共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper examines the impacts of climate variability upon the regional hydrological regimes of the Yellow River in China. Results indicate that the average annual precipitation is 494·8 mm in La Niña years and only 408·8 mm in El Niño years. The difference is 86·0 mm, or 18·8% over the long-term average. The stream-flows in the La Niña years are higher than that in El Niño years: 9·2% at the Lan-Zhou station, 9·5% for Tou-Dao-Guai station, 11·8% for Long-Men, 17·6% for San-Men-Xia, 19·2% at the Hua-Yuan-Hou station, and 22·0% at the Li-Jin station. Both precipitation and stream-flow responses show temporal and spatial patterns. The relationship among the stream-flow, precipitation, and temperature, which was obtained by ArcGIS Geostatistical Analyst based on observed data, indicates stream-flow is sensitive to both precipitation and temperature. For small precipitation increases (less than 13%), the stream-flow percentage change is less than the precipitation change for the Yellow River. The results of this paper can be used as a reference for watershed water resources planning and management to maintain the healthy life and proper function of the river. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
2.
Due to climate change and its aggravation by human activities (e.g. hydraulic structures) over the past several decades, the hydrological conditions in the middle Yellow River have markedly changed, leading to a sharp decrease in runoff and sediment discharge. This paper focused on the impacts of climate change and hydraulic structures on runoff and sediment discharge, and the study area was located in the 3246 km2 Huangfuchuan (HFC) River basin. Changes in annual runoff and sediment discharge were initially analysed by using the Mann–Kendall trend test and Pettitt change point test methods. Subsequently, periods of natural and disturbed states were defined. The results showed that both the annual runoff and sediment discharge presented statistically significant decreasing trends. However, compared with the less remarkable decline in annual rainfall, it was inferred that hydraulic structures might be another important cause for the sharp decrease in runoff and sediment discharge in this region. Consequently, sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) were considered in this study. Through evaluating the impacts of the variation in rainfall patterns (i.e. amount and intensity) and the STD construction, a positive correlation between rainfall intensity and current STD construction was found. This paper revealed that future soil and water conservation measures should focus on areas with higher average annual rainfall and more rainstorm hours. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
The impact of climate change and human activities on streamflow and sediment load in the Pearl River basin 总被引:2,自引:0,他引:2
Chuangshou Wu Changchen Ji Benwei Shi Yaping Wang Jianhua Gao Yang Yang Jinbin Mu 《国际泥沙研究》2019,34(4):307-321
This paper uses monthly streamflow, suspended sediment concentration, and meteorological data to examine the impact of human activity and climate change on streamflow and sediment load in the Pearl River basin from the 1950s to the 2000s. The influences of climate change and human activities on hydrological processes were quantitatively evaluated using the Mann–Kendall abrupt change test and power rating curves. The results showed that:(1) abrupt changes and turning points in streamflow occurred in 1963, 1983, and 1991 which were found to be consistent with global ENSO events and volcanic eruptions. However, abrupt changes in sediment load showed significant spatial differences across the Pearl River basin. For the Xijiang River, an abrupt change in sediment load occurred in 2002, and after 2007 the change becomes significant at the 95% confidence level. At Beijiang and Dongjiang, abrupt changes in sediment load occurred in 1998 and 1988, respectively.(2) The time series of sediment load data was divided into four periods according to abrupt changes. The contribution of climate change and human activities is different in the different rivers. For the Xijiang River, compared with the first period, climate change and human activities contributed 83% and 17%, respectively, to the increasing sediment load during the second period. In the third period, the variation of sediment load followed a decreasing trend. The contribution from climate change and human activities also changed to t236% and -136%, respectively. In the fourth period, climate change and human activities contributed -32% and t132%, respectively. Meanwhile, For the Beijiang River, climate change and human activities contributed 90% and 10% in the second period, the contribution of climate change increased to t115% and human activities decreased to -15% in the third period. In the fourth period, the value for climate change decreased to t36% and human activities increased to t64%. For the Dongjiang River, the contribution of human activities was from 74.5% to 90%, and the values for climate change were from 11% to 25%. Therefore, the effect of human activity showed both spatial and temporal differences, and it seems likely that the decreased sediment load will continue to be controlled mainly by human activities in the future. 相似文献
4.
