首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F.J. Ciesla 《Icarus》2010,208(1):455-467
Refractory objects such as Calcium, Aluminum-rich Inclusions, Amoeboid Olivine Aggregates, and crystalline silicates, are found in primitive bodies throughout our Solar System. It is believed that these objects formed in the hot, inner solar nebula and were redistributed during the mass and angular momentum transport that took place during its early evolution. The ages of these objects thus offer possible clues about the timing and duration of this transport. Here we study how the dynamics of these refractory objects in the evolving solar nebula affected the age distribution of the grains that were available to be incorporated into planetesimals throughout the Solar System. It is found that while the high temperatures and conditions needed to form these refractory objects may have persisted for millions of years, it is those objects that formed in the first 105 years that dominate (make up over 90%) those that survive throughout most of the nebula. This is due to two effects: (1) the largest numbers of refractory grains are formed at this time period, as the disk is rapidly drained of mass during subsequent evolution and (2) the initially rapid spreading of the disk due to angular momentum transport helps preserve this early generation of grains as opposed to later generations. This implies that most refractory objects found in meteorites and comets formed in the first 105 years after the nebula formed. As these objects contained live 26Al, this constrains the time when short-lived radionuclides were introduced to the Solar System to no later than 105 years after the nebula formed. Further, this implies that the t=0 as defined by meteoritic materials represents at most, the instant when the solar nebula finished accreting significant amounts of materials from its parent molecular cloud.  相似文献   

2.
Abstract— A spherical, 220-μm diameter, spinel-hibonite-perovskite inclusion from the Allende C3V meteorite contains a central hibonite cluster with an angular boundary. This central hibonite is enclosed within spinel that is zoned from Mg-rich at the hibonite boundary to more Fe-rich at the inclusion boundary. This spinel zone includes lath-shaped hibonites usually oriented subradial to the central hibonites. Two textural types of perovskites are present as exsolution from the central hibonite and as equidimensional grains within both the central hibonite and spinel. These second perovskites have exsolution lamellae of Al2O3. Within the central hibonite and adjacent to some equidimensional perovskites, a fine porous phase interpreted as alteration has a composition of nearly pure Al2O3 with minor amounts of Na and Si. This is possibly either an intergrowth of corundum and nepheline or a modified Al2O3, β-alumina. The central hibonites and equidimensional perovskites are considered relict grains on which the spinel-hibonite layer crystallized. The relict material had undergone slow cooling in a previous event to produce exsolution of original high-temperature compositions. Later alteration caused breakdown of hibonite to give an Al2O3-rich phase. This inclusion represents a composite body which formed in a Ca-Al-rich environment.  相似文献   

3.
Abstract— The Divnoe meteorite is an olivine-rich primitive achondrite with subchondritic chemistry and mineralogy. It has a granoblastic, coarse-grained, olivine groundmass (CGL: coarse-grained lithology) with relatively large pyroxene-plagioclase poikilitic patches (PP) and small fine-grained domains of an opaque-rich lithology (ORL). Both PP and ORL are inhomogeneously distributed and display reaction boundaries with the groundmass. Major silicates, olivine (Fa20–28) and orthopyroxene (Fs20–28 Wo0.5–2.5), display systematic differences in composition between CGL and ORL as well as a complicated pattern of variations within CGL. Accessory plagioclase has low K content and displays regular igneous zoning with core compositions An40–45 and rims An32–37. The bulk chemical composition of Divnoe is similar to that of olivine-rich primitive achondrites, except for a depletion of incompatible elements and minor enrichment of refractory siderophiles. Oxygen isotope compositions for whole-rock and separated minerals from Divnoe fall in a narrow range, with mean δ18O = +4.91, δ17O = +2.24, and Δ17O = ?0.26 ± 0.11. The isotopic composition is not within the range of any previously recognized group but is very close to that of the brachinites. To understand the origin of Divnoe lithologies, partial melting and crystallization were modelled using starting compositions equal to that of Divnoe and some chondritic meteorites. It was found that the Divnoe composition could be derived from a chondritic source region by ~20 wt% partial melting at T ~ 1300 °C and log(fO2) = IW-1.8, followed by ~60 wt% crystallization of the partial melt formed, and removal of the still-liquid portion of the partial melt. Removal of the last partial melt resulted in depletion of the Divnoe plagioclase in Na and K. In this scenario, CGL represents the residue of partial melting, and PP is a portion of the partial melt that crystallized in situ. The ORL was formed during the final stages of partial melting by reaction between gaseous sulfur and residual olivine in the source region. A prominent feature of Divnoe is fine μm-scale chemical variations within olivine grains, related to lamellar structures the olivines display. The origin of these structures is not known.  相似文献   

