首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Defining a model for the representation and the analysis of spatio‐temporal dynamics remains an open domain in geographical information sciences. In this article we investigate a spatio‐temporal graph‐based model dedicated to managing and extracting sets of geographical entities related in space and time. The approach is based on spatial and temporal local relations between neighboring entities during consecutive times. The model allows us to extract sets of connected entities distant in time and space over long periods and large spaces. From GIS concepts and qualitative reasoning on space and time, we combine the graph model with a dedicated spatial database. It includes information on geometry and geomorphometric parameters, and on spatial and temporal relations. This allows us to extend classical measurements of spatial parameters, with comparisons of entities linked by complex relations in space and time. As a case study, we show how the model suggests an efficient representation of dunes dynamics on a nautical chart for safe navigation.  相似文献   

2.
Traffic forecasting is a challenging problem due to the complexity of jointly modeling spatio‐temporal dependencies at different scales. Recently, several hybrid deep learning models have been developed to capture such dependencies. These approaches typically utilize convolutional neural networks or graph neural networks (GNNs) to model spatial dependency and leverage recurrent neural networks (RNNs) to learn temporal dependency. However, RNNs are only able to capture sequential information in the time series, while being incapable of modeling their periodicity (e.g., weekly patterns). Moreover, RNNs are difficult to parallelize, making training and prediction less efficient. In this work we propose a novel deep learning architecture called Traffic Transformer to capture the continuity and periodicity of time series and to model spatial dependency. Our work takes inspiration from Google’s Transformer framework for machine translation. We conduct extensive experiments on two real‐world traffic data sets, and the results demonstrate that our model outperforms baseline models by a substantial margin.  相似文献   

3.
空间和属性随时间变化规律的研究是时态GIS核心问题。引入面向对象方法,把地理实体抽象成为具有空间、属性和时间特性的空间对象,以空间对象的变化状态为基础,探讨了地理实体时空信息连续变化对基态修正模型的影响。通过引入基态距影响因子研究了基态修正模型改进方法,重点研究了基于面向对象基态修正模型的基态距确定、基态的建立过程和模型的存储;并具体设计了基于时间点和时间段的查询方法,为空间对象的时空数据存储、查询和历史回溯提供了基础。  相似文献   

4.
Deeply integrating Linked Data with Geographic Information Systems   总被引:1,自引:0,他引:1  
The realization that knowledge often forms a densely interconnected graph has fueled the development of graph databases, Web‐scale knowledge graphs and query languages for them, novel visualization and query paradigms, as well as new machine learning methods tailored to graphs as data structures. One such example is the densely connected and global Linked Data cloud that contains billions of statements about numerous domains, including life science and geography. While Linked Data has found its way into everyday applications such as search engines and question answering systems, there is a growing disconnect between the classical ways in which Geographic Information Systems (GIS) are still used today and the open‐ended, exploratory approaches used to retrieve and consume data from knowledge graphs such as Linked Data. In this work, we conceptualize and prototypically implement a Linked Data connector framework as a set of toolboxes for Esri's ArcGIS to close this gap and enable the retrieval, integration, and analysis of Linked Data from within GIS. We discuss how to connect to Linked Data endpoints, how to use ontologies to probe data and derive appropriate GIS representations on the fly, how to make use of reasoning, how to derive data that are ready for spatial analysis out of RDF triples, and, most importantly, how to utilize the link structure of Linked Data to enable analysis. The proposed Linked Data connector framework can also be regarded as the first step toward a guided geographic question answering system over geographic knowledge graphs.  相似文献   

