerous mesoscopic shear zones. The cleavages in the shear lenses and the mesoscopic shear zones cannot be distinguished as C and S surfaces. They have the same kinematic significance and were produced by ductile deformation, although there were localized discontinuous displacements along both sets,-of cleavages. A mylonitic foliation had formed before the development of the earliest recognizable folds. Its time of formation and folding could be synchronous, diachronous or partly overlapping in time in the different domains of the SSZ.  相似文献   

14.
黄雄南  张家声  彭澎  李天斌 《岩石学报》2013,29(7):2353-2370
贺兰山北段结晶基底中保留有不同程度的韧性变形剪切带.通过详细的野外考察和室内显微构造研究,明确贺兰山北段的古元古代基底经历了4期韧性剪切变形:(1)早期顺层剪切带表现出中下部地壳层次的变形样式,运动学特征一致反映了近南北向的伸展;(2)麻粒岩相变质的糜棱片麻岩剪切带为南北向挤压的产物,导致经历高温高压变质的孔兹岩系从下地壳向中部地壳抬升;(3)高级糜棱岩(低角闪岩相-高绿片岩相)剪切带涉及的2次伸展运动(北西-南东向伸展和北东-南西向伸展)使得基底进一步向中部地壳抬升,可能发生在形成孔兹岩系的同一造山运动的晚期伸展垮塌过程中;(4)北东-近东西向左行逆冲绿片岩相糜棱岩剪切带则将结晶基底抬升到中上部地壳层次,其运动学特征与高级糜棱岩剪切带明显不同,可能是另一造山运动的产物.贺兰山北段与大青山-乌拉山地区有相似的韧性剪切带和构造变形,表明华北克拉通西部北缘存在一致的近东西走向的古元古代碰撞造山运动以及随后另一造山运动的改造.  相似文献   

15.
大别-苏鲁造山带不同岩片(块)经历了不同的褶皱变形.榴辉岩块(或透镜体)和硬玉石英岩片经历了高压-超高压背景下的两幕褶皱变形之后,在区域性第一幕变形期间主要发生透镜化为主,后期与围岩共同经历紧闭同斜第二幕褶皱.而其它岩片主要经历了现今野外可见的区域性三幕褶皱,其中区域性第一幕褶皱为片内残留褶皱,在斜长角闪岩透镜体中多见,宏观规律不明.区域性第二幕褶皱在露头尺度多见,轴面为折劈理,局部强烈置换成片理化带(复合片理或第二期片理),恢复第三幕褶皱改造作用后,揭示出各种岩片中的各级尺度的第二幕褶皱都为轴面北西倾南东倒、轴迹走向为NNE向的紧闭不对称褶皱,不对称性一致反映其指向与各种岩片向南东的逆冲运动有关.第三幕褶皱为以片理或折劈理为变形面的宽缓褶皱,轴迹走向NWW,枢纽向西倾伏.韧性剪切带为非透入性构造,分早晚两期,早期为韧性逆冲,新县穹隆以南,运动学标志指示向北逆冲,错切第二幕褶皱,结合新县穹隆北部向南的逆冲特征,反映这些韧性逆冲断层多数为第二幕大型褶皱翼部的次级逆冲断层;晚期为韧性滑脱带,其发育局限于几个岩性差异较大的接触带,带内伸展型折劈理发育,并对挤压构造样式有重要的改造作用.华北克拉通东部地块是华北克拉通的重要组成,其盖层古生界和三叠系在印支运动期间经历了一幕宽缓褶皱作用,其轴迹方向主体也为NWW向.这一褶皱构造明显在变形时间、变形样式和展布方向上都和大别-苏鲁造山带中的第三幕褶皱非常一致,说明它们具有动力学上的必然联系.同时,研究表明在华北克拉通东部地块中没有经历大别-苏鲁造山带中区域性第一、第二幕褶皱变形的记录,故本文认为印支期这两幕变形主要发生在华北板块东南缘的边界上,并没有波及到板内,而且从东向西高压-超高压岩石剥露具有穿时性.只有当华北板块和华南板块在第二幕变形之后构成了统一块体后,第三幕变形才波及华北板内.  相似文献   

16.
内蒙古中部中元古代韧性剪切变形及其形成的构造背景   总被引:1,自引:1,他引:1  
内蒙古中部新太古界色尔腾山岩群、新太古代和古元古代片麻状英云闪长岩(基底岩系)与白云鄂博群长城系都拉哈拉组、尖山组和渣尔泰山群长城系书记沟组、增隆昌组(盖层)之间的韧性剪切变形特征相同。糜棱面理走向近东西,总体倾向北,倾角变化较大。不同区域的糜棱面理上发育程度不同的矿物拉伸线理,其指示的运动学方向为上盘岩系向北(北西或北东)的斜落。接触带基底岩系由糜棱片岩、糜棱岩等组成;接触带盖层下部岩系由糜棱岩化石英岩、糜棱岩化灰岩、板岩等组成,盖层上部岩系书记沟组、都拉哈拉组石英岩发育掩卧褶皱,尖山组、增隆昌组板岩和灰岩发育石香肠构造和褶叠层构造。变质相由基底岩系的低角闪岩相—高绿片岩相逐渐过渡为上覆盖层的低绿片岩相。沉积特征、变质变形特征、运动学特征等均显示白云鄂博群、渣尔泰山群长城系为同一被动陆缘沉积,韧性剪切变形是同一期构造作用的产物。形成机制为长城系相对于基底岩系的大规模向北(北西或北东)伸展拆离,形成于低温、低压环境,起始时间为长城纪末期(1400Ma)。内蒙古中部中元古代韧性剪切、隆升、裂谷作用是同一伸展构造作用不同阶段的产物。  相似文献   

