首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a review of hydrothermal alteration and K–Ar age data from the Toyoha‐Muine area (TMA), where the Toyoha polymetallic (Ag–Pb–Zn–Cu–In) deposit is located near the Pliocene andesitic volcano that formed Mt Muine. Systematic prospect‐scale mapping, sampling, X‐ray analysis and microscopic observation show that hydrothermal alteration is divided into two groups: acid‐pH and neutral‐pH alteration types. The former is further divided into mineral assemblages I, II and III, while the latter into mineral assemblages IV and V. Different mineralogical features in five mineral assemblages are summarized as follows: (I) Quartz (silicified rock); (II) Pyrophyllite or dickite; (III) Kaolinite or halloysite ± alunite; (IV) Sericite or K‐feldspar; and (V) Interstratified minerals (illite/smectite and chlorite/smectite) and/or smectite. K–Ar radiometric ages determined on twenty‐eight K‐bearing samples (whole volcanic rocks and separated hydrothermal minerals) mainly fall into one of three periods: Early Miocene (24.6–21.4 Ma), Middle–Late Miocene (12.5–8.4 Ma) and Pliocene–Pleistocene (3.2–0 Ma). These three periods are characterized as follows. Early Miocene: A minor hydrothermal activity, which might be genetically related to the intermediate or felsic magmatic activities, formed mineral assemblage IV at 24.6 Ma in the northern part of the TMA. Middle to Late Miocene: The basaltic intrusion, andesitic eruption, and granodiorite intrusions induced hydrothermal activities between 12.5 and 8.4 Ma, resulting in the formation of a mineral assemblage IV with some base metal mineralization. Pliocene–Pleistocene: An andesitic eruption formed Mt Muine between 3.2 and 2.9 Ma. The andesitic activity was associated with acid‐pH mineral assemblages I, II and III locally around the volcano. Latent magmatic intrusions subsequent to the andesitic eruption generated hydrothermal activities that formed mineral assemblages IV and V between 1.9 and 0 Ma in the southern and southeastern parts of Toyoha deposit at depth, overprinting the Middle to Late Miocene alteration. The hydrothermal activities also formed mineral assemblages I, II and III along the Yunosawa fault (east of the Toyoha deposit) and assemblage III in the south and southeast of the Toyoha deposit near the surface.  相似文献   

2.
We report two new eclogite localities (at Kanayamadani and Shinadani) in the high‐P (HP) metamorphic rocks of the Omi area in the western most region of Niigata Prefecture, Japan, which form part of the Hida Gaien Belt, and determine metamorphic conditions and pressure–temperature (PT) paths. The metamorphic evolution of the eclogites is characterized by a tight hairpin‐shaped PT path from prograde epidote–blueschist facies to peak eclogite facies and then retrograde blueschist facies. The prograde metamorphic stage is characterized by various amphibole (winchite, barroisite, glaucophane) inclusions in garnet, whereas the peak eclogite facies assemblage is characterized by omphacite, garnet, phengite and rutile. Peak PT conditions of the eclogites were estimated to be ~600°C and up to 2.0 GPa by conventional cation‐exchange thermobarometry, Ti‐in‐zircon thermometry and quartz inclusion Raman barometry respectively. However, the Raman spectra of carbonaceous material thermometry of metapelites associated with the eclogites gave lower peak temperatures, possibly due to metamorphism at different conditions before being brought together during exhumation. The blueschist facies overprint following the peak of metamorphism is recognized by the abundance of glaucophane in the matrix. Zircon grains in blueschist facies metasedimentary samples from two localities adjacent to the eclogites have distinct oscillatory‐zoned cores and overgrowth rims. Laser ablation inductively coupled plasma mass spectrometry U–Pb ages of the detrital cores yield a wide range between 3,200 and 400 Ma, with a peak at 600–400 Ma. In the early Palaeozoic, proto‐Japan was located along the continental margin of the South China craton, providing the source of the older population of detrital zircon grains (3,200–600 Ma) deposited in the trench‐fill sediments. In addition, subduction‐related magmatism c. 500–400 Ma is recorded in the crust below proto‐Japan, which might have been the source for the younger detrital zircon grains. The peak metamorphic age was constrained by SHRIMP dating of the overgrowth rims, yielding Tournaisian ages of 347 ± 4 Ma, suggesting subduction in the early Carboniferous. Our results provide clear constraints on the initiation of subduction, accretion and the development of an arc‐trench system along the active continental margin of the South China craton and help to unravel the Palaeozoic tectonic history of proto‐Japan.  相似文献   