5.
In this work we investigate the effectiveness of different types of visibility models for use within location‐based services. This article outlines the methodology and results for our experiments, which were designed to understand the accuracy and effects of model choices for mobile visibility querying. Harnessing a novel mobile media consumption and authoring application called Zapp, the levels of accuracy of various digital surface representations used by a line of sight visibility algorithm are extensively examined by statistically assessing randomly sampled viewing sites across the 1 km2 study area, in relation to points of interest (POI) across the University of Nottingham campus. Testing was carried out on three different surface models derived from 0.5 m LiDAR data by visiting physical sites on each surface model with 14 random point of interest masks being viewed from between 10 and 16 different locations, totalling 190 data points. Each site was ground‐truthed by determining whether a given POI could be seen by the user and could also be identified by the mobile device. Our experiments in a semi‐urban area show that choice of surface model has important implications for mobile applications that utilize visibility in geospatial query operations.  相似文献   

6.
Geographic features change over time, this change being the result of some kind of event. Most database systems used in GIS are relational in nature, capturing change by exhaustively storing all versions of data, or updates replace previous versions. This stems from the inherent difficulty of modelling geographic objects and associated data in relational tables, and this is compounded when the necessary time dimension is introduced to represent how these objects evolve. This article describes an object‐oriented (OO) spatio‐temporal conceptual data model called the Feature Evolution Model (FEM), which can be used for the development of a spatio‐temporal database management system (STDBMS). Object versioning techniques developed in the fields of Computer Aided Design (CAD) and engineering design are utilized in the design. The model is defined using the Unified Modelling Language (UML), and exploits the expressiveness of OO technology by representing both geographic entities and events as objects. Further, the model overcomes the limitations inherent in relational approaches in representing aggregation of objects to form more complex, compound objects. A management object called the evolved feature maintains a temporally ordered list of references to features thus representing their evolution. The model is demonstrated by its application to road network data.  相似文献   

7.
Advances in computer technologies have improved the quality of maps, making map comparison and analysis easier, but uncertainty and error still exist in GIS when overlaying geographic data with multiple or unknown confidence levels. The goals of this research are to review current geospatial uncertainty literature, present the Error‐Band Geometry Model (EBGM) for classifying the size and shape of spatial confidence intervals for vector GIS data, and to analyze the interpretability of the model by looking at how people use metadata to classify the uncertainty of geographic objects. The results from this research are positive and provide important insight into how people interpret maps and geographic data. They suggest that uncertainty is more easily interpreted for well defined point data and GPS data. When data is poorly defined, people are unable to determine an approach to model uncertainty and generate error‐bands. There is potential for using the EBGM to aid in the development of a GIS tool that can help individuals parameterize and model spatial confidence intervals, but more research is needed to refine the process by which people use the decision tree. A series of guiding questions or an “uncertainty wizard” tool that helps one select an uncertainty modeling approach might improve the way people apply this model to real‐world applications.  相似文献   

8.
Assessing spatial scenes for similarity is difficult from a cognitive and computational perspective. Solutions to spatial‐scene similarity assessments are sensible only if corresponding elements in the compared scenes are identified correctly. This matching process becomes increasingly complex and error‐prone for large spatial scenes as it is questionable how to choose one set of associations over another or how to account quantitatively for unmatched elements. We develop a comprehensive methodology for similarity queries over spatial scenes that incorporates cognitively motivated approaches about scene comparisons, together with explicit domain knowledge about spatial objects and their relations for the relaxation of spatial query constraints. Along with a sound graph‐theoretical methodology, this approach provides the foundation for plausible reasoning about spatial‐scene similarity queries.  相似文献   

9.
This article studies the analysis of moving object data collected by location‐aware devices, such as GPS, using graph databases. Such raw trajectories can be transformed into so‐called semantic trajectories, which are sequences of stops that occur at “places of interest.” Trajectory data analysis can be enriched if spatial and non‐spatial contextual data associated with the moving objects are taken into account, and aggregation of trajectory data can reveal hidden patterns within such data. When trajectory data are stored in relational databases, there is an “impedance mismatch” between the representation and storage models. Graphs in which the nodes and edges are annotated with properties are gaining increasing interest to model a variety of networks. Therefore, this article proposes the use of graph databases (Neo4j in this case) to represent and store trajectory data, which can thus be analyzed at different aggregation levels using graph query languages (Cypher, for Neo4j). Through a real‐world public data case study, the article shows that trajectory queries are expressed more naturally on the graph‐based representation than over the relational alternative, and perform better in many typical cases.  相似文献   

