首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We present the development and calibration of a macroelement model that captures the response of piles in cohesionless soils subjected to biaxial lateral loading. The model is founded on actual physical mechanism of soil resistance and provides the framework for extending a uniaxial model to biaxial case by means of a single cross-stiffness parameter. Both upper and lower bounds for the cross-stiffness parameter are also presented. The model is calibrated and verified using three-dimensional finite element (FE) simulations of soil-pile interaction for uniformly prescribed displacement along the pile length. Comparison of predictions from uniaxial and biaxial models with the FE results for transient loading indicates that the response assuming no coupling between the two horizontal directions for biaxial loading can differ significantly from the ‘true’ response for some cases. Accounting for coupling in the lateral direction, the proposed model captures the transverse pile response with very good accuracy while retaining the simplicity and computational efficiency of macroelement formulations compared to 3D FE analyses.  相似文献   

3.
4.
Fate of three major rivers in the Bohai Sea: A model study   总被引:1,自引:0,他引:1  
Huanghe (Yellow River), Haihe and Liaohe are three major rivers flowing into the Bohai Sea and account for more than 80% of the freshwater and land-drained material inputs annually. The fate of three rivers in the seawaters correlates with the transport and distribution of the riverine sediments and nutrients, and further exerts a profound influence on the local marine ecosystem dynamics. Therefore, the evolution of the river plumes under the influence of the freshwater buoyancy, the tidal forcing and the wind stress are examined using a three-dimensional primitive equation ocean circulation model, independently and jointly. It is found that both tide and wind stirring can deteriorate the stabilization of the water column caused by the freshwater buoyancy; however, the processes are different. The tide stirring originates from the seafloor due to the bottom friction as the tidal wave propagates into the shallow waters, and then the turbulent kinetic energy dissipates upward. On the other hand, the wind stirring proceeds in the up-down direction. The influences of different winds on the evolution of the river plumes are also examined. Since the situation of each river mouth is different, the wind influence is also distinct. At last, the fate of three major rivers driven by the combined tidal forcing and climatology winds is reproduced, and the simulated salinity distribution shows a reasonable agreement with that observed, meaning that the river plume evolution plays a crucial role in shaping the salinity distribution in BS.  相似文献   

5.
6.
A generalized additive model (GAM) was used to model the spatial distribution of snow depth in the central Spanish Pyrenees. Statistically significant non‐linear relationships were found between distinct location and topographical variables and the average depth of the April snowpack at 76 snow poles from 1985 to 2000. The joint effect of the predictor variables explained more than 73% of the variance of the dependent variable. The performance of the model was assessed by applying a number of quantitative approaches to the residuals from a cross‐validation test. The relatively low estimated errors and the possibility of understanding the processes that control snow accumulation, through the response curves of each independent variable, indicate that GAMs may be a useful tool for interpolating local snow depth or other climate parameters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Assessments of a stable channel were done to evaluate the conditions of three rivers in Malaysia,using an analytical method that modifies the stable channel flowchart developed by Chang(1988) and Ariffin(2004).The analytical approach was selected to calculate the suitable dimensions for a stable channel,using equations that describe the physical relation of sediment transport,flow resistance,and dynamic equilibrium.Measured field data were used as the input data for the stable channel program,wh...  相似文献   

8.
The purpose of this research is to use data from experiments to formulate a mathematical model that will predict the non-linear response of a single-storey steel frame to an earthquake input. The process used in this formulation is system identification. The form of the model is a second-order non-linear differential equation with linear viscous damping and Ramberg—Osgood type hysteresis. The damping coefficient and the three parameters in the hysteretic model are to be established. An integral weighted mean squared error function is used to evaluate the [goodness of fit] between the model's response and the structure's response when both are subjected to the same excitation. The function includes errors in displacement and acceleration and is integrated from zero to a time T, which may be the full duration of the recorded response or only a portion of it. The parameters are adjusted using a modified Gauss-Newton method until the error function is minimized. The computer program incorporating these steps in the system identification process is verified with simulated data. Results given in the paper show that in every case the program converges in few iterations to the assigned set of parameters.  相似文献   

9.
To simultaneously take into account the Biot-flow mechanism, the squirt-flow mechanism, and the frame-viscoelasticity mechanism, a generalized viscoelastic BISQ (Biot/squirt) model is developed for wave propagation in clay-bearing sandstones based on Dvorkin's elastic BISQ model. The present model is extended to a wide range of permeabilities (k 〉 0.05 mD) by introducing a dimensionless correction factor for viscoelastic parameters, defined as a function of the permeability and the clay content. We describe the frame's stress-strain relationship of the clay-bearing sandstones by the differential constitutive equations of generalized viscoelasticity and then derive the viscoelastic-wave dynamic equations. With the assumption of a plane-wave solution, we finally yield the phase velocities and the attenuation coefficients by solving the dynamic wave equations in the frequency and wave number domain. The comparison of numerical results and experimental data shows that the generalized viscoelastic BISQ model is applicable for modeling the wave propagation in most of the sandstones mainly bearing kaolinite clay.  相似文献   