3.
Micro‐X‐ray fluorescence scanning spectroscopy of marine and lake sedimentary sequences can provide detailed palaeoenvironmental records through element intensity proxy data. However, problems with the effects of interstitial pore water on the micro‐X‐ray fluorescence intensities have been pointed out. This is because the X‐ray fluorescence intensities are measured directly at the surfaces of split wet sediment core samples. This study developed a new method for correcting X‐ray fluorescence data to compensate for the effects of pore water using a scanning X‐ray analytical microscope. This involved simultaneous use of micro‐X‐ray fluorescence scanning spectroscopy and an X‐ray transmission detector. To evaluate the interstitial pore water content from the X‐ray transmission intensities, a fine‐grained sediment core retrieved from Lake Baikal (VER99‐G12) was used to prepare resin‐embedded samples with smooth surfaces and uniform thickness. Simple linear regression between the linear absorption coefficients of the samples and their porosity, based on the Lambert–Beer law, enabled calculation of the interstitial pore spaces and their resin content with high reproducibility. The X‐ray fluorescence intensities of resin‐embedded samples were reduced compared with those of dry sediment samples because of: (i) the X‐ray fluorescence absorption of resin within sediment; and (ii) the sediment dilution effects by resin. An improved micro‐X‐ray fluorescence correction equation based on X‐ray fluorescence emission theory considers the instrument's sensitivity to each element, which provides a reasonable explanation of these two effects. The resin‐corrected X‐ray fluorescence intensity was then successfully converted to elemental concentrations using simple linear regression between the data from micro‐X‐ray fluorescence scanning spectroscopy and from the conventional analyzer. In particular, the calculated concentration of SiO2 over the depth of the core, reflecting diatom/biogenic silica concentration, was significantly changed by the calibrations, from a progressively decreasing trend to an increasing trend towards the top of the core.  相似文献   

4.
Experimental studies on the interactions between artificial seawater (ASW) and fresh rhyolite, perlite and weakly altered dacitic tuff containing a small amount of smectite suggest changing cation transfer during smectite-forming processes. Initially, dissolution of K from the rocks accompanies incorporation of Mg and Ca from ASW during both earlier (devitrification stage) and later smectite formation, whereas Ca incorporated with early smectite formation redissolves with progressive reaction. Barium mobility increases toward the later smectite-forming reactions. Therefore, the large amounts of barite, anhydrite and gypsum in Kuroko ore deposits are considered to have precipitated from hydrothermal solutions derived from the interaction with previously altered felsic rocks during late smectite formation, rather than by the reaction with fresh felsic rocks.Editorial handling: D. Lentz  相似文献   

5.
Organic carbon isotopes in sediments have been frequently used to identify the source of organic matter.Here we present a study of organic δ~(13)C on two sediment profiles influenced by guano from Guangjin and Jinqing islands in the Xisha Archipelago,South China Sea.Organic matter from ornithogenic coral sand sediments has two main sources,guano pellets and plant residues,and their organic δ~(13)C(δ~(13)C_(OM)) are significantly different.Organic carbon δ~(13)C_(guano) is much higher thanδ~(13)C_(plants),and δ~(13)C_(OM)of bulk samples is intermediate.Based on a two-end-member mixing model,the proportions of guano-and plant-derived organic matter in the bulk samples were reconstructed quantitatively.The results showed that seabirds began to inhabit the islands around approximately1200-1400 AD,and that guano pellets have been an important source of soil organic matter since then.With the accumulation of guano-derived nutrients,plants began to develop prosperously on the islands in the last 200 years,which is reflected by the significant increase of plant-derived organic matter in the upper sediment layer.However,guano-derived organic matter decreased greatly in recent decades,indicating a rapid decrease in seabird population.Our results show that organic δ~(13)C can be effectively used to quantitatively determine different source contributions of OM to bulk ornithogenic coral sand sediments.  相似文献   