Li-Juan Li Lu Zhang Hao Wang Juan Wang Jun-Wei Yang De-Juan Jiang Jiu-Yi Li Da-Yong Qin 《水文研究》2007,21(25):3485-3491
Located in the Loess Plateau of China, the Wuding River basin (30 261 km2) contributes significantly to the total sediment yield in the Yellow River. To reduce sediment yield from the catchment, large-scale soil conservation measures have been implemented in the last four decades. These included building terraces and sediment-trapping dams and changing land cover by planting trees and improving pastures. It is important to assess the impact of these measures on the hydrology of the catchment and to provide a scientific basis for future soil conservation planning. The non-parametric Mann–Kendall–Sneyers rank test was employed to detect trends and changes in annual streamflow for the period of 1961 to 1997. Two methods were used to assess the impact of climate variability on mean annual streamflow. The first is based on a framework describing the sensitivity of annual streamflow to precipitation and potential evaporation, and the second relies on relationships between annual streamflow and precipitation. The two methods produced consistent results. A significant downward trend was found for annual streamflow, and an abrupt change occurred in 1972. The reduction in annual streamflow between 1972 and 1997 was 42% compared with the baseline period (1961–1971). Flood-season streamflow showed an even greater reduction of 49%. The streamflow regime of the catchment showed a relative reduction of 31% for most percentile flows, except for low flows, which showed a 57% reduction. The soil conservation measures reduced streamflow variability, leading to more uniform streamflow. It was estimated that the soil conservation measures account for 87% of the total reduction in mean annual streamflow in the period of 1972 to 1997, and the reduction due to changes in precipitation and potential evaporation was 13%. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
5.
Abstract The water shortage in the Yellow River, China, has been aggravated by rapid population growth and global climate changes. To identify the characteristics of streamflow change in the Yellow River, approximately 50 years of natural and observed streamflow data from 23 hydrological stations were examined. The Mann-Kendall and Pettitt tests were used to detect trends and abrupt change points. The results show that both the natural and the observed streamflow in the Yellow River basin present downward trends from 1956 to 2008, and the decreasing rate of observed streamflow is generally faster than that of the natural streamflow. Larger drainage areas have higher declining rates, and the declining trends are intensified downstream within the mainstream. The possibility of abrupt changes in observed streamflow is higher than in natural streamflow, and streamflow series in the mainstream are more likely to change abruptly than those in the tributaries. In the mainstream, all the significant abrupt changes appear in the middle and latter half of the 1980s, but the abrupt changes occur somewhat earlier for observed streamflow than for natural streamflow. The significant abrupt change for the observed streamflow in the tributaries is almost isochronous with the natural streamflow and occurs from the 1970s to 1990s. It is implied that the slight reduction in precipitation is not the only direct reason for the streamflow variation. Other than the effects of climate change, land-use and land-cover changes are the main reasons for the natural streamflow change. Therefore, the increasing net water diversion by humans is responsible for the observed streamflow change. It is estimated that the influence of human activity on the declining streamflow is enhanced over time. Editor Z.W. Kundzewicz Citation Miao, C.Y., Shi, W., Chen, X.H., and Yang, L., 2012. Spatio-temporal variability of streamflow in the Yellow River: possible causes and implications. Hydrological Sciences Journal, 57 (7), 1355–1367. 相似文献
6.
Yujie Yuan Chang Zhang Guangming Zeng Jie Liang Shenglian Guo Lu Huang Haipeng Wu Shanshan Hua 《水文研究》2016,30(12):1929-1939
Climate variability and human activity were regarded as two contributors to streamflow alteration. However, the contributions of the two factors were still unclear in Dongting Lake. Therefore, it was crucial to quantify the relative impact of climate variability and human activity on streamflow alteration. The time series (1961–2010) was divided into three periods, namely, natural period (1961–1980), change period I (1981–2002) and change period II (2003–2010). Sensitivity analysis based on Budyko‐type equations was applied to reveal the contributions of climate variability and human activity in those two change periods, respectively. The results showed that during the change period I, climate variability was the main factor responsible for streamflow alteration in most parts of Dongting Lake, accounting for 60.07–67.27%. However, the impact of climate variability was slightly smaller than that of human activity in West Dongting Lake (the former accounting for 43.20% while the latter accounting for 56.80%). For the change period II, human activity was the dominate factor for streamflow alteration, accounting for 58.89–78.33%. The impact of climate variability gradually decreased while the impact of human activity gradually increased. Along with the intensification of the human activity, the impact of it became more dominant. The results could provide a reference for water resources planning and management decisions. Under the condition of uncontrollable climatic factor, effective measures should be put forward in controlling human activity, such as reservoir/dam operation, closed management of protected area and so on. Besides, it is essential to study the impact of climate variability on future water resources and water resource management under different climate change scenarios. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
Decreasing trend of sediment transfer function of the Upper Yellow River,China, in response to human activity and climate change 总被引:1,自引:0,他引:1
Xu Jiongxin 《水文科学杂志》2013,58(2):311-325
AbstractAn index (Fs) for sediment transfer function is introduced, based on the sediment budget at the channel scale. The purpose of this study is two-fold: to gain a deeper insight into how Fs is influenced by natural and human factors, and to provide some new knowledge for decision making in the management of the Upper Yellow River, China. Since 1960, the Fs of the Lanzhou to Toudaoguai reach of the Upper Yellow River shows a decreasing trend. At the drainage basin level, the decreased Fs can be explained by changes in precipitation and air temperature, as well as by a number of variables describing human activity, such as reservoir regulation, water diversion, and soil and water conservation. The higher temperature reduces the transfer function, while the larger runoff coefficient increases it. At the channel level, the decreased Fs can be explained by a number of variables of flow and sediment input. Three countermeasures for restoration of the Fs are suggested.