10.
While cellular automata have become popular tools for modeling land‐use changes, there is a lack of studies reporting their application at very fine spatial resolutions (e.g. 5 m resolution). Traditional cell‐based CA do not generate reliable results at such resolutions because single cells might only represent components of land‐use entities (i.e. houses or parks in urban residential areas), while recently proposed entity‐based CA models usually ignore the internal heterogeneity of the entities. This article describes a patch‐based CA model designed to deal with this problem by integrating cell and object concepts. A patch is defined as a collection of adjacent cells that might have different attributes, but that represent a single land‐use entity. In this model, a transition probability map was calculated at each cell location for each land‐use transition using a weight of evidence method; then, land‐use changes were simulated by employing a patch‐based procedure based on the probability maps. This CA model, along with a traditional cell‐based model were tested in the eastern part of the Elbow River watershed in southern Alberta, Canada, an area that is under considerable pressure for land development due to its proximity to the fast growing city of Calgary. The simulation results for the two models were compared to historical data using visual comparison, Ksimulation indices, and landscape metrics. The results reveal that the patch‐based CA model generates more compact and realistic land‐use patterns than the traditional cell‐based CA. The Ksimulation values indicate that the land‐use maps obtained with the patch‐based CA are in higher agreement with the historical data than those created by the cell‐based model, particularly regarding the location of change. The landscape metrics reveal that the patch‐based model is able to adequately capture the land‐use dynamics as observed in the historical data, while the cell‐based CA is not able to provide a similar interpretation. The patch‐based approach proposed in this study appears to be a simple and valuable solution to take into account the internal heterogeneity of land‐use classes at fine spatial resolutions and simulate their transitions over time.  相似文献   

11.
We present a geostatistical approach that accounts for spatial autocorrelation in malaria mosquito aquatic habitats in two East African urban environments. QuickBird 0.61 m data, encompassing visible bands and the near infra‐red (NIR) bands, were selected to synthesize images of Anopheles gambiae s.l. aquatic habitats in Kisumu and Malindi, Kenya. Field sampled data of An. gambiae s.l. aquatic habitats were used to determine which ecological covariates were associated with An. gambiae s.l. larval habitat development. A SAS/GIS® spatial database was used to calculate univariate statistics, correlations and perform Poisson regression analyses on the An. gambiae s.l. aquatic habitat datasets. Semivariograms and global autocorrelation statistics were generated in ArcGIS®. The spatially dependent models indicate the distribution of An. gambiae s.l. aquatic habitats exhibits weak positive autocorrelation in both study sites, with aquatic habitats of similar log‐larval counts tending to cluster in space. Individual anopheline habitats were further evaluated in terms of their covariations with spatial autocorrelation by regressing them on candidate spatial filter eigenvectors. This involved the decomposition of Moran's I statistic into orthogonal and uncorrelated map pattern components using a negative binomial regression. The procedure generated synthetic map patterns of latent spatial correlation representing the geographic configuration of An. gambiae s.l. aquatic habitat locations in each study site. The Gaussian approximation spatial filter models accounted for approximately 13% to 32% redundant locational information in the ecological datasets. Spatial statistics generated in a SAS/GIS® module can capture spatial dependency effects on the mean response term of a Poisson regression analysis of field and remotely sampled An. gambiae s.l. aquatic habitat data.  相似文献   

