首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选用1996年9月5—6日黄河口新口门水文泥沙同步观测资料,采用距离倒数加权插值法(IDW)生成河口泥沙异重流的含沙海水密度、流速和含沙量随时间变化的等值线图。基于此,分析了黄河口泥沙异重流发育形成的时空变化特征,并结合遥感影像和水下地形图进一步探讨了泥沙异重流对河口沉积的影响。研究结果表明,黄河口(新口门)泥沙异重流发育频繁,且其形成时的含沙海水密度与老河口相似;泥沙异重流的空间分布与水下三角洲泥沙堆积体及河口沙嘴的形态存在明显相关,泥沙异重流的存在直接影响河口前缘泥沙的沉积,但对侧缘的影响不大;泥沙异重流形成初期,在低高潮涨潮阶段中的一次较小的涨落潮周期内其形成和消亡过程与潮流的涨落潮周期呈正向对应关系,且在这一时段的涨憩时泥沙异重流的泥沙含量达到最大;流速垂向分布为泥沙异重流形成初期流速小于上层海水流速,且层次分明,随其进一步向深海运动流速呈增大再减小的趋势,至三角洲前缘陡坡段其底层流速大干中上层海水流速。  相似文献   

2.
The subaqueous delta of the modern Huanghe (Yellow River)   总被引:7,自引:0,他引:7  
The subaqueous delta of the Huanghe (Yellow River) has been studied using high-resolution acoustic systems. There are many subtle variations in sea floor morphology and sediment geometries; smooth, featureless areas are rare. The main components of the subaqueous delta include broad, shallow channels; moderately disturbed areas with near-surface cut and fill structures; heavily disturbed areas with sea floor depressions, pits, and gullies; and a smooth, gently sloping distal delta apron or rise. These features are not directly related to sediment settling from dilute surface plumes but are due to gravity-driven hyperpycnal underflows, submarine mass movements, and silt flows.  相似文献   

3.
黄河口泥沙异重流的数值模拟   总被引:2,自引:0,他引:2  
将已被广泛应用的一维泥沙异重流控制方程推广到平面二维情形 ,构成一组四方程模型 ,并对方程中重要参数的取值作了讨论。而后针对黄河口泥沙异重流的发生和演变受潮相控制的特殊性对其进行数值模拟。在泥沙异重流的基本控制方程中加入了潮汐影响项 ,采用 ADI法对黄河口的潮流控制方程与有潮汐影响的泥沙异重流控制方程进行半耦合求解。模拟结果与实测结果基本吻合  相似文献   

4.
5.
黄河口快速沉积及其动力过程   总被引:2,自引:1,他引:2  
现场观测资料和卫星遥感校准图像计算表明 ,185 5年以来 ,黄河三角洲新淤陆地 36 99km2 ,生长速率为 2 6 8km2 /a ,黄河输入三角洲 1× 10 8t泥沙形成 3 14 4km2 的陆地。进入河口区的泥沙约 88 4 %堆积在水下 8km宽的三角洲前缘。研究表明 ,这一堆积比例是河口切变锋、异重流和潮流场相互作用的结果 ,异重流在黄河汛期一直存在 ,大约搬运黄河来沙的 6 0 %沉积在三角洲前缘 ;一个潮周期内 ,切变锋出现两次 ,它能够捕获异轻羽状流中的悬浮泥沙堆积 ,也能够限制异重流的远距离扩散。切变锋消失后 ,少量悬浮泥沙才能远距离扩散 ,随潮流离开三角洲水下斜坡。  相似文献   