4.
Abstract— Through freeze-thaw disaggregation of the Murchison meteorite, we have recovered a refractory inclusion, HIB-11, that is unique in terms of its texture, mineral compositions, and bulk composition. It consists of anhedral, Y-rich (1.6 wt% Y2O3) perovskite and lathlike spinel grains enclosed in a matrix of fine-grained, Sc-rich (10.5 wt% SC2O3 avg.), Ti-rich (12.6 wt% TiO2 avg., reporting all Ti as TiO2) clinopyroxene. The chondrite-normalized rare earth element (REE) pattern is complex, with light REE (LREE) at ~10× C1, abundances increasing from Gd through Ho (the latter at ~104× C1), decreasing through Yb at 200× C1, and Lu at ~400× C1. The pattern reflects several stages of high-temperature volatility fractionation. Removal of Lu and Er from the source gas in the first condensation event was followed by partial to complete removal of the somewhat less refractory heavy REE, Gd through Ho, in the HIB-11 precursors by condensation from the fractionated residual gas in a second event. Both of these events probably reflect condensation of REE into ZrO2 or a mixed Zr-, Sc-, Ti-, Y-oxide at temperatures too high for hibonite stability. A second, lower-temperature component, which was subsequently added, had fractionated (Nd-poor, Ce-rich) LREE abundances that resulted from condensation from a gas that had undergone prior removal of the more refractory LREE, resulting in enrichment in Ce and the most volatile REE, Eu and Yb. The aggregate was then melted and quickly cooled, forming a fine-grained spherule. This is the first reported inclusion in which the two most refractory REE, Lu and Er, are strongly fractionated from the other REE. An absence of mass fractionation among the Ti isotopes indicates that HIB-11 is not an evaporative residue, implying that volatility fractionation of trace elements took place during condensation. The fact that the two most refractory heavy REE could be separated from the other, only slightly less refractory heavy REE suggests that a wide variety of REE patterns is possible, and that ultrarefractory inclusions with other unusual REE patterns, important recorders of nebular condensation, may yet be discovered.  相似文献   

5.
Abstract— A crystal of clinopyroxene from the coarse-grained refractory inclusion Egg 6 of the Allende meteorite has been studied in detail by transmission electron microscopy. The pyroxene crystal contains euhedral, dislocation-free inclusions of pure spinel MgAl2O4, without any topotactic relation to the host. Extensive dislocation walls at equilibrium, characteristic of high-temperature anneal, are present in the crystal. Alteration products are occasionally observed at the spinel-pyroxene interface close to regions where dislocation walls decorated with bubbles (or voids) are present. The bubbles, often in the shape of tubes along the dislocation lines, are thought to be due to the precipitation of a fluid migrating along the dislocations. The observations are compatible with crystallization of the refractory inclusions from the melt and with the existence of a later stage of metasomatism.  相似文献   

6.
Abstract— The Kaidun meteorite contains carbonaceous chondrite (CM1) clasts that have been highly altered by reactions with hydrothermal fluids. Pyrrhotite in these clasts occurs as unusual needles wrapped by sheaths of phyllosilicate, and pentlandite forms veins that crosscut aggregates of phyllosilicate and garnet but not pyrrhotite. The isotopic compositions of S (δ34SCDT) in individual sulfide grains, measured by ion micro-probe, are fractionated compared to troilite in ordinary chondrites. The S in Kaidun sulfides is isotopically light (as much as ?4.2% for pyrrhotite and ?5.7%0 for pentlandite), unlike sulfides in other carbonaceous chondrites, which are enriched in 34S. The unusual S-isotopic composition of these texturally unique sulfides supports the hypothesis that Kaidun CM1 clasts were pervasively altered under extreme thermal conditions, possibly by fluids that had lost isotopically heavy SO2.  相似文献   