6.
The laminated limestones of the Early Cretaceous Crato Formation of the Araripe Basin (North‐eastern Brazil) are world‐famous for their exceptionally well‐preserved and taxonomically diverse fossil fauna and flora. Whereas the fossil biota has received considerable attention, only a few studies have focused on the sedimentary characteristics and palaeoenvironmental conditions which prevailed during formation of the Crato Fossil Lagerstätte. The Nova Olinda Member represents the lowermost and thickest unit (up to 10 m) of the Crato Formation and is characterized by a pronounced rhythmically bedded, pale to dark lamination. To obtain information on palaeoenvironmental conditions, sample slabs derived from three local stratigraphic sections within the Araripe Basin were studied using high‐resolution multiproxy techniques including detailed logging, petrography, μ‐XRF scanning and stable isotope geochemistry. Integration of lithological and petrographic evidence indicates that the bulk of the Nova Olinda limestone formed via authigenic precipitation of calcite from within the upper water column, most probably induced and/or mediated by phytoplankton and picoplankton activity. A significant contribution from a benthonic, carbonate‐secreting microbial mat community is not supported by these results. Deposition took place under anoxic and, at least during certain episodes, hypersaline bottom water conditions, as evidenced by the virtually undisturbed lamination pattern, the absence of a benthonic fauna and by the occurrence of halite pseudomorphs. Input of allochthonous, catchment‐derived siliciclastics to the basin during times of laminite formation was strongly reduced. The δ18O values of authigenic carbonate precipitates (between ?7·1 and ?5·1‰) point to a 18O‐poor meteoric water source and support a continental freshwater setting for the Nova Olinda Member. The δ13C values, which are comparatively rich in 13C (between ?0·1 and +1·9‰), are interpreted to reflect reduced throughflow of water in a restricted basin, promoting equilibration with atmospheric CO2, probably in concert with stagnant conditions and low input of soil‐derived carbon. Integration of lithological and isotopic evidence indicates a shift from closed to semi‐closed conditions towards a more open lake system during the onset of laminite deposition in the Crato Formation.  相似文献   

7.
The mineralogy of the Early Cambrian Ni–Mo polymetallic black shale ores at the Sancha deposit, South China, was investigated to better the understanding of the complex ore genesis by optical microscope, electron microprobe, and scanning electron microscope. Analytical results show that the sulfides in the ore bed mainly comprise C/MoS2 mixed‐layer phase (MoSC), millerite, and pyrite. Of these, MoSC and millerite are the main ore minerals of Mo and Ni, respectively. Pyrite is subdivided into six types based on its morphology, occurrence, relationship to Ni‐ and Mo‐bearing minerals, and chemical composition. Many millerite crystals cut early‐formed MoSC, implying that these two minerals formed at different stages. The concentrations of biogenic elements (e.g., Sb) in the MoSC are high compared with those in millerite, implying a close relationship between MoSC and organic matter. These data provide a new and improved understanding of the complex ore genesis at the Sancha deposit, and can be applied to other black‐shale‐hosted mineral deposits worldwide.  相似文献   