6.
Neil C. Mitchell   《Marine Geology》2005,220(1-4):131-151
Channels are relatively common on river-mouth deltas, but the process by which they arise from river sediment discharge is unclear because they can potentially be explained either by negatively buoyant (hyperpycnal) flows produced directly from the river outflow or by flows generated by repeated failure and mobilisation of sediment rapidly deposited at the delta front. Channels eroded through a dump site of dredge spoils are described here from multibeam and older sonar data collected in Commencement Bay, at the mouth of the Puyallup River. Shallow channels on the seaward upper surface of the dump site, away from any flows that could have been produced by delta front failures, suggest that at least some hyperpycnal flows were produced directly from the positively buoyant river outflow up to 200 m from the edge of the river mouth platform. The form of channel bed erosion is revealed by the longitudinal shape of the main eroded channel compared with the adjacent dump site profile. It suggests that the channel evolved by its steep front retreating, rather than by simple vertical entrenchment or diffusive-like evolution of the profile, a geometry interpreted as evidence that repeated failure of the bed occurred in response to shear stress imposed by bottom-travelling flows. Model calculations based on shear strengths back-calculated from the geometry of channel wall failures suggest that, if the main channel were eroded solely by hyperpycnal flows, their generation was remarkably efficient in order to create flows vigorous enough to cause channel bed failure. Besides the sediment concentration and discharge characteristics that have been considered to dictate the ability of rivers to produce hyperpycnal flows, it is suggested that the timing of floods with respect to the tidal cycle should also be important because extreme low tides may be needed to ensure that coarse sediment is transferred vigorously to the edge of river mouth platforms.  相似文献   

7.
Numerical experiments in an idealized river mouth are conducted using a three-dimensional hydrodynamics model (EFDC model) to examine the impacts of suspended sediment concentration (SSC), settling velocity of sediment and tidal mixing on the formation and maintenance of estuarine hyperpycnal flows. The standard experiment presents an illustrative view of hyperpycnal flows that carry high-concentrated sediment and low-salinity water in the bottom layer (>1.0 m in thickness) along the subaqueous slope. The structure and intra-tidal variation of the simulated hyperpycnal flows are quite similar to those previously observed off the Huanghe (Yellow River) mouth. Results from the three control experiments show that SSC of river effluents is the most important parameter to the formation of hyperpycnal flows. High SSC will increase the bulk density of river effluents and thus offset the density difference between freshwater and seawater. Low SSC of river effluents will produce a surface river plume, as commonly observed in most large estuaries. Both the settling velocity of sediment particles and the tidal mixing play an important role in maintaining the hyperpycnal flows. Increasing settling velocity enhances the deposition of sediment from the hyperpycnal layer and thus accelerates the attenuation of hyperpycnal flows, whereas increasing tidal mixing destroys the stratification of water column and therefore makes the hyperpycnal flows less evident. Our results from numerical experiments are of importance to understand the initiation and maintenance of hyperpycnal flows in estuaries and provide a reference to the rapidly decaying hyperpycnal flows off the Huanghe river mouth due to climatic and anthropogenic forcing over the past several decades.  相似文献   

8.
High-resolution geophysical surveys (seismic, side-scan sonar) offshore of the Eratini River, a seasonally flowing river in the NW Gulf of Corinth, Greece, revealed a small fan delta with a variety of bottom features (blocky deposits, chutes and sediment instabilities). Considering the relatively small size of this river, however, these features could not be explained as being produced solely by river flow processes. Based on morphological features, the fan delta can be subdivided into a high- and a low-energy area. Sedimentation processes in the fan delta are associated with flood-derived sediment input, hyperpycnal flows which erode the fan surface, mud settling from suspension plumes, shelf sedimentation and sediment failures. The observed blocky deposits are considered to be the result of earthquake-induced mass flows in 1965 and 1995, whereas the chutes would be produced both by erosive mass flows and by hyperpycnal currents. The bulk block sediment volume has probably resulted from the 1965 earthquake. The 1965 evacuation zone and the related chutes were buried by the prograding fan delta. The main causative factor triggering the observed sediment instabilities is considered to be liquefaction, which is caused by (1) frequent earthquake-induced cyclic loading and (2) low sediment shear strengths created by rapid deposition during floods, in both cases associated with high pore-water pressures.  相似文献   

9.
波流共同作用下废黄河河口水下三角洲地形演变预测模式   总被引:9,自引:0,他引:9  
通过对废黄河河口水下三角洲海域水文、泥沙、沉积和地形的调查分析,对组成水下三角洲-10--15m以深的平坦海床、-5--10m间的水下斜坡、-5m以浅的近岸浅滩三个地貌单元的水动力特征以及在波流和潮流作用下底部泥沙冲刷率的横向分布进行计算分析,并建立了水下三角洲地形横向剖面地形的演变预测模式。结果表明,在三角洲不同地貌单元内。由于所处不同的水动力条件和底部泥沙特性,出现了不同的侵蚀状态,其中在-10--15m以深的平坦海床,除了3m以上的大浪外,水动力作用以强劲的潮流冲刷为主,目前已接近冲刷相对平衡的状态,在-5--10m间的水下斜坡,受波浪和潮流的共同作用,冲刷强度大,地形剖面呈继续平行后退状态;-5m以浅的近岸浅滩,潮流作用相对较弱,以波浪为滩面的剧低为主,水深线不断向岸方向移动、滩宽变窄;0m以上的潮间带滩地,则波浪和潮流作用均较弱,近岸高滩接近相对稳定状态,有利于海岸线的工程防护。  相似文献   

