首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Salt crystallisation is a major problem of deterioration in historic stone buildings, monuments and sculptures. The capillary rise of soil water is one of the primary sources of salts in stone structures, which evaporates leaving the salts behind. It has been noted that the spatial distribution profile of different species of salts crystallised in historic stone buildings is not homogeneous, i.e. different salts crystallise at different locations. The capillary transport and inhomogeneous spatial distribution of different salts in the porous building materials has been considered to be a result of solubility-dependent crystallisation; however, the factors responsible for this phenomenon are not clearly known. This paper aims to investigate the factors influencing the differential distribution of salts during capillary rise of soil water. In this study, the capillary transport of salts was simulated on two different sandstones—Locharbriggs, a Permo–Triassic, red sandstone and Stoke Hall, a Carboniferous, buff sandstone. The experiments were carried out under controlled environmental conditions to eliminate the possibility of evaporation-driven crystallisation of salts depending on their solubilities. The results indicate that fractionation or differential distribution of salts takes place even in the absence of evaporation and crystallisation. The sandstones exhibit properties like an ion exchange column, and ionic species present in the salt solution show differential distribution within the porous network of sandstone.  相似文献   

2.
Hydraulic processes in porous media can be monitored in a minimally invasive fashion by time-lapse electrical resistivity tomography (ERT). The permanent installation of specifically designed ERT instrumentation, telemetry and information technology (IT) infrastructure enables automation of data collection, transfer, processing, management and interpretation. Such an approach gives rise to a dramatic increase in temporal resolution, thus providing new insight into rapidly occurring subsurface processes. In this paper, we discuss a practical implementation of automated time-lapse ERT. We present the results of a recent study in which we used controlled hydraulic experiments in two test cells at reduced field scale to explore the limiting conditions for process monitoring with cross-borehole ERT measurements. The first experiment used three adjacent boreholes to monitor rapidly rising and falling water levels. For the second experiment, we injected a saline tracer into a homogeneous flow field in freshwater-saturated sand; the dynamics of the plume were then monitored with 2D measurements across a 9-borehole fence and 3D measurements across a 3 × 3 grid of boreholes. We investigated different strategies for practical data acquisition and show that simple re-ordering of ERT measurement schemes can help harmonise data collection with the nature of the monitored process. The methodology of automated time-lapse ERT was found to perform well in different monitoring scenarios (2D/3D plus time) at time scales associated with realistic subsurface processes. The limiting factor is the finite amount of time needed for the acquisition of sufficiently comprehensive datasets. We found that, given the complexity of our monitoring scenarios, typical frame rates of at least 1.5–3 images per hour were possible without compromising image quality.  相似文献   

3.
Environmental controls on stone decay processes are rapidly changing as a result of changing climate. UKCP09 projections for the 2020s (2010–2039) indicate that over much of the UK seasonality of precipitation will increase. Summer dryness and winter wetness are both set to increase, the latter linked to projected precipitation increases in autumn and spring months. If so, this could increase the time that stone structures remain wet and possibly the depth of moisture penetration, and it appears that building stone in Northern Ireland has already responded through an increased incidence of algal ‘greening’. This paper highlights the need for understanding the effects of climate change through a series of studies of largely sandstone structures. Current and projected climatic trends are therefore considered to have aesthetic, physical and chemical implications that are not currently built into our models of sandstone decay, especially with respect to the role played by deep-seated wetness on sandstone deterioration and decay progression and the feedbacks associated with, for example surface algal growth. In particular, it is proposed that algal biofilms will aid moisture retention and further facilitate moisture and dissolved salt penetration to depth. Thus, whilst the outer surface of stone may continue to experience frequent wetting and drying associated with individual precipitation events, the latter is less likely to be complete, and the interiors of building blocks may only experience wetting/drying in response to seasonal cycling. A possible consequence of deeper salt penetration could be a delay in the onset of surface deterioration, but more rapid and effective retreat once it commences as decay mechanisms ‘tap into a reservoir of deep salt’.  相似文献   