8.
The Semna gold deposit is one of several vein-type gold occurrences in the central Eastern Desert of Egypt, where gold-bearing quartz veins are confined to shear zones close to the boundaries of small granitoid stocks. The Semna gold deposit is related to a series of sub-parallel quartz veins along steeply dipping WNW-trending shear zones, which cut through tectonized metagabbro and granodiorite rocks. The orebodies exhibit a complex structure of massive and brecciated quartz consistent with a change of the paleostress field from tensional to simple shear regimes along the pre-existing fault segments. Textural, structural and mineralogical evidence, including open space structures, quartz stockwork and alteration assemblages, constrain on vein development during an active fault system. The ore mineral assemblage includes pyrite, chalcopyrite, subordinate arsenopyrite, galena, sphalerite and gold. Hydrothermal chlorite, carbonate, pyrite, chalcopyrite and kaolinite are dominant in the altered metaggabro; whereas, quartz, sericite, pyrite, kaolinite and alunite characterize the granodiorite rocks in the alteration zones. Mixtures of alunite, vuggy silica and disseminated sulfides occupy the interstitial open spaces, common at fracture intersections. Partial recrystallization has rendered the brecciation and open space textures suggesting that the auriferous quartz veins were formed at moderately shallow depths in the transition zone between mesothermal and epithermal veins.Petrographic and microthermometric studies aided recognition of CO2-rich, H2O-rich and mixed H2O–CO2 fluid inclusions in the gold-bearing quartz veins. The H2O–CO2 inclusions are dominant over the other two types and are characterized by variable vapor: liquid ratios. These inclusions are interpreted as products of partial mixing of two immiscible carbonic and aqueous fluids. The generally light δ34S of pyrite and chalcopyrite may suggest a magmatic source of sulfur. Spread in the final homogenization temperatures and bulk inclusion densities are likely due to trapping under pressure fluctuation through repeated fracture opening and sealing. Conditions of gold deposition are estimated on basis of the fluid inclusions and sulfur isotope data as 226–267 °C and 350–1100 bar, under conditions transitional between mesothermal and epithermal systems.The Semna gold deposit can be attributed to interplay of protracted volcanic activity (Dokhan Volcanics?), fluid mixing, wallrock sulfidation and a structural setting favoring gold deposition. Gold was transported as Au-bisulfide complexes under weak acid conditions concomitant with quartz–sericite–pyrite alteration, and precipitated through a decrease in gold solubility due to fluid cooling, mixing with meteoric waters and variations in pH and fO2.  相似文献   

9.
In the Cretaceous Ningwu volcano-sedimentary basin in the Yangtze River Valley metallogenic belt, eastern China, there are three areas with a dense distribution of magnetite or hematite deposits: the Meishan deposit in the north; Washan, Nanshan and Taocun deposits in the center; and the Zhongjiu and Gushan deposits in the south. The mineralization in the Ningwu basin is associated mainly with subvolcanic intrusions, consisting of gabbro–diorite porphyry and/or gabbro–diorite. Alteration zoning of these deposits is pronounced, and includes: (1) an upper light colored zone of argillic, kaolinite, silica, carbonate and pyritic alteration (2) a middle dark colored zone of diopside, fluorapatite–magnetite, phlogopite, and garnet with fluorapatite–magnetite; (3) a lower light colored zone of extensive albitic alteration. However, at the Gushan iron deposit, the lower light colored zone and the middle dark colored zone are absent, whereas the principal alteration is represented by silicification, kaolinization, and carbonatization.The iron oxide–apatite deposits in the Ningwu basin are typically magmatic–metasomatic origin and are similar to the Kiruna-type deposits in Scandinavia, particularly with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the orebodies and wall rock alteration. The iron oxide–apatite deposits of the Ningwu basin contain magnetite and/or hematite, with diopside or actinolite and apatite gangue. They were formed in a rift or extensional environment and the mineralization is associated with alkaline magmatism. The time interval between magmatism and related mineralization is very short.  相似文献   