10.
利用8个典型的固定剖面资料,对坡度、水深、沉积物底质、单宽侵蚀量和淤积量进行了分析。研究表明:黄河改道后,CS5—CS8剖面的三角洲前缘和前三角洲的侵蚀较为剧烈,各剖面三角洲前缘侵蚀较为强烈;蚀淤泥沙在纵向上由三角洲前缘向前三角洲搬运,在横向上沿近岸向西北方向运移;近岸颗粒粗化较为显著,尤其是在废弃的流路入海口处。  相似文献   

11.
Since 1976, the main channel of the Yellow River (Huanghe) has been on the east side of the delta complex, and the river has prograded a broad new delta lobe in Laizhou Bay of the Bohai Sea. In 2012, extensive bathymetric and high-resolution seismic profiles were conducted and sediment cores were collected off the new delta lobe. This study examined delta sedimentation and morphology along a profile across the modern subaqueous Yellow River delta and into Laizhou Bay, by analyzing sediment radionuclides (137Cs, 210Pb and 7Be), sedimentary structure, grain-size composition, organic carbon content, and morphological changes between 1976 and 2012. The change in the bathymetric profile, longitudinal to the river’s course, reveals subaqueous delta progradation during this period. The subbottom boundary between the new delta lobe sediment and the older seafloor sediment (before the 1976 course shift) was identified in terms of lithology and radionuclide distributions, and recognized as a downlap surface in the seismic record. The accumulation rate of the new delta lobe sediment is estimated to be 5–18.6 cm year–1 on the delta front slope, 2 cm year–1 at the toe of the slope, and 1–2 cm year–1 in the shelf areas of Laizhou Bay. Sediment facies also change offshore, from alternations of gray and brown sediment in the proximal area to gray bioturbated fine sediment in the distal area. Based on 7Be distribution, the shorter-term deposition rate was at least 20 cm year–1 in the delta front.  相似文献   

12.
The marine fill of ancient foreland basins is primarily recorded by depositional systems consisting of facies and facies associations deposited by a variety of sediment gravity flows in shallow-marine, slope and basinal settings. Tectonism and climate were apparently the main factors controlling the sediment supply, accommodation and depositional style of these systems. In marginal deltaic systems, sedimentation is dominated by flood-generated hyperpycnal flows that build up impressive accumulations of graded sandstone beds in front of relatively small high-gradient fan-deltas and river deltas. During periods of tectonically forced lowstands of sealevel, these systems may commonly shift basinward to shelfal and slope regions. Instability along the edges of these lowstand deltas and sand-laden hyperpycnal flows generate immature and coarse-grained turbidite systems commonly confined within structural depressions and generally encased in distal delta-front and prodeltaic deposits. Because of the close vertical and lateral stratigraphic relations between deltaic and turbidite-like facies, these marginal systems are herein termed ‘mixed depositional systems’. They are very common in the fill of foreland basins and represent the natural link between deltaic and basinal turbidite sedimentation.Basinal turbidite systems form in deeper water elongate highly subsiding troughs (foredeeps) that developed in front of advancing thrust systems. The impressive volumes of sheet-sandstones that form the fill of these troughs suggest that basinal turbidite systems are likely to form following periods of dramatic tectonic uplift of adjacent orogenic wedges and related high-amplitude tectonically-forced sealevel lowstands. In such deep basinal settings, sediment flux to the sea is dramatically increased by newly formed sediment in fluvial drainage basins and the subaerial and submarine erosion of falling-sealevel deltaic deposits generated during the uplift. Turbidity currents are very likely to be mainly triggered by floods, via hyperpycnal flows and related sediment failures, but can fully develop only in large-scale erosional conduits after a phase of catastrophic acceleration and ensuing bulking produced by bed erosion. This process leads to deepening and widening of the conduits and the formation of large-volume highly efficient bipartite currents whose energy dissipation is substantially reduced by the narrow and elongate basin geometry. These currents can thus carry their sediment load over considerable distances down the basin axis.  相似文献   