12.
One of the simplest location models in terms of its constraint structure in location‐allocation modeling is the location set‐covering problem (LSCP). Although there have been a variety of geographic applications of the set‐covering problem (SCP), the use of the SCP as a facility location model is one of the most common. In the early applications of the LSCP, both potential facility sites as well as demand were represented by points discretely located in geographic space. The advent of geographic information systems (GIS), however, has made possible a greater range of object representations that can reduce representation error. The purpose of this article is to outline a methodology using GIS and K = 3 central place lattices to solve the LSCP when demand is continuously distributed over a bounded area and potential facility sites have not been defined a priori. Although, demand is assumed to exist over an area, it is shown how area coverage can be accomplished by the coverage of a point pattern. Potential facility site distributions based on spacings that are powers of one‐third the coverage distance are also shown to provide more efficient coverage than arbitrarily chosen spacings. Using GIS to make interactive adjustments to an incomplete coverage also provides an efficient alternative to smaller spacings between potential facility sites for reducing the number of facilities necessary for complete coverage.  相似文献   

13.
Waldo Tobler frequently reminded us that the law named after him was nothing more than calling for exceptions. This article discusses one of these exceptions. Spatial relations between points are frequently modeled as vectors in which both distance and direction are of equal prominence. However, in Tobler's first law of geography, such a relation is described only from the perspective of distance by relating the decreasing similarity of observations in some attribute space to their increasing distance in geographic space. Although anisotropic versions of many geographic analysis techniques, such as directional semivariograms, anisotropy clustering, and anisotropic point pattern analysis, have been developed over the years, direction remains on the level of an afterthought. We argue that, compared to distance, directional information is still under‐explored and anisotropic techniques are substantially less frequently applied in everyday GIS analysis. Commonly, when classical spatial autocorrelation indicators, such as Moran's I, are used to understand a spatial pattern, the weight matrix is only built from distance, without direction being considered. Similarly, GIS operations, such as buffering, do not take direction into account either, with distance in all directions being treated equally. In reality, meanwhile, particularly in urban structures and when processes are driven by the underlying physical geography, direction plays an essential role. In this article we ask whether the development of early GIS, data (sample) sparsity, and Tobler's law lead to a theory‐induced blindness for the role of direction. If so, is it possible to envision direction becoming a first‐class citizen of equal importance to distance instead of being an afterthought only considered when the deviation from a perfect circle becomes too obvious to be ignored?  相似文献   

14.
Estimates of solar radiation distribution in urban areas are often limited by the complexity of urban environments. These limitations arise from spatial structures such as buildings and trees that affect spatial and temporal distributions of solar fluxes over urban surfaces. The traditional solar radiation models implemented in GIS can address this problem only partially. They can be adequately used only for 2‐D surfaces such as terrain and rooftops. However, vertical surfaces, such as facades, require a 3‐D approach. This study presents a new 3‐D solar radiation model for urban areas represented by 3‐D city models. The v.sun module implemented in GRASS GIS is based on the existing solar radiation methodology used in the topographic r.sun model with a new capability to process 3‐D vector data representing complex urban environments. The calculation procedure is based on the combined vector‐voxel approach segmenting the 3‐D vector objects to smaller polygon elements according to a voxel data structure of the volume region. The shadowing effects of surrounding objects are considered using a unique shadowing algorithm. The proposed model has been applied to the sample urban area with results showing strong spatial and temporal variations of solar radiation flows over complex urban surfaces.  相似文献   

15.
This article presents a spatiotemporal model for scheduling applications that is driven by the events and activities individuals plan and manage every day. The framework is presented using an ontological approach where ontologies at different levels of generalization, e.g. domain, application, and task ontologies, are linked together through participation and inheritance relationships. S_Events are entered into a schedule as a new S_Entry, or modifications can be made to existing entries including reschedule, postpone, change location, and delete as schedules vary over time. These schedule updates are formalized through changes to planned start and end times and the planned locations of S_Entries are expressed using SWRL, a semantic web rule language. SWRL is also used for reasoning about schedule changes and the space‐time conflicts that can occur. The sequence of entries in a schedule gives rise to S_trajectories representing the locations that individuals plan to visit in order to carry out their schedule, adding an additional spatial element to the framework. A prototype Geoscheduler application maps S_Entries against a timeline, offering a spatiotemporal visualization of scheduled activities showing the evolution of a schedule over space‐time and affecting spatiotemporal accessibility for individuals.  相似文献   