7.
Abstract— We present an isotope study of noble gases in Divnoe, an anomalous meteorite, and also Rb-Sr and K-Ar dating of this meteorite. The relatively young Rb-Sr age obtained (3.39 Ga) seems doubtful and, most probably, results from weathering or contamination. The ancient K-Ar age (4.67+0.20–0.40), together with clear excess of 129Xe, allows the suggestion of very early formation of the Divnoe meteorite. Concentrations and isotope ratios of noble gases in Divnoe are: 17.9 ≤ 3He ≤ 29.0 × 10?8; 20Ne = 6.22 × 10?8; 2.44 ≤ 36Ar ≤ 5.10 × 10?8; 130Xe = 41.3 × 10?12 cm3/g; 0.079 ≤ 3He/4He ≤ 0.193; 20Ne/22Ne = 0.860; 21Ne/22Ne = 0.927; 3.47 ≤ 40Ar/36Ar ≤ 9.47; 2.22 ≤ 36Ar/38Ar ≤ 3.27; 129Xe/132Xe = 1.09. The exposure age calculated from cosmogenic 3He, 21Ne, and 38Ar is 17.9 ± 0.9 Ma. On the basis of the isotope data for the noble gases and O, and abundances of K, Rb, and Sr, an attempt was made to estimate the relationship of Divnoe to other meteorite types. The O-isotope characteristics of Divnoe are clearly distinct from those of ordinary chondrites, acapulcoites/lodranites, and SNC meteorites (Petaev et al., 1994, Clayton, 1993). In plots of 136Xe vs. 129Xe/130Xe, the Divnoe data fall outside of the data fields for carbonaceous and enstatite chondrites. The light noble gas data, especially the 40Ar/38Ar ratio, and the 40Ar, 38Ar, 3He, and 4He contents of Divnoe differ significantly from those of all meteorite types except diogenites. The K, Rb, and Sr abundances in Divnoe are substantially lower than in most other meteorites. In the concentrations of these elements, as well as in the REE pattern, the Divnoe meteorite is similar only to diogenites. Divnoe probably should be treated as a restite remaining after partial melting of the chondritic mantle of a parent asteroid body.  相似文献   

8.
Abstract— The degree of isotopic spatial heterogeneity in the solar nebula has long been a puzzle, with different isotopic systems implying either large‐scale initial spatial homogeneity (e.g., 26Al chronometry) or a significant amount of preserved heterogeneity (e.g., ratios of the three stable oxygen isotopes, 16O, 17O, and 18O). We show here that in a marginally gravitationally unstable (MGU) solar nebula, the efficiency of large‐scale mixing and transport is sufficient to spatially homogenize an initially highly spatially heterogeneous nebula to dispersions of ?10% about the mean value of 26Al/27Al on time scales of thousands of years. A similar dispersion would be expected for 17O/16O and 18O/16O ratios produced by ultraviolet photolysis of self‐shielded molecular CO gas at the surface of the outer solar nebula. In addition to preserving a chronological interpretation of initial 26Al/27Al ratios and the self‐shielding explanation for the oxygen isotope ratios, these solar nebula models offer a self‐consistent environment for achieving large‐scale mixing and transport of thermally annealed dust grains, shock‐wave processing of chondrules and refractory inclusions, and giant planet formation.  相似文献   