4.
Black varnish commonly develops on rain-washed fine-grained monument sandstone. Stone modifications are, to the naked eye, limited to 10-μm thick black film and underlying modified zone about 1-mm thick. Transfer properties (absorption and drying kinetics and permeability) are, however, modified several centimetres under the surface. The present study investigates the modifications of black-varnish covered siliceous sandstones taken from Alsatian monuments (East of France) and of fresh sandstone undergoing wetting–drying cycles in the laboratory. Double-coloured thin-sections revealed gradual changes in the porous network, up to 3 cm under the black varnish. SEM observations showed that the film was mainly composed of iron and phosphorus while the modified zone was rich in calcium and sulphur. Fifty capillary absorption–drying cycles were carried out on fresh sandstone. Absorption kinetics was measured at each cycle. A continuous decrease of sandstone absorption kinetics over the fifty cycles was interpreted as a reorganisation of the porous network, reducing the connectivity of the porous network although total porosity remained unchanged. Wetting–drying cycles carried out under an environmental microscope (ESEM) showed a displacement of the finest particles (clay clusters), filling the macroporosity and decreasing the connectivity.  相似文献   

5.
为了探究土体干缩开裂问题,文章采用ERT技术,对黏性土开展了一维干缩开裂动态监测试验。配制初始状态饱和 的泥浆试样,在自然条件下干燥,采用ERT技术获得试样干燥过程中的电阻值变化。结合试样的电阻值图像和裂隙图像, 对土体干缩开裂规律进行了分析。研究结果表明:在干燥蒸发初期,土体电阻值随时间增加缓慢减小,其原因在于土体干 燥收缩导致土颗粒间接触面积增大,颗粒水化膜变薄,进而使得土颗粒表面双电层导电性增强。随着干燥继续进行,气体 进入土体内部,土体由初始饱和状态转变为非饱和状态,电阻值转为缓慢增加。当土体产生裂隙时,裂隙周围土体电阻值 急剧增大,而未发育裂隙的土体电阻依然保持缓慢增加的趋势。通过对比试样电阻值变化曲线和裂隙图像,发现两者所呈 现的裂隙发育位置和状态存在良好的一致性。因此,ERT技术能对干燥过程中土体裂隙发育进行有效的动态监测,准确掌 握裂隙发育的时空动态信息,并且能提前预测裂隙发育的可能位置,为研究极端干旱气候作用下土体的工程性质响应提供 了理想手段。  相似文献   

6.
This paper deals with the moisture exchanges occurring between soils and the surrounding atmosphere. Convective drying tests are performed on Awans silts at different drying temperatures and air relative humidities in order to reproduce the natural drying conditions. The experiments improve the understanding of the vapour transfers kinetics between the soil samples and the atmosphere. The experimental results are analysed assuming that the transfers take place in a boundary layer existing at the surface of the porous medium. The influence of the thermal conditions on the evaporation is also taken into account. In our model, coupled vapour and energy exchanges are controlled by mass and heat transfer coefficients characterizing the boundary layer. These coefficients are determined from the drying experiments. The modelling of the drying tests in non‐isothermal conditions is performed in order to validate the formulation of the vapour and heat exchanges. The numerical results present a good agreement with the kinetic of the materials desaturation determined during the tests. The analysis of the moisture transport mechanisms into the sample and at the boundary shows that at the beginning of the test, the drying is first achieved by the transport of moisture in its liquid form and its evaporation at the sample outer boundary in contact with the atmosphere. In a second step, vapour diffusion becomes predominant into the sample and it corresponds to the most important decrease of relative humidity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
多孔介质中毛细吸力作为其重要物性参数,有着重要的工程应用背景。本文结合Gardner模型的土水特征曲线和Micro-CT(Micro computerized tomography)断层扫描仪获取的多孔介质的结构形态参数,根据吸力和饱和度的拟合关系,建立了一维非饱和毛细上升模型。同时,采用有限差分方法对多孔介质非饱和毛细水上升模型进行非稳态求解,获取不同时刻湿度场和毛细吸力的分布情况,并给出了一种量化多孔介质毛细上升过程的理论方法。为验证该方法的有效性,本文在室内以窄筛分洗砂作为研究对象,通过室内试验测定其毛细吸渗上升过程及稳定时的湿度分布。结果证实,模拟结果和实测结果整体上具有较高的吻合性。本文提出的多孔介质毛细上升的预测方法具有可行性,可用于预测砂土的毛细水上升高度和湿度场的分布状态。  相似文献   