10.
High‐P (HP) eclogite and associated garnet–omphacite granulite have recently been discovered in the Mulantou area, northeastern Hainan Island, South China. These rocks consist mainly of garnet, omphacite, hornblende, quartz and rutile/ilmenite, with or without zoisite and plagioclase. Textural relationships, mineral compositions and thermobarometric calculations demonstrate that the eclogite and garnet–omphacite granulite share the same three‐stage metamorphic evolution, with prograde, peak and retrograde P?T conditions of 620–680°C and 8.7–11.1 kbar, 820–860°C and 17.0–18.2 kbar, and 700–730°C and 7.1–8.5 kbar respectively. Sensitive high‐resolution ion microprobe U–Pb zircon dating, coupled with the identification of mineral inclusions in zircon, reveals the formation of mafic protoliths before 355 Ma, prograde metamorphism at c. 340–330 Ma, peak to retrograde metamorphism at c. 310–300 Ma, and subsequent pegmatite intrusion at 295 Ma. Trace element geochemistry shows that most of the rocks have a MORB affinity, with initial εNd values of +2.4 to +6.7. As with similar transitional eclogite–HP granulite facies rocks in the thickened root in the European Variscan orogen, the occurrence of relatively high P?T metamorphic rocks of oceanic origin in northeastern Hainan Island suggests Carboniferous oceanic subduction leading to collision of the Hainan continental block, or at least part of it, with the South China Block in the eastern Palaeo‐Tethyan tectonic domain.  相似文献   

11.
12.
Four silicate glasses were prepared by the fusion of about 1 kg powder each of a basalt, syenite, soil and andesite to provide reference materials of natural composition for microanalytical work. These glasses are referred to as ‘Chinese Geological Standard Glasses’ (CGSG) ‐1, ‐2, ‐4 and ‐5. Micro and bulk analyses indicated that the glasses are well homogenised with respect to major and trace elements. Some siderophile/chalcophile elements (e.g., Sn, Pt, Pb) may be heterogeneously distributed in CGSG‐5. This paper provides the first analytical data for the CGSG reference glasses using a variety of analytical techniques (wet chemistry, XRF, EPMA, ICP‐AES, ICP‐MS, LA‐ICP‐MS) performed in nine laboratories. Most data agree within uncertainty limits of the analytical techniques used. Discrepancies in the data for some siderophile/chalcophile elements exist, mainly because of possible heterogeneities of these elements in the glasses and/or analytical problems. From the analytical data, preliminary reference and information values for fifty‐five elements were calculated. The analytical uncertainties [2 relative standard error (RSE)] were estimated to be between about 1% and 20%.  相似文献   

13.
The Nuri Cu–W–Mo deposit is a large newly explored deposit located at the southern margin of the Gangdese metallogenic belt. There are skarn and porphyry mineralizations in the deposit, but the formation age of the skarn and the relationship between the skarn and porphyry mineralizations are controversial. Constraints on the precise chronology are of fundamental importance for understanding the ore genesis of the Nuri deposit. To determine the formation age of the skarn, we chose garnets and whole rock skarn samples for Sm–Nd dating. We also selected biotite associated with potassic alteration for Ar–Ar dating to confirm the ore formation age of the porphyry mineralizations. The Sm–Nd ages of the skarn are 25.73 ± 0.92 – 25.2 ± 3.9 Ma, and the age of the potassic alteration is 24.37 ± 0.32 Ma. The results indicate that the skarn and porphyry mineralization are coeval and belong to a unified magmatic hydrothermal system. Combined with a previous molybdenite Re–Os age, we think that the hydrothermal activity of the Nuri deposit lasted for 1.2 – 2.1 Myr, which indicates that the mineralization formed rapidly. The chronologic results indicate that the Nuri deposit formed in the period of transformation from compression to extension in the late collisional stage of the collision between the Indian and Eurasian continents.  相似文献   

14.
The Tieshanlong tungsten‐polymetallic deposit is a large wolframite deposit of quartz vein type located in southern Jiangxi, South China. It is genetically related to a high‐K S‐type granite. Seven pyrite and two wolframite samples, selected for He and Ar isotope analyses, yielded 3He/4He values of 0.04–0.98 Ra, 40Ar/36Ar ratios of 293.5–368.0, and 38Ar/36Ar ratios of 0.176–0.193. These data indicate that the ore‐forming fluids associated with the deposit did not result from a simple mixing of the crustal‐ and mantle‐derived end‐member fluids, but that primeval meteoric fluids were also involved in the generation of the associated granitic magma by partial melting of crustal metasedimentary rocks. Further investigations show that only minimal He from the mantle was added during generation of the associated granitic magma. It is postulated that boiling and second mixing with “new” meteoric fluids took place during migration of magmatic‐hydrothermal fluids into wall‐rock fractures, resulting in a drastic decrease of their metal transport capacity, which triggered the tungsten‐polymetallic mineralization.  相似文献   