9.
Abstract— The magnetometer experiment (MAG) onboard the Near‐Earth Asteroid Rendezvous (NEAR)‐Shoemaker spacecraft detected no global scale magnetization and established a maximum magnetization of 2.1 times 10?6 Am2 kg?1 for asteroid 433 Eros. This is in sharp contrast with the estimated magnetization of other S‐class asteroids (Gaspra, ?2.4 times 10?2 Am2 kg?1; Braille, ?2.8 times 10?2 Am2 kg?1) and is below published values for all types of ordinary chondrites. This includes the L/LL types considered to most closely match 433 Eros based on preliminary interpretations of NEAR remote geochemical experiments. The ordinary chondrite meteorite magnetization intensity data was reviewed in order to assess the reasonableness of an asteroid‐meteorite match based on magnetic property measurements. Natural remanent magnetization (NRM) intensities for the ordinary chondrite meteorites show at least a 2 order of magnitude range within each of the H, L, and LL groups, all well above the 2.1 times 10?6 Am2 kg?1 level for 433 Eros. The REM values (ratio of the NRM to the SIRM (saturation remanent magnetization)) range over 3 orders of magnitude for all chondrite groups indicating no clear relationship between NRM and the amount of magnetic material. Levels of magnetic noise in chondrite meteorites can be as much as 70% or more of the NRM. Consequently, published values of the NRM should be considered suspect unless careful evaluation of the noise sources is done. NASA Goddard SFC studies of per unit mass intensities in large (>10 000 g) and small (down to <1 g) samples from the same meteorite demonstrate magnetic intensity decreases as size increases. This would appear to be explained by demagnetization due to magnetic vector randomness at unknown scale sizes in the larger samples. This would then argue for some level of demagnetization of large objects such as an asteroid. The possibility that 433 Eros is an LL chondrite cannot be discounted.  相似文献   

10.
《Icarus》1987,70(3):517-535
The cratering record at Uranus shows two different crater populations of different ages. The old crater population occurs on the heavily cratered surfaces of Oberon, Umbriel, and Miranda, while the younger one is found on Titania, Ariel and the resurfaced areas of Miranda. Since only the young population occurs on Titania, this satellite must have experienced a global resurfacing event which obliterated the older population prior to the impact of objects causing the younger one. The old crater population is characterized by an abundance of large craters and a relative paucity of small ones. The young crater population, however, has an abundance of small craters and a paucity of large ones relative to the old population. Furthermore, the abundance of small craters and the paucity of large craters increases with decreasing density. This change in the size distribution is consistent with a population of impactors that evolved with time by mutual collision, and therefore was probably in planetocentric orbits. In fact, both crater populations may be the result of accretional remnants in planetocentric orbits that evolved with time by mutual collisions. If so, then the higher crater density on Miranda compared to Oberon and Umbriel suggests that both Oberon and Umbriel were also resurfaced early in their histories.A comparison of the Solar System cratering record from Mercury to Uranus (19 AU) shows different crater populations at different locations in the Solar System. Computer simulations using a modified Holsapple-Schmidt crater scaling and short-period comet impact velocities to recover the projectile diameters from the cratering record produce different projectile populations in different parts of the Solar System. Furthermore, adjusting the Jovian crater curve to match that in the inner Solar System requires differences in the impact velocities that are unrealistic for objects in heliocentric orbits. These results suggest that the Solar System cratering record cannot be explained by a single family of objects in heliocentric orbits, e.g., comets. One possible explanation is that the cratering record is the result of different families of objects (possibly accretional remnants) indigenous to that region of the Solar System in which the different crater populations are found. Thus, in the inner Solar System, the impactors responsible for heavy bombardment were in heliocentric orbits with semimajor axes less than 3 AU. In the outer Solar System, they may have been in planetocentric orbits around each of the Jovian planets.  相似文献   

11.
The Infrared Astronomical Satellite (IRAS) program will produce an extremely sensitive all-sky survey over the wavelength region 8 to 120 μm when the mission is flown in 1982. These data will provide a novel opportunity to detect planetary-sized objects having masses <0.08M or near our solar system. The improved detection limit of the IRAS will greatly increase the volume of space searched for such objects as compared with previous optical and infrared studies.  相似文献   