8.
In the present study, a numerical modeling of moisture distribution under real climate conditions within sandstone monoliths is accomplished, based on detailed material-specific transport and storage functions. The impact of lithology and pore-radii distributions is modeled with consideration of (1) the single sandstone monolith; (2) the sandstone monolith with clay layers; and (3) the sandstone monolith with clay layers and hydrophobic treatment. The results reveal that the unimodal equal pore-radii distribution of the quartz arenite promotes quickly a (capillary) water uptake during driving rain (liquid stage), but due to its missing smaller capillaries a high drying velocity leads to an almost dry pore space, since moisture can only be absorbed via gaseous stage (e.g. during summer). On the contrary, the sublitharenite with a unimodal unequable pore-radii distribution is characterized by a distinctly higher water content, since in addition smaller pores also allow the absorption of moisture via sorption. Moreover, the high clay content promotes a retarded interaction with the environment, which is also reflected by the high vapor-diffusion resistance. The highest water content shows the feldspathic litharenite with highest clay content and bimodal pore size distribution. Here, over nine magnitudes of water transporting pores is involved at water transport and storage. Results also reveal that moisture accumulations during droughts trace the deterioration shape of rounding. For all sandstones highest annual fluctuations are observable within the rim zone of the monolith, while the center is characterized by more stable moisture content, which mainly depends on rising water content of the bedrock. The presence of clay layers has for each sandstone specific consequences. However, within the whole sandstone the stress index is increased and stress location is displaced to the boundaries of clay layers. Results of modeling the hydrophobic treatment reveal that this conservation strategy is only useful for sandstones where all moisture is absorbed in liquid stage, why then all water absorption is hindered. In case of sandstones with bimodal and unimodal unequal pore size distributions moisture uptake is possible also via sorption. Accordingly, moisture accumulates behind the zone of hydrophobic treatment. This finally will lead to stress transfer to the outer rim during salt- or ice crystallization and will be responsible for flaking.  相似文献   

9.
岩柱中水体入渗过程的高密度电阻率成像法研究   总被引:4,自引:1,他引:4  
本文应用高密度电阻率成像法探讨了室内实验尺度岩柱中的这一人渗过程。首先建立了电法勘探的电位场数学模型,用有限元法进行了电位场正问题的求解。然后应用基于序列二次规划(SQP)方法的电阻率反演算法,由测量数据反演得到了岩石电阻率在二维空间上的分布。由岩柱中水体人渗过程的电法测量数据反演得到的电阻率图像反映了岩柱中水分的空间变化过程。岩柱中电阻率的空间分布及其随时间的变化表明水体的人渗是不均匀的,在岩柱周边渗流较快,而在中部存在滞后现象。得到的相对电阻率图像也反映了岩柱周边存在的微裂隙。  相似文献   