17.
西藏阿里札达韧性剪切带特征及其X光岩组分析   总被引:1,自引:0,他引:1  
文中简述了西藏阿里札达盆地的地质背景、区域地层和札达韧性剪切带的基本特征。采用X射线衍射法对札达韧性剪切带中的石英、方解石和白云母等三种矿物,进行了X光岩组分析,确定了韧性变形岩石的组构特征、韧性剪切带的属性和变形岩石的应变类型,以及韧性剪切带形成时的温压条件。研究表明,韧性变形岩石均具不对称组构,反映韧性带属于南盘(下盘)俯冲型韧性剪切带,韧性变形是在高温、高压、低应变速率条件下发生的,处于>10km的地壳深度,岩石应变类型以压扁应变为主。  相似文献   

18.
辽宁弓长岭铁矿二矿区构造特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
辽宁弓长岭铁矿不仅发现较早、规模较大、开采历史较长,而且向下延深较大且富铁矿增多。针对弓长岭二矿区的构造解剖研究表明,二矿区至少经历了4期构造变形:第一期为小型塑性流变褶皱,第二期为区域规模的倒转同斜褶皱,第三期属于横跨叠加褶皱,第四期为区域规模的隆升。伴随着四期褶皱作用的断裂构造,从早到晚,则表现为韧性剪切带-脆韧性剪切带-韧脆性剪切带-脆性破裂。构造变形对铁矿的形成有一定的控制作用。  相似文献   

19.
错那洞穹窿位于北喜马拉雅片麻岩穹窿带(NHGD)的东段,是近年来新发现的穹窿构造。穹窿由内向外依次由核部、滑脱系和盖层三部分组成,错那洞铍钨锡稀有金属矿化主要赋存在穹窿滑脱系的矽卡岩和矽卡岩化大理岩中,矿体产在含石榴子石十字石云母片岩中,与强烈变形的淡色花岗岩或伟晶岩密切相关,部分矽卡岩矿物呈定向排列,具强烈的剪切特征;淡色花岗岩与矽卡岩的接触关系部分呈渐变接触,部分呈突变关系,表明矽卡岩与该期岩浆关系密切,矽卡岩与淡色花岗岩属于同构造的产物。本次研究获得错那洞穹窿滑脱系含石榴子石十字石云母片岩中黑云母Ar-Ar坪年龄为(16.6±0.3)Ma,反等时线年龄为(16.7±0.3)Ma,该年龄代表第二期由南向北伸展构造变形时间,即藏南拆离系(STDS)在错那洞穹窿的活动时间;含白云母的矽卡岩化大理岩中白云母Ar-Ar坪年龄为(16.9±0.2)Ma,与含石榴子石十字石云母片岩中黑云母Ar-Ar年龄一致,代表同构造矽卡岩的形成时间,也是错那洞铍钨锡稀有金属矿床的成矿时间。错那洞铍钨锡稀有金属矿床形成于由藏南拆离系强烈活动引起的伸展减薄构造背景,减压熔融形成的岩浆沿着构造通道上涌侵位,并与围岩交代反应形成同构造矽卡岩及其中的富铍钨锡矽卡岩型矿体。  相似文献   

20.
In the western part of the North Singhbhum fold belt near Lotapahar and Sonua the remobilized basement block of Chakradharpur Gneiss is overlain by a metasedimentary assemblage consisting of quartz arenite, conglomerate, slate-phyllite, greywacke with volcanogenic material, volcaniclastic rocks and chert. The rock assemblage suggests an association of volcanism, turbidite deposition and debris flow in the basin. The grade of metamorphism is very low, the common metamorphic minerals being muscovite, chlorite, biotite and stilpnomelane. Three phases of deformation have affected the rocks. The principal D1 structure is a penetrative planar fabric, parallel to or at low angle to bedding. No D1 major fold is observed and the regional importance of this deformation is uncertain. The D2 deformation has given rise to a number of northerly plunging major folds on E-W axial planes. These have nearly reclined geometry and theL 2lineation is mostly downdip on theS 2surface, though some variation in pitch is observed. The morphology of D2 planar fabric varies from slaty cleavage/schistosity to crenulation cleavage and solution cleavage. D3 deformation is weak and has given rise to puckers and broad warps on schistosity and bedding. The D2 major folds south of Lotapahar are second order folds in the core of the Ongarbira syncline whose easterly closure is exposed east of the mapped area. Photogeological study suggests that the easterly and westerly closing folds together form a large synclinal sheath fold. There is a continuity of structures from north to south and no mylonite belt is present, though there is attenuation and disruption along the fold limbs. Therefore, the Singhbhum shear zone cannot be extended westwards in the present area. There is no evidence that in this area a discontinuity surface separates two orogenic belts of Archaean and Proterozoic age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号