10.
11.
The relatively low rates of magma production in island arcs and continental extensional settings require that the volume of silicic magma involved in large catastrophic caldera-forming (CCF) eruptions must accumulate over periods of 10 5 to 10 6 years. We address the question of why buoyant and otherwise eruptible high-silica magma should accumulate for long times in shallow chambers rather than erupt more continuously as magma is supplied from greater depths. Our hypothesis is that the viscoelastic behavior of magma chamber wall rocks may prevent an accumulation of overpressure sufficient to generate rhyolite dikes that can propagate to the surface and cause an eruption. The critical overpressure required for eruption is based on the model of Rubin (1995a). An approximate analytical model is used to evaluate the controls on magma overpressure for a continuously or episodically replenished spherical magma chamber contained in wall rocks with a Maxwell viscoelastic rheology. The governing parameters are the long-term magma supply, the magma chamber volume, and the effective viscosity of the wall rocks. The long-term magma supply, a parameter that is not typically incorporated into dike formation models, can be constrained from observations and melt generation models. For effective wall-rock viscosities in the range 10 18 to 10 20 Pa s –1, dynamical regimes are identified that lead to the suppression of dikes capable of propagating to the surface. Frequent small eruptions that relieve magma chamber overpressure are favored when the chamber volume is small relative to the magma supply and when the wall rocks are cool. Magma storage, leading to conditions suitable for a CCF eruption, is favored for larger magma chambers (>10 2 km 3) with warm wall rocks that have a low effective viscosity. Magma storage is further enhanced by regional tectonic extension, high magma crystal contents, and if the effective wall-rock viscosity is lowered by microfracturing, fluid infiltration, or metamorphic reactions. The long-term magma supply rate and chamber volume are important controls on eruption frequency for all magma chamber sizes. The model can explain certain aspects of the frequency, volume, and spatial distribution of small-volume silicic eruptions in caldera systems, and helps account for the large size of granitic plutons, their association with extensional settings and high thermal gradients, and the fact that they usually post-date associated volcanic deposits.  相似文献   

12.
Buildings are continually subject to dynamic loads, such as wind load, seismic ground motion, and even the load from internal utility machines. The recent trend of constructing more flexible high‐rise buildings underscores the importance of including viscoelastic dampers in building designs. Viscoelastic dampers are used to control the dynamic response of a building. If the seismic design is based only on the linear response spectrum, considerable error may occur when calculating the seismic response of a building; rubber viscoelastic dampers show non‐linear hysteretic damping that is quite different from viscous damping. This study generated a non‐linear response spectrum using a non‐linear oscillator model to simulate a building with viscoelastic dampers installed. The parameters used in the non‐linear damper model were obtained experimentally from dynamic loading tests. The results show that viscoelastic dampers effectively reduce the seismic displacement response of a structure, but transmit more seismic force to the structure, which essentially increases its seismic acceleration response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, the Hillslope River Routing (HRR) model was modified for arctic river basin applications and used to route surface and subsurface run‐off from the Community Land Model (CLM) in the Mackenzie River Basin (MRB) for the period 2000–2004. The HRR modelling framework performs lateral surface and subsurface run‐off routing from hillslopes and channel/floodplain routing. The HRR model was modified here to include a variable subsurface active layer thickness (ALT; permafrost) to enable subsurface water to resurface, a distributed surface storage component to store and attenuate the rapid generation of snowmelt water, compound hillslopes to account for the low relief near rivers and floodplains, and reservoir routing to complete the total surface and subsurface water storage accounting. To illustrate the new HRR model components, a case study is presented for the MRB. The basin is discretized into 5077 sub‐basins based on a drainage network derived from the global digital elevation model (DEM) developed from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor on board NASA's Terra satellite and river widths extracted from LandSat images. The median hillslope land area is 68.5 km2 with a flow length of 2.8 km. Gridded CLM surface and subsurface run‐offs are remapped to the HRR model's irregular sub‐basins. The role of each new model component is quantified in terms of peak annual streamflow (magnitude and timing) at select locations and basin‐wide total water storage anomalies. The role of distributed surface storage is shown to attenuate the relatively rapid generation of snowmelt water, impact the annual peak hydrograph (reduced peaks by >30% and detailed peak by >20 days), and account for 20% of the monthly total water storage anomalies averaged over the year and ranging from 14 to 25% (?10 to 30 mm) throughout the year. Although additional research is needed to dynamically link spatially distributed ALT to HRR, the role of ALT is shown to be important. A basin‐wide, uniform 1 m ALT impacts the annual peak hydrograph (reduced peaks by 9% and detailed peak by 8 days) and trends in total water storage anomalies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In this study two mathematical models are presented for the linear dynamic behaviour of masonry walls. The study is completed in three stages: experimental observations, selection of a mathematical model and the determination of model parameters through optimization analysis. In the present paper (Part 1) the theoretical analysis used in the development of the mathematical models is presented. Part 2 is devoted to the optimization analysis. Evaluation of the experimental data, which is described in detail in Part 2, indicates that the first two modal frequencies of the wall specimen are close to each other. This may be attributed, on physical grounds, to strong interaction between the brick and mortar phases of the wall. Accordingly, a two-phase mathematical model, namely a mixture model (MM), is chosen to describe the wall behaviour because it can differentiate between the two phases of the wall and take into account the interaction between them. The equations of MM are put into a discrete form to simplify the optimization analysis. As a special case, MM contains a simple one-phase model called the effective modulus model (EMM). The equations of EMM are also established. Finally, the theoretical complex frequency response functions (CFRF) predicted by MM and EMM are obtained. CFRF relates the top acceleration of the wall to its base acceleration and is the response quantity chosen to be matched in the optimization analysis.  相似文献   