10.
Cavernous weathering is commonly found on sandstone slopes in different environments. Either a single dominant process or polygenetic agents require to be invoked in order to interpret the development. The Yongningshan hill of the central Loess Plateau is representative of cliff dwellings in Northwest China, which is characterized by well-developed cavernous weathering features and provides a good opportunity for the better understanding of sandstone weathering in the Loess Plateau. Multiple methods, including field survey, in-situ rock strength measurement, along with experiments on samples for microscopic observation, element composition and salt chemistry, were employed to investigate the controlling factors of cavernous weathering. The results show that cavern development is different on the four slopes with the western slope hosting massive honeycombs, tafoni and hardened surfaces. The porous and permeable aeolian sandstones are fundamental, because they provide space and pathways for the transportation of water and salt, honeycombs dominantly aligning within the lamination of cross-beds. The environmental factors such as the seasonal wetting and drying cycle, aeolian salt, moisture and water vapor are key factors for the development of cavernous weathering forms. The northern and northwestern wind-blown dust storms have brought abundant salts, the lengthier dry periods of the wetting and drying cycle being beneficial for salt accumulation within caverns, favoring salt weathering.  相似文献   

11.
二维孔隙介质中重非水相液体饱和度测定与分析   总被引:2,自引:0,他引:2       下载免费PDF全文
在二维均质饱和孔隙介质中利用光透法与高密度电阻率法定量监测重非水相液体(DNAPL)的运移过程与饱和度。 将光透法与高密度电阻率法相结合,进行高密度电阻率法对 DNAPL 在饱和多孔介质中渗流过程的定量监测。在二维砂箱 中进行 DNAPL 的入渗试验,应用光透法与高密度电阻率法进行动态监测,分别利用 CCD 相机、LCR 数字电桥采集数据。 光透法的数据处理采用“水-DNAPL”两相中 DNAPL 饱和度的计算公式。而高密度电阻率法的数据处理是将获得的电阻值 数据转化为电阻率值,然后利用 Archie 公式获得重非水相液体的饱和度空间分布。Archie 公式中参数β值本文采用与光透法 相结合的新方法来获取,克服了传统方法获取β值时存在的困难。根据不同时刻的饱和度空间分布可以估算注入砂箱内的 DNAPL 总量,并将其与实测的入渗量进行对比。结果表明,与光透法结合后的高密度电阻率成像法能定量监测饱和孔隙介 质中 DNAPL 的入渗过程,且估算的 DNAPL 入渗量与实测值比较吻合,提出的基于光透法计算β值的新方法是有效且可行的。  相似文献   

12.
非饱和介质中热能传输及水分迁移的数值积分解   总被引:1,自引:0,他引:1  
白冰  刘大鹏 《岩土力学》2006,27(12):2085-2089
在给出非饱和介质热能-水分传输的耦合质量控制方程和基于Fourier热传导定律的热能平衡方程的基础上,对热能传输及水分迁移的基本特征和机理进行了分析。其中,考虑了温度势、吸力势和重力势的耦合作用影响。给出有热源时控制方程的简化形式,并对半无限体自由表面作用平面热源条件下介质内非稳态温度场、体积含水率分布场进行数值积分求解。利用这些解答给出常热源强度和变热源强度两种情况下,温度场随时间的变化特征以及水分迁移的演化过程,并分析了重力项对计算结果的影响。  相似文献   

13.
陈盼  韦昌富  李幻  陈辉  魏厚振 《岩土力学》2010,31(Z2):383-389
多孔介质中的流动问题,与孔隙介质的特性,含水量状态以及含水量的变化历史密切相关。基于毛细循环滞回理论模型,考虑含水量变化历史对土水特征关系的影响,在开发的U-DYSAC2有限元程序中进行了相应的数值实施。在试验给定的初边值条件下进行了非饱和渗流模拟分析,并将模拟结果与实测数据比较,表明在压力边界条件反复变化下,考虑滞回效应能获得更接近实测的结果,证实该模型在模拟各种循环变化条件下非饱和土渗流初边值问题的适用性与必要性。对入渗重分布反复变化条件下非饱和土柱流动的数值模拟表明,考虑滞回与不考虑滞回条件下,含水量、孔隙水压力和湿峰的迁移的预测在入渗后的重分布过程差异较大。考虑滞回效应时,土柱上部的脱湿速率、下部的吸湿速率比不考虑滞回时要低。从而证实了非饱和多孔介质中的土水状态依赖于含水量变化,而且强烈依赖于土体的水力路径变化。因此,循环边界条件变化下,毛细滞回效应在非饱和渗流模拟中的影响显著,必须加以考虑。  相似文献   