15.
The Ga'erqiong‐Galale skarn–porphyry copper–gold ore‐concentrated area is located in the western part of the Bangong‐Nujiang suture zone north of the Lhasa Terrane. This paper conducted a systematic study on the magmatism and metallogenic effect in the ore‐concentrated area using techniques of isotopic geochronology, isotopic geochemistry and lithogeochemistry. According to the results, the crystallization age of quartz diorite (ore‐forming mother rock) in the Ga'erqiong deposit is 87.1 ± 0.4 Ma, which is later than the age of granodiorite (ore‐forming mother rock) in the Galale deposit (88.1 ± 1.0 Ma). The crystallization age of granite porphyry (GE granite porphyry) in the Ga'erqiong deposit is 83.2 ± 0.7 Ma, which is later than the age of granite porphyry (GL granite porphyry) in the Galale deposit (84.7 ± 0.8 Ma).The quartz diorite, granodiorite, GE granite porphyry and GL granite porphyry both main shows positive εHf(t) values, suggesting that the magmatic source of the main intrusions in the ore‐concentrated area has the characteristics of mantle source region. The Re–Os isochron age of molybdenite in the Ga'erqiong district is 86.9 ± 0.5 Ma, which is later than the mineralization age of the Galale district (88.6 ± 0.6 Ma). The main intrusive rocks in the ore‐concentrated area have similar lithogeochemical characteristics, for they both show the relative enrichment in large‐ion lithophile elements(LILE: Rb, Ba, K, etc.), more mobile highly incompatible lithophile elements(HILE: U, Th) and relatively depleted in high field strength elements (HFSE: Nb, Ta, Zr, Hf, etc.), and show the characteristics of magmatic arc. The studies on the metal sulfides' S and Pb isotopes and Re content of molybdenite indicate that the metallogenic materials of the deposits in the ore‐concentrated area mainly come from the mantle source with minor crustal source contamination. Based on the regional tectonic evolution process, this paper points out that the Ga'erqiong‐Galale copper–gold ore‐concentrated area is the typical product of the Late Cretaceous magmatism and metallogenic event in the collision stage of the Bangong‐Nujiang suture zone.  相似文献   