12.
Fusion crusts form during the atmospheric entry heating of meteorites and preserve a record of the conditions that occurred during deceleration in the atmosphere. The fusion crust of the Winchcombe meteorite closely resembles that of other stony meteorites, and in particular CM2 chondrites, since it is dominated by olivine phenocrysts set in a glassy mesostasis with magnetite, and is highly vesicular. Dehydration cracks are unusually abundant in Winchcombe. Failure of this weak layer is an additional ablation mechanism to produce large numbers of particles during deceleration, consistent with the observation of pulses of plasma in videos of the Winchcombe fireball. Calving events might provide an observable phenomenon related to meteorites that are particularly susceptible to dehydration. Oscillatory zoning is observed within olivine phenocrysts in the fusion crust, in contrast to other meteorites, perhaps owing to temperature fluctuations resulting from calving events. Magnetite monolayers are found in the crust, and have also not been previously reported, and form discontinuous strata. These features grade into magnetite rims formed on the external surface of the crust and suggest the trapping of surface magnetite by collapse of melt. Magnetite monolayers may be a feature of meteorites that undergo significant degassing. Silicate warts with dendritic textures were observed and are suggested to be droplets ablated from another stone in the shower. They, therefore, represent the first evidence for intershower transfer of ablation materials and are consistent with the other evidence in the Winchcombe meteorite for unusually intense gas loss and ablation, despite its low entry velocity.  相似文献   

13.
Abstract— Calcium, aluminum-rich inclusions (CAIs) are characteristic components in carbonaceous chondrites. Their mineralogy is dominated by refractory oxides and silicates like corundum, perovskite, spinel, hibonite, melilite, and Ca-pyroxene, which are predicted to be the first phases to have condensed from the cooling solar nebula. Allowing insights into processes occurring in the early solar system, CAIs in carbonaceous and ordinary chondrites were studied in great detail, whereas only a few refractory inclusions were found and studied in stratospheric interplanetary dust particles (IDPs) and micrometeorites. This study gives a summary of all previous studies on refractory inclusions in stratospheric IDPs and micrometeorites and will present new data on two Antarctic micrometeorites. The main results are summarized as follows: (a) Eight stratospheric IDPs and six micrometeorites contain Ca, Al-rich inclusions or refractory minerals. The constituent minerals include spinel, perovskite, fassaite, hibonite, melilite, corundum, diopside and anorthite. (b) Four of the seven obtained rare-earth-element (REE) patterns from refractory objects in stratospheric IDPs and micrometeorites are related to Group III patterns known from refractory inclusions from carbonaceous chondrites. A Group II related pattern was found for spinel and perovskite in two micrometeorites. The seventh REE pattern for an orthopyroxene is unique and can be explained by fractionation of Gd, Lu, and Tb at highly reducing conditions. (c) The O-isotopic compositions of most refractory objects in stratospheric IDPs and micrometeorites are similar to those of constituents from carbonaceous chondrites and fall on the carbonaceous chondrites anhydrous minerals mixing line. In fact, in most cases, in terms of mineralogy, REE pattern and O-isotopic composition of refractory inclusions in stratospheric IDPs and micrometeorites are in good agreement with a suggested genetic relation of dust particles and carbonaceous chondrites. Only in the case of one Antarctic micrometeorite does the REE pattern obtained for an orthopyroxene point to a link of this particle to enstatite chondrites.  相似文献   

14.
Abstract— An ~4 × 9 × 12-mm concentration of metal (dubbed RC1) situated between silicate melt and a relict chondritic clast in the Rose City H5 impact-melt breccia is compositionally heterogeneous. Approximately 65 wt% of RC1 is enriched in the refractory siderophile elements, Os and Ir, by 30–40% relative to bulk H chondrite metal; ~20 wt% is depleted in these elements by 31–35%; and 15 wt% is depleted by a considerably greater amount (75%). Common and volatile siderophile elements are essentially unfractionated in all three regions; W is fractionated to only a moderate degree. The compositions of the different regions of RC1 are similar to those of previously analyzed metal nodules and veins in shocked but unmelted ordinary chondrites. All of these objects probably formed by a complex process involving vaporization of chondritic material, rapidly followed by oxidation of W to form volatile oxides, fractional condensation of refractory siderophile elements, transport of the residual vapor (containing common and volatile siderophile elements as well as W oxide) and condensation of this vapor in fractures and voids or on metallic liquid substrates. The common occurrence of vugs in shock-heated chondrites and the pervasiveness of vaporization effects recorded in metal masses and veins underscores the important role of superheating in the formation of impact breccias.  相似文献   