14.
The principal aim of this study is to assess the scope of monitoring diesel plume migration in a scaled aquifer model with a miniaturised electrical resistivity array. Respectively 1000 and 500 ml of diesel were injected in both the unsaturated and water-saturated zones of a sand body overlying a clay aquitard, and diesel migration was monitored with a miniature electrode array and an off-the-shelf resistivity meter. Inverted time-lapse electrical resistivity tomography (ERT) data reflect downward and lateral spreading of the diesel plume away from the injection point in the unsaturated zone. Diesel was also imaged to spread upwards and laterally away from the injection point in the saturated zone, as controlled by capillary rise. In both cases later-time ERT images reflected preferential pooling of diesel on the water table, as well as vertical smearing of pooled diesel in response to simulated water-table fluctuations. Repeat fluid electrical conductivity (EC) and dissolved oxygen (DO) measurements validate the observed changes in bulk resistivity caused by both diesel injections. Artefacts introduced by 2D inversion of 3D contaminant transport were abound. Time-lapse ERT imaging of diesel transport is therefore inferred to be feasible and well-suited to complementing conventional techniques of intrusive site investigation, although time-lapse 3D or 4D ERT imaging is strongly advocated.  相似文献   

15.
现阶段适用于天然气水合物资源开采过程获得其空间分布变化的现场监测技术仍不完善.以电阻率层析成像(ERT)技术为基础,研发一套新的ERT阵列(由两组平行的垂向电极组合而成,每组阵列有24个环形电极)应用于水合物储层动态变化监测模拟实验.通过开展物理模拟实验,采用新的E RT方法对水合物生成过程进行了动态监测,并分析了动态...  相似文献   

16.
Crystallisation of salts in the pores of stone is a major concern in the preservation of heritage buildings, monuments and sculptures, but the mechanism of transport and distribution of salts is still not properly understood. The fractionation and distribution of salts in the porous matrix has, in building material research, conventionally been attributed to the solubility and concentration of salts present in the groundwater. We propose another mechanism contributing to the control of the salt distribution based on the interaction of ions in the salt solution with the charged mineral phases within the stone. The transport of mixed salt solutions was studied in laboratory simulated flow-through experiments on two fluvial sandstones – a Permo-Triassic red bed sandstone and a Carboniferous sandstone, both from the UK. The experiments were carried out under non-evaporative conditions, eliminating the possibility of solubility-dependent crystallisation. The results indicate that the process of ion exchange significantly controls the transport of ions in the pores and leads to fractionation of solutes in the course of transport even in the absence of evaporation and crystallisation. The sandstones behave like a chromatographic column and retention of various ionic species is significantly controlled by ion exchange processes. A quantitative estimation of cation exchange capacity (CEC) indicates that sandstones with higher CEC have greater influence on retention and fractionation of salts in the course of capillary transport than those with lower CEC. Simple scoping calculations using a geochemical modelling code and the ion exchange properties based on those determined in the laboratory experiments, demonstrate that ion exchange can have a significant effect on mineral precipitation during evaporation.  相似文献   

17.
Moisture content is considered to play an important role in the degradation of municipal solid waste (MSW). The present study was carried out to test the use of electrical resistivity tomography (ERT) to estimate the daily variations in the volumetric moisture content (VMC) during waste degradation. The degradation of MSW in a laboratory-scale reactor was monitored daily by ERT and time domain reflectometry (TDR) over a period of 55 days after the waste was landfilled. The bulk electrical resistivity, normalised to a standard temperature of 25 °C, was compared to the VMC obtained by TDR. The relationship between the bulk electrical resistivity and the VMC was not obvious in the upper unit, because there was a bias in the positions of the ERT and TDR measurements due to the settling of the waste. However, the bulk electrical resistivity depended on the VMC in the lower unit of the reactor. According to a power equation fitted in the lower unit, the 2-D distributions of the VMC are presented. Variations in the VMC reflected the processes of waste degradation and leachate transportation. Furthermore, the volume of water stored in the lower unit of the reactor was calculated and found to be consistent with that estimated from the gravimetric moisture content during waste sampling. The data showed that ERT could be used to estimate the variations in moisture content in the initial period following the landfilling of waste.  相似文献   