13.
Post-depositional slope instability and bottom mass-movement processes strongly modify the progradational subaqueous slopes of the modern Huanghe (Yellow River) Delta. Wide, shallow gullies dissect the submarine slopes with gradients of 0.3 to 0.4°. Lower delta-front sediments experiencein situ subsidence, forming numerous collapse depressions. These processes are pronounced over much of the delta, incising and redistributing the most recently deposited silt-rich sediment. Principal causative factors include low sediment strengths created by rapid deposition in the delta during annual peak discharges from the river and severe bottom perturbations by surface storm-generated waves.  相似文献   

14.
An erosional channel and upslope-climbing sediment waves have been observed in Ytre Orkdalsfjorden and the marine fjord branch Gaulosen off the mouth of Gaula River in Trondheimsfjorden, central Norway. The submarine channel (up to 100–150 m wide and 12 m deep) is interpreted as the pathway of hyperpycnal flows and turbidity currents. It can be traced for 20 km on the seafloor from the mouth of Gaula River down to 500 m of water depth. Based on swath bathymetry and seismic data, the sediment waves are shown to have an accumulated thickness of 50–60 m. They are up to 8 m high, have up to 1-km-long crests, and wavelengths of 100–900 m. The sediment waves are attributed to hyperpycnal flows and turbidity currents overflowing the banks of the channel. Many of the sediment waves were instigated by pre-existing topography created by mass movements since early Holocene times.  相似文献   

15.
 Ice-sheet drainage of glacial detritus into the sea involves size fractionation by ice-margin winnowing on a giant scale caused by the lower density of meltwater entering cold seawater. Despite its load of suspended sediment, the fresh water rises to or stays at the sea surface forming turbid surface plumes, whereas the coarse-grained sediment forms bed load. On the Labrador Slope south of the Hudson Strait turbid plumes were supplied by meltwater from the Pleistocene ice sheet (LIS). Sediments with the seismic characteristics of plume deposits occur in a 200-km-long slope sector up to 130 km seawards from the strait. The widespread distribution of these deposits is attributed to entrainment of the surface plumes by the south-flowing Labrador Current and suppressed flocculation due to the high detrital carbonate-content of the suspended sediment. Deposits with typical characteristics of surface plume deposits have been recovered within 20 km from former ice margin south of or in front of outlets, but not north of outlets. They consist of 1 to 2-cm-thick alternations of fine sandy silt/coarse silt layers with finer-grained clayey silt/silty clay, and for brevity are called plumites. Received: 6 August 1996/Revision received: 21 January 1997  相似文献   

16.
Abstract

The improvement of sensors such as various high‐resolution seismic and navigational systems and side‐scan sonar, of offshore shallow‐water drilling techniques, and of laboratory analyses has allowed the marine geologist to make more accurate identifications and maps of the distribution of numerous types of marine sediment instabilities, as well as to determine the mechanisms responsible for their occurrence. A large number of data on the continental shelf and upper continental slope off the modern delta of the Mississippi river have been compiled; these data will be used to document the major types of slope instabilities. The continental shelf and slope off the modern Mississippi river delta display various types of sediment instability. High rates of sedimentation (up to 80 m per century), weak, high‐water‐content clays, and differential weighting of clay sediments characterize this region. The major types of sediment instabilities that have been documented include (a) Peripheral slumping, with dimensions of slumps ranging from 200 to 1000 m; slumping often occurring in multiple stairstep arrangement; and downslope movement as high as 700 m per year. (b) Shallow diapiric intrusions, ranging in size from a few hundred meters to 2 km in diameter; vertical displacement ranging from 200 to 500 m; rate of sediment movement several meters per year; and intrusions caused by differential sediment loading, (c) Radial graben (tensional faulting), with widths from 50 to 500 m and lengths of several kilometers; both vertical and downslope lateral movements occurring; and downslope movements of surface material as much as 5 m per year common. (d) Circular collapse depressions, with diameters of depressions ranging from 50 to 500 m; topography of depression interiors, hummocky; and depressions possibly caused by dewatering or degassing of sediments under the influence of cyclic wave loading. (e) Surface mudflows, thick (often more than 35 m) masses of surface sediment flowage; often bounded by abrupt seaward slope; mudflows often extending laterally for distances in excess of 100 km; movement sporadic and lobate and rates of movement as much as several hundred meters per year; often being associated with extremely hummocky topography and mud volcanoes; and with extrusion of sediments the possible mechanism. (f) Shelf‐edge arcuate slumps, with large arcuate slumps displacing several hundred meters of sediment; slippage planes are commonly concave. Finally, (g) Various deep‐seated faults, with faults extending from deep horizons up to modern sediment surface; commonly being associated with abrupt scarps on the seafloor; numerous contemporaneous faults; and local slumping associated with fault scarps.  相似文献   