16.
The widely distributed late‐collisional calc‐alkaline granitoids in the northern Arabian–Nubian Shield (ANS) have a geodynamic interest as they represent significant addition of material into the ANS juvenile crust in a short time interval (∼630–590 Ma). The Deleihimmi granitoids in the Egyptian Central Eastern Desert are, therefore, particularly interesting since they form a multiphase pluton composed largely of late‐collisional biotite granitoids enclosing granodiorite microgranular enclaves and intruded by leuco‐ and muscovite granites. Geochemically, different granitoid phases share some features and distinctly vary in others. They display slightly peraluminous (ASI = 1–1.16), non‐alkaline (calc‐alkaline and highly fractionated calc‐alkaline), I‐type affinities. Both biotite granitoids and leucogranites show similar rare earth element (REE) patterns [(La/Lu)N = 3.04–2.92 and 1.9–1.14; Eu/Eu* = 0.26–0.19 and 0.11–0.08, respectively) and related most likely by closed system crystal fractionation of a common parent. On the other hand, the late phase muscovite granites have distinctive geochemical features typical of rare‐metal granites. They are remarkably depleted in Sr and Ba (4–35 and 13–18 ppm, respectively), and enriched in Rb (381–473 ppm) and many rare metals. Moreover, their REE patterns show a tetrad effect (TE1,3 = 1.13 and 1.29) and pronounced negative Eu anomalies (Eu/Eu* = 0.07 and 0.08), implying extensive open system fractionation via fluid–rock interaction during the magmatic stage. Origin of the calc‐alkaline granitoids by high degree of partial melting of mafic lower crust with subsequent crystal fractionation is advocated. The broad distribution of late‐collisional calc‐alkaline granitoids in the northern ANS is related most likely to large areal and intensive lithospheric delamination subsequent to slab break‐off and crustal/mantle thickening. Such delamination caused both crustal uplift and partial melting of the remaining mantle lithosphere in response to asthenospheric uprise. The melts produced underplate the lower crust to promote its melting. The presence of microgranular enclaves, resulting from mingling of mantle‐derived mafic magma with felsic crustal‐derived liquid, favours this process. The derivation of the late‐phase rare‐metal granites by open system fractionation via fluid interaction is almost related to the onset of extension above the rising asthenosphere that results in mantle degassing during the switch to post‐collisional stage. Consequently, the switch from late‐ to post‐collisional stage of crustal evolution in the northern ANS could be potentially significant not only geodynamically but also economically. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Marine Isotope Stage 11 (MIS 11) is considered one of the best analogues for the Holocene. In the UK the long lacustrine sequence at Marks Tey, Essex, spans the entirety of the Hoxnian interglacial, the British correlative of MIS 11c. We present multiproxy evidence from a new 18.5‐m core from this sequence. Lithostratigraphy, pollen stratigraphy and biomarker evidence indicate that these sediments span the pre‐, early and late temperate intervals of this interglacial as well as cold climate sediments that post‐date the Hoxnian. The δ18O signal of endogenic carbonate from this sequence produces several clear patterns that are interpreted as reflecting the climatic structure of the interglacial. As well as providing evidence for long‐term climate stability during the interglacial and a major post‐Hoxnian stadial/interstadial oscillation the δ18O signal provides strong evidence for abrupt cooling events during the interglacial itself. One of these isotopic events occurs in association with a short‐lived increase in non‐arboreal pollen (the NAP phase). The results presented here are discussed in the context of other MIS 11 records from Europe and the North Atlantic, particularly with respect to our understanding of the occurrence of abrupt climatic events in pre‐Holocene interglacials. Copyright © 2016 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.  相似文献   

18.
We performed geochronological and geochemical analyses of the A-type granite in the Hongol area, central Inner Mongolia, to determine its age, petrogenesis and tectonic setting, which are significant for clarifying the Late Paleozoic tectonic evolution of the Xing'an Mongolian Orogenic Belt(XMOB). The rock type of the A-type granite in the Hongol area is alkali-feldspar granite, and it constitutes a western part of the Baiyinwula-Dongujimqin A-type granite belt. Zircon U-Pb geochronology yields ~(206)Pb/~(238)U ages ranging from 293 to 286 Ma for the alkali-feldspar granite, indicating this granitic pluton formed in the Early Permian. The alkali-feldspar granite is high in silica(SiO_2=75.13 wt%-80.17 wt%), aluminum(Al_2 O_3=10.59 wt%-13.17 wt%) and alkali(Na_2 O+K_2 O=7.33 wt%-9.11 wt%), and low in MgO(0.08 wt%-0.39 wt%) and CaO(0.19 wt%-0.70 wt%). It is obviously enriched in LILEs such as Rb, Th and K,depleted in HFSEs such as Nb, Ti, La and Ce, with pronounced negative anomalies of Nb, Ti, P, Eu, Sr and Ba. Its Sr-Nd-Pb isotopic compositions show positive ε_(Nd)(t)(+0.72-+3.08), low T_(DM2)(805-997 Ma),and high radioactive Pb with(~(206)Pb/~(204)Pb)_i of 18.710-19.304,(~(207)Pb/~(204)Pb)_i of 15.557-15.604 and(~(208)Pb/~(204)Pb)_i of 37.887-38.330. Petrological characteristics and geochemical data suggest that the alkalifeldspar granite in the Hongol area belongs to aluminous A-type granite. This A-type granite formed in a post-collisional extensional setting and was generated by the partial melting of felsic rocks in the middlelower crust resulting from post-collisional slab breakoff. It is suggested that the Paleo-Asian Ocean was closed before the Permian in central Inner Mongolia.  相似文献   