18.
袁璞  马芹永 《岩土力学》2013,34(9):2557-2562
由于降雨、季节引起地下水位升降等原因,地壳中岩体常处于干湿循环状态。为研究干湿循环对岩石动态力学性能的影响,以安徽恒源煤矿北风井-259 m处砂岩为研究对象,采用?50 mm变截面分离式霍普金森压杆试验装置,对长径比为0.5的煤矿砂岩试件经干湿循环作用后实施单轴冲击压缩试验,获得了砂岩动态单轴压缩应力-应变曲线。研究发现,由于自由水的Stefan效应,干湿循环1次对砂岩具有增强作用,单轴动态抗压强度最高;其后,随着干湿循环次数的增加,砂岩受水侵蚀物理弱化作用,砂岩动态单轴抗压强度呈乘幂关系降低,砂岩试件的冲击破碎块度逐渐变小。试验结果表明,干湿循环12次时砂岩动态抗压强度比干湿循环1次降低约24%,表现出较强的劣化效应。  相似文献   

19.
微波炉法测定遗址土含水率的可靠性研究   总被引:1,自引:0,他引:1  
张虎元  张秋霞  李敏 《岩土力学》2012,33(Z2):65-0070
古代土遗址病害发展与土的含水率变化密切相关,但土遗址保护现场快速准确测定土的含水率不是一件容易的事。选择遗址土、含盐土、黄土等进行对比试验,研究分析微波炉烘干法(简称微波炉法)测遗址土含水率结果的可靠性。在测定试验土样界限含水率和易溶盐含量的基础上,对比分析微波炉法、烘箱法两种方法测定土含水率的误差来源。试验结果表明,土的塑性对微波炉法的测定有一定影响,但测定误差均在2%以内;土的含盐量影响水分的蒸发速度,不影响微波炉法的测定结果;微波法测定遗址土含水率准确,且具有快速、便捷等优势,值得在土遗址保护工程中推广使用。  相似文献   

20.
This paper deals with the scientific assessment of the physical properties of sandstone used in the conservation of Sydney's historic heritage sandstone buildings. The local Hawkesbury Sandstone has been widely used for all manner of constructions since the early days of the first settlement. In the nineteenth century, dimension sandstone quarries existed all over the Sydney region, and the demand for the stone was great. During this time, a true ‘freestone’ known as ‘yellow block’ sandstone, in which bedding planes were absent, was quarried extensively. This sandstone is also known as a ‘self-colouring’ sandstone, where the rock, although grey when quarried, turns a yellow–brown after a few months exposure to the atmosphere. It can be easily carved and was eminently suitable for the ornate Victorian architecture of the time. There are very few quarries within the Sydney region today capable of producing ‘yellow block’ sandstone. Whenever possible, sandstone from suitable building excavations, particularly on the Pyrmont Peninsula, is used for this work. Conservation work is extremely expensive and the building elements that most need replacement, the overhanging and decorative elements, are usually those that cost the most. It is essential that the most durable replacement stone be selected. Thus, a strict regime of scientific testing is used for any major conservation project, in order to determine the physical properties of possible replacement stone. This is the province of the geologist and involves visual observation in the quarry or excavation, which is a simple, cost-effective means of weeding out poor quality stones, followed by laboratory engineering tests to establish the physical parameters of a sandstone and finally, petrographic analysis. The results of such tests, combined with careful sampling, ensure the best possible quality of replacement material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号