15.
The lithosphere is known to deform under geologic loads such as those due to surface volcanoes and submerged magma chambers. The lithosphere is modelled here as a linear viscous circular plate supported on the underlying asthenosphere, which in turn is modelled as a Winkler foundation. A two-dimensional steady creep relation is used to derive the governing partial differential equations for deflection, stress and bending moment. The temperature variation through the thickness of the lithosphere is of major importance and is included in the analysis. Solutions to the governing equations are obtained both in general and for an illustrative set of geometric, loading, material and thermal parameters.  相似文献   

16.
Most grain size monitoring is still being conducted by manual sampling in the field, which is time consuming and has low spatial representation. Due to new remote sensing methods, some limitations have been partly overcome, but methodological progress is still needed for large rivers as well as in underwater conditions. In this article, we tested the reliability of two methods along the Old Rhine River (France/Germany) to estimate the grain size distribution (GSD) in above-water conditions: (i) a low-cost terrestrial photosieving method based on an automatic procedure using Digital Grain Size (DGS) software and (ii) an airborne LiDAR topo-bathymetric survey. We also tested the ability of terrestrial photosieving to estimate the GSD in underwater conditions. Field pebble counts were performed to compare and calibrate both methods. The results showed that the automatic procedure of terrestrial photosieving is a reliable method to estimate the GSD of sediment patches in both above-water and underwater conditions with clean substrates. Sensitivity analyses showed that environmental conditions, including solar lighting conditions and petrographic variability, significantly influence the GSD from the automatic procedure in above-water conditions. The presence of biofilm in underwater conditions significantly altered the GSD estimation using the automatic procedure, but the proposed manual procedure overcame this problem. The airborne LiDAR topographic survey is an accurate method to estimate the GSD of above-water bedforms and is able to generate grain size maps. The combination of terrestrial photosieving and airborne topographic LiDAR methods is adapted to assess the GSD over several kilometers long reaches of large rivers. © 2020 John Wiley & Sons, Ltd.  相似文献   

17.
18.
This paper deals with seismic excitation of linearly elastic structures. It is well known that dynamical structural response is very sensitive to random fluctuations of the excitation; the consequence is that the identification of the forcing function on the basis of a few ‘global’ parameters does not allow to predict exhaustively stresses in seismically excited structures. In the paper, a convex model is established to treat uncertainty associated with the ‘details’ of the excitation, in order to set bounds on the response parameters of a SDOF system, assuming that only rough information is available for expected earthquakes at a given site. In particular, we assume that the maximum expected ‘energy’ of the accelerogram, and the maximum ‘distance’ of its power spectrum from the target spectrum, typical for the site under construction, are specified. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
This paper proposes an analytical model for evaluating the dynamic response of an underground railway tunnel in layered foundation soil with different saturations. The soil is modeled as layered media, and the circular tunnel lining is modeled as an infinite Flügge cylindrical shell. The separation of variables method is used to solve the motion equation of the shell, and the wave equation of the soil is solved using the Helmholtz decomposition theorem. A dynamic matrix reflecting the wave vecto...  相似文献   

20.
The parameters appearing in the mixture and effective modulus models proposed in Part 1 are determined through optimization by matching theoretical and experimental responses. The optimization analysis is performed in frequency space. The response quantities chosen to be matched are the complex frequency response functions (experimental and theoretical) relating the Fourier transforms of top and base accelerations of the wall. Computations in optimization analysis are carried out by introducing an object (error) function and minimizing it using the Gauss-Newton method. The results show that the mixture model is capable of predicting accurately the dynamic response of masonry walls up to a frequency which is well above the second modal frequency, whereas the effective modulus model describes the wall behaviour only up to the first modal frequency. Furthermore, it is shown that the mixture model is still valid when micro cracks, which may exist between the mortar and brick constituents, are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号