19.
《Resource Geology》2018,68(3):227-243
As a newly discovered medium‐sized deposit (proven Pb + Zn resources of 0.23 Mt, 9.43% Pb and 8.73% Zn), the Dongzhongla skarn Pb–Zn deposit is located in the northern margin of the eastern Gangdese, central Lhasa block. Based on the geological conditions in this deposit of ore‐forming fluids, H, O, C, S, Pb, Sr, and noble gas isotopic compositions were analyzed. Results show that δ18OSMOW of quartz and calcite ranged from −9.85 to 4.17‰, and δDSMOW ranged from −124.7 to −99.6‰ (where SMOW is the standard mean ocean water), indicating magma fluids mixed with meteoric water in ore‐forming fluids. The δ13CPDB and δ18OSMOW values of calcite range from −1.4 to −1.1‰ and from 5.3 to 15.90‰, respectively, show compositions consistent with the carbonate limestone in the surrounding rocks, implying that the carbon was primarily sourced from the dissolution of carbonate strata in the Luobadui Formation. The ore δ34S composition varied in a narrow range of 2.8 to 5.7‰, mostly between 4‰ and 5‰. The total sulfur isotopic value δ34S was 4.7‰ with characteristics of magmatic sulfur. The 3He/4He values of pyrite and galena ranged from 0.101 to 5.7 Ra, lower than those of mantle‐derived fluids (6 ± 1 Ra), but higher than those of the crust (0.01–0.05 Ra), and therefore classified as a crust–mantle mixed source. The Pb isotopic composition for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ores were in the ranges of 18.628–18.746, 15.698–15.802, and 39.077–39.430, respectively, consistent with the Pb isotopic composition of magmatic rocks in the deposit, classified as upper‐crust lead. The ore lead was likely sourced partially from the crustal basement of the Lhasa Terrane. The initial (87Sr/86Sr)i value from five sulfide samples ranged from 0.71732 to 0.72767, and associated ore‐forming fluids were mainly sourced from the partial melting of the upper‐crust materials. Pb isotopic compositions of ore sulfides from the Dongzhongla deposit are similar to that of the Yuiguila and Mengya'a deposit, indicating that they have similar sources of metal‐rich ore‐forming solution. According to basic skarn mineralogy, the economic metals, and the origin of the ore‐forming fluids, the Dongzhongla deposit was classified as a skarn‐type Pb–Zn deposit.  相似文献   

20.
The Great Xing'an Range (GXR), Northeast (NE) China, is a major polymetallic metallogenic belt in the eastern segment of the Central Asian Orogenic Belt. The newly discovered Xiaokele porphyry Cu (–Mo) deposit lies in the northern GXR. Field geological and geochronological studies have revealed two mineralization events in this deposit: early porphyry‐type Cu (–Mo) mineralization, and later vein‐type Cu mineralization. Previous geochronological studies yielded an age of ca. 147 Ma for the early Cu (–Mo) mineralization. Our 40Ar/39Ar dating yielded 40Ar/39Ar plateau ages of 124.8 ± 0.4 to 124.3 ± 0.4 Ma on K‐feldspar in altered Cu‐mineralized diorite porphyrite dikes that represent the overprinting vein‐type Cu mineralization, consistent with zircon U–Pb ages of the diorite porphyrite (126.4 ± 0.5 to 125.0 ± 0.5 Ma). The Cr and Ni contents and Mg# of the Xiaokele diorite porphyrites are high. The diorite porphyrites at Xiaokele are enriched in light rare‐earth elements (REEs), and large‐ion lithophile elements (e.g., Rb, Ba, and K), are depleted in heavy REEs and high‐field‐strength elements (e.g., Nb, Ta, and Ti), and have weak negative εHf(t) values (+0.29 to +5.27) with two‐stage model ages (TDM2) of 1,164–845 Ma. Given the regional tectonic setting in Early Cretaceous, the ore‐bearing diorite porphyrites were likely formed in an extensional environment related to lithospheric delamination and asthenospheric upwelling induced by subduction of the Paleo‐Pacific Plate. These tectonic events caused large‐scale magmatic activity, ore mineralization, and lithospheric thinning in NE China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号