17.
刘港慧  刘磊 《海洋工程》2023,41(5):150-160
深海采矿尾矿排放产生的细颗粒羽状流会对海底生态环境造成影响,预测尾矿排放羽状流行为及其对环境影响具有工程意义。基于欧拉多相流方法,采用欧拉双流体模型对深海采矿细颗粒羽状流开展数值模拟研究,分析近海底排放的羽状流演化和发展过程,探究羽状流初始排放质量浓度、排放速度对羽状流扩散过程的影响。结果表明:初始排放条件对羽状流演化性质有重要影响。主射流区被稀释的程度随着初始入射速度的增大而减小,随着入射质量浓度的增大而增大;初始羽状流入射速度和质量浓度越大,撞击海底后的水平方向流动速度越快,影响区域越广;水平速度的峰值随着初始入射速度的增大呈对数增长;当初始质量浓度和速度高于50 g/L和 0.5 m/s 时可能会导致颗粒在海底撞击点附近堆积成坡状,影响底流的后续发展。研究结果可以为深海采矿尾矿排放参数选择提供参考。  相似文献   

18.
In OMEX-II-II, 9 cruises gathered optical data, principally by transmissometer. The distribution of optical turbidity caused by concentration of particulate matter (PMC) in the water column over the northern Iberian margin shows several features related to hydrography. It is concluded that a signal of PMC seen in Mediterranean Water (MW) found north of 42°N is not carried from its source at the Gibraltar Sill and Gulf of Cadiz because it is shown, using intermediate stations, that this turbid plume decays, mainly by fall out but also partly by mixing, to very low levels around southern Portugal. PMC maxima sometimes seen in MW on the northern Iberian margin are thus most likely to result from intermittent local resuspension by MW interacting with slope sediments. The highest turbidity is found over the upper slope and is the result of (i) shelf edge resuspension and off-shelf flow of turbid plumes, mainly between 100 and 300 m depth, and (ii) resuspension under the slope current aided by internal waves, in the depth range 500–800 m where the density gradient between ENACW and MW is maximal. Below the MW, flows are generally slow, and turbidity is low. The bottom nepheloid layer in deep water is also weak with PMC values <100 mg m-3. The focus of resuspension activity on the upper slope means that the region is an efficient exporter to the ocean of sediment that either escapes from the shelf or sinks to the bed from surface production. This accounts for upper slope sediments recorded in other studies as sandy or in places as rocky bottom.  相似文献   

19.
苏北废黄河三角洲经历了150多a的侵蚀演变过程,目前仍处在侵蚀演变中.据2007-08和2008-07废黄河口附近断面调查结果显示,沉积类型出现粗化趋势,10 m以浅的浅水区,砂粒含量达60%以上,平均粒径达0.06 mm,物质粗化显著,岸滩呈现了强烈的波蚀作用;10 m以深至15 m的深水区,泥粒含量增多,平均粒径为...  相似文献   

20.
The Foreslope Hills are a series of ridges and troughs covering over 60 km2 of the sea floor at the base of the Fraser Delta slope. Internally, the hills consist of blocks of prodelta and delta slope sediment (> 10.6 km3) bounded by offshore dipping faults and shear planes. Stratification within each block generally dips landward, indicating rotational failure. The amount of downslope translation of delta slope sediments was relatively minor. Deformation is restricted to a deep structural trough, suggesting failure resulted from yielding of soft underlying (early Holocene) prodelta sediments in the trough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号