16.
Introducing Clifford algebra as the mathematical foundation, a unified spatio‐temporal data model and hierarchical spatio‐temporal index are constructed by linking basic data objects, like pointclouds and Spatio‐Temporal Hyper Cubes of different dimensions, within the multivector structure of Clifford algebra. The transformation from geographic space into homogeneous and conformal space means that geometric, metric and many other kinds of operators of Clifford algebra can be implemented and we then design the shortest path, high‐dimensional Voronoi and unified spatial‐temporal process analyses with spacetime algebra. Tests with real world data suggest these traditional GIS analysis algorithms can be extended and constructed under Clifford Algebra framework, which can accommodate multiple dimensions. The prototype software system CAUSTA (Clifford Algebra based Unified Spatial‐Temporal Analysis) provides a useful tool for investigating and modeling the distribution characteristics and dynamic process of complex geographical phenomena under the unified spatio‐temporal structure.  相似文献   

17.
Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with other clustering algorithms. They can discover clusters with arbitrary shapes, are robust to noise, and do not require prior knowledge (or estimation) of the number of clusters. The idea of using a scan circle centered at each point with a search radius Eps to find at least MinPts points as a criterion for deriving local density is easily understandable and sufficient for exploring isotropic spatial point patterns. However, there are many cases that cannot be adequately captured this way, particularly if they involve linear features or shapes with a continuously changing density, such as a spiral. In such cases, DBSCAN tends to either create an increasing number of small clusters or add noise points into large clusters. Therefore, in this article, we propose a novel anisotropic density‐based clustering algorithm (ADCN). To motivate our work, we introduce synthetic and real‐world cases that cannot be handled sufficiently by DBSCAN (or OPTICS). We then present our clustering algorithm and test it with a wide range of cases. We demonstrate that our algorithm can perform equally as well as DBSCAN in cases that do not benefit explicitly from an anisotropic perspective, and that it outperforms DBSCAN in cases that do. Finally, we show that our approach has the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a spatial index and O(n2) otherwise. We provide an implementation and test the runtime over multiple cases.  相似文献   

18.
Missing data in Volunteered Geographic Information (VGI) are an unavoidable consequence of data collection by non‐experts, guided by only vague and informal mapping guidelines. While various Missing Value Imputation (MVI) techniques have been proposed as data cleansing strategies, they have primarily targeted numerical data attributes in non‐spatial databases. There remains a significant gap in methods for imputing nominal attribute values (e.g., Street Name) in map databases. Here, we present an imputation algorithm called the Membership Imputation Algorithm (MIA), targeting spatial databases and enabling imputation of nominal values in spatially referenced records. By targeting membership classes of spatial objects, MIA harnesses spatio‐temporal characteristics of data and proposes efficient heuristics to impute the class name (i.e., a membership). Experimental results show that the proposed algorithm is able to impute the membership with high levels of accuracy (over 94%) when assigning Street Name(s), across highly diverse regional contexts. MIA is effective in challenging spatial contexts such as street intersections. Our research serves as a first step in highlighting the effectiveness of spatio‐temporal measures as a key driver for nominal imputation techniques.  相似文献   

19.
关于线状地理特征空间关系的自然语言描述的形式化表达   总被引:1,自引:0,他引:1  
许珺 《遥感学报》2007,11(2):152-158
目前的地理信息系统都使用定量的方法存储和查询空间信息,不能反映人们的定性思维方式,因此它表达地理空间信息的能力受到限制。在关于空间关系的自然语言描述的调查的基础上,本文定义了一组能反映线状物体空间关系的度量指标,结合反映拓扑关系的定量指标,使用决策树的数据挖掘算法,对调查结果进行分析,形式化了描述空间关系的自然语言词汇,建立了模糊的自然语言表达和图形的几何特征之间的联系。自然语言形式化后得到的规则可用于空间关系的自然语言查询系统。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号