15.
Podolak M  Bunch TE  Cassen P  Reynolds RT  Chang S 《Icarus》1990,84(1):254-260
The refractory meteorite inclusions known as CAIs (calcium-aluminum rich inclusions) display melted rims that were produced by thermal events of only a few seconds duration. We show that gas dynamic deceleration in a temporary atmosphere around an accreting parent body, produced by gas release during accretion, could provide a regime of sufficiently high gas density and small scale height to achieve partial melting of the CAIs. In addition, the presence of dust in the atmosphere would increase the gradient of pressure with height (i.e., effectively reduce the scale height), lower the rate of blowoff (thus keeping more gas around the body), as well as allow dust particles to become trapped in the partially melted material as is observed in some cases. Thus, CAIs may be regarded as probes of a primitive atmosphere by virtue of the thermal and mineralogical alteration that occurred upon their passage through the atmosphere.  相似文献   

16.
To examine the iron (Fe) isotopic heterogeneities of CI and ordinary chondrites, we have analyzed several large chips (approximately 1 g) from three CI chondrites and three ordinary chondrites (LL5, L5, and H5). The Fe isotope compositions of five different samples of Orgueil, one from Ivuna and one from Alais (CI chondrites), are highly homogeneous. This new dataset provides a δ56Fe average of 0.02 ± 0.04‰ (2SE, n = 7), which represents the best available value for the Fe isotopic composition of CI chondrites and probably the best estimate of the bulk solar system. We conclude that the homogeneity of CI chondrites reflects the initial Fe isotopic homogeneity of the well‐mixed solar nebula. In contrast, larger (up to 0.26‰ in δ56Fe) isotopic variations have been found between separate approximately 1 g pieces of the same ordinary chondrite sample. The Fe isotope heterogeneities in ordinary chondrites appear to be controlled by the abundances of chondritic components, specifically chondrules, whose Fe isotope compositions have been fractionated by evaporation and recondensation during multiple heating events.  相似文献   

17.
Abstract— We report the results of a study of TS2, an unusual compact Type A inclusion from Allende. A distinctive, major feature of this inclusion is that many of its melilite crystals have no dominant core-rim zoning but instead consist of 50–200 μm patches of Mg-rich melilite (Åk32–62, median Åk51) set in or partially enclosed by, and optically continuous with, relatively Al-rich melilite (Åk25–53, median Åk38). The Al-rich regions have jagged, dendritic shapes but occur within crystals having straight grain boundaries. Another unusual feature of this inclusion is the size and spatial distribution of spinel. In many places, especially in the interior of the inclusion, the aluminous melilite encloses numerous, fine (0.5–5 μm) inclusions of spinel and minor perovskite and fassaite. The latter phases also occur as isolated grains throughout the inclusion. Coarse-grained spinel, ~50–150 μm across, occurs in clumps and chains enclosed in relatively Mg-rich melilite, whereas none of the fine spinel grains are clumped together. The sample also contains a spinel-free palisade body, 1.7 × 0.85 mm, that consists almost entirely of Åk-rich (45–65 mol%) melilite. Within the palisade body are two grains of perovskite with extremely Nb-rich (~4–8 wt% Nb2O5) cores and rims of typical composition. All phases in this inclusion have chondrite-normalized REE patterns that are consistent with crystal/melt partitioning superimposed upon a bulk modified Group II pattern. We suggest that TS2 had an anomalous cooling history and favor the following model for the formation of TS2. Precursors having a bulk modified Group II pattern melted. Rapid growth of large, dendritic, nonstoichiometric melilite crystals occurred. The melilite trapped pockets of melt and incorporated excess spinel components and TiO2. Bubbles formed in the residual melt. As crystallization slowed, coarse spinel grew. Some spinel grains collected against bubbles, forming spherical shells, and others formed clumps and chains. Relatively Åk-rich melilite crystallized from the residual melt between dendritic melilite crystals and from melt trapped in pockets and between arms of dendrites, and incorporated the clumps and chains of coarse spinel. Bubbles broke and filled with late-stage melt, their shapes preserved by their spinel shells. Slow cooling, or perhaps an episode of reheating, allowed the early melilite to become stoichiometric by exsolving fine grains of spinel, perovskite and fassaite, and allowed the melilite to form smooth grain boundaries. Dendritic crystals are indicative of rapid growth and the melilite crystals in TS2 appear to be dendritic. Coarse, dendritic melilite crystals have been grown from Type B inclusion melts cooled at ~50–100 °C/h. If those results are applicable to Type A inclusions, we can make the first estimate of the cooling rate of a Type A inclusion, and it is outside the range (2–50 °C/h) generally inferred for Type B inclusions. The rapid cooling inferred here may be part of an anomalous thermal history for TS2, or it may be representative of part of a normal thermal history common to Types A and B that involved rapid cooling early (at high temperatures) as inferred for TS2, and slower cooling later (at lower temperatures), as inferred for Type B inclusions. We prefer the former explanation; otherwise, the unusual features of TS2 that are reported here would be common in Type A inclusions (which they are not).  相似文献   

18.
Abstract In a further step to assess processes leading to the complicated secular trend of the isotopic composition of N implanted in lunar regolith, we investigate mechanisms fractionating solar energetic particles (SEPs). We conclude that such mechanisms are likely to occur, most probably producing an enrichment of 15N over 14N in SEPs over the photospheric abundance ratio. Simultaneously, 22Ne is enriched over 20Ne but to a lesser extent. An enrichment of the heavy Ne isotope is observed in the suprathermal solar particles, implanted in the lunar regolith. Hence, the now well-established difference between the isotopic composition of suprathermal Ne and solar wind Ne in the lunar regolith might be taken as evidence for the validity of this model. The present-day fluxes of energetic particles produced in impulsive flare events, capable to produce such isotopic fractionations are, however, orders of magnitude below the required amounts to explain the lunar observations. The details of the secular variation of the N isotopic composition remain an enigma.  相似文献   

19.
The study of remanent magnetization of lunar samples and of meteorites has opened up the possibility of direct detection of primordial fields in the early history of the solar system. Lunar samples have not yielded a record predating 4.0 b.y. as a result of the intense bombardment on the lunar surface. Meteorites on the other hand can be studied as well as the individual chondrules. These infer the presence of a field as high as 16 Oe when the chondrules within the meteorites formed. This may reflect a primordial field of magnitude inferred for the early solar system. At the same time the magnetic moment of Mars and of Mercury may reflect a magnetization frozen into their crusts during the formation of the crust. These concepts are subject to test by long-range surface magnetic profiles or by satellite studies which would show whether subsequent cratering and volcanic activity has disrupted the crustal pattern. Small objects such as asteroids might also retain a memory of a primordial field.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978.  相似文献   

20.
Large Near-Earth-Asteroids have played a role in modifying the character of the surface geology of the Earth over long time scales through impacts. Recent modeling of the disruption of large meteoroids during atmospheric flight has emphasized the dramatic effects that smaller objects may also have on the Earth's surface. However, comparison of these models with observations has not been possible until now. Peekskill is only the fourth meteorite to have been recovered for which detailed and precise data exist on the meteoroid atmospheric trajectory and orbit. Consequently, there are few constraints on the position of meteorites in the solar system before impact on Earth. In this paper, the preliminary analysis based on 4 from all 15 video recordings of the fireball of October 9, 1992 which resulted in the fall of a 12.4 kg ordinary chondrite (H6 monomict breccia) in Peekskill, New York, will be given. Preliminary computations revealed that the Peekskill fireball was an Earth-grazing event, the third such case with precise data available. The body with an initial mass of the order of 104 kg was in a pre-collision orbit with a = 1.5 AU, an aphelion of slightly over 2 AU and an inclination of 5. The no-atmosphere geocentric trajectory would have lead to a perigee of 22 km above the Earth's surface, but the body never reached this point due to tremendous fragmentation and other forms of ablation. The dark flight of the recovered meteorite started from a height of 30 km, when the velocity dropped below 3 km/s, and the body continued 50 km more without ablation, until it hit a parked car in Peekskill, New York with a velocity of about 80 m/s. Our observations are the first video records of a bright fireball and the first motion pictures of a fireball with an associated meteorite fall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号