Editor Z.W. Kundzewicz 相似文献
8.
This paper presents a study on the characteristics of multiple time scales of bankfull discharge and its delayed response to changes of flow conditions using continuous wavelet analysis for data from selected hydrological stations in the Yellow River basin. Results showed that bankfull discharge series had one or two dominant time scales. For example, the Huayuankou station in the lower reach of the Yellow River had two dominant time scales of 19-20 years and 545 years. The dominant time scales of the bankfull discharge series were generally consistent with the dominant time scales of water discharge and sediment concentration series, indicating that the channel morphology inherits the characteristics of the hydrological system in terms of multiple time scales. In addition, the wavelet coefficients of the bankfull discharge series had a phase difference in relation to those of the sediment concentration series, with a delay time that varied from 3 to 16 years at different sites. This delay time or relaxation time is a result of the delayed response of bankfull discharge to flow conditions, which was significant for channel adjustments in response to changes of flow conditions. The findings of the multiple time scales and the delayed response are of importance for further study of channel morphology of fluvial systems. 相似文献
9.
Physically based simulation of the streamflow decrease caused by sediment‐trapping dams in the middle Yellow River 下载免费PDF全文
As a result of climate change/variation and its aggravation by human activities over the past several decades, the hydrological conditions in the middle Yellow River in China have dramatically changed, which has led to a sharp decrease of streamflow and the drying up of certain tributaries. This paper simulated and analysed the impact of sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) on hydrological processes, and the study area was located in the 3246 km2 Huangfuchuan River basin. Changes in the hydrological processes were analysed, and periods of natural and disturbed states were defined. Subsequently, the number and distribution of the STDs were determined based on data collected from statistical reports and identified from remote sensing images, and the topological relationships between the STDs and high‐resolution river reaches were established. A hydrological model, the digital Yellow River integrated model, was used to simulate the STD impact on the hydrological processes, and the maximum STD impact was evaluated through a comparison between the simulation results with and without the STDs, which revealed that the interception effect of the STDs contributed to the decrease of the streamflow by approximately 39%. This paper also analysed the relationship between the spatial distribution of the STDs and rainfall in the Huangfuchuan River basin and revealed that future soil and water conservation measures should focus on areas with a higher average annual rainfall and higher number of rainstorm hours. © 2015 The Authors Hydrological Processes Published by John Wiley & Sons Ltd. 相似文献
10.
Impacts of climate variability and change on drought characteristics in the Niger River Basin,West Africa 总被引:1,自引:0,他引:1
West Africa has been afflicted by droughts since the declining rains of the 1970s. Therefore, this study examines the characteristics of drought over the Niger River Basin (NRB), investigates the influence of the drought on the river flow, and projects the impacts of future climate change on drought. A combination of observation data and regional climate simulations of past (1986–2005) and future climates (2046–2065 and 2081–2100) were analyzed. The standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI) were used to characterize drought while the standardized runoff index (SRI) was used to quantify river flow. Results of the study show that the historical pattern of drought is consistent with previous studies over the Basin and most part of West Africa. RCA4 ensemble gives realistic simulations of the climatology of the Basin in the past climate. Generally, an increase in drought intensity and frequency are projected over NRB. The coupling between SRI and drought indices was very strong (P < 0.05). The dominant peaks can be classified into three distinct drought cycles with periods 1–2, 2–4, 4–8 years. These cycles may be associated with Quasi-Biennial Oscillation (QBO) and El-Nino Southern Oscillation (ENSO). River flow was highly sensitive to precipitation in the NRB and a 1–3 month lead time was found between drought indices and SRI. Under RCP4.5, changes in the SPEI drought frequency range from 1.8 (2046–2065) to 2.4 (2081–2100) month year?1 while under RCP8.5, the change ranges from 2.2 (2046–2065) to 3.0 month year?1 (2081–2100). Niger Middle sub-basin is likely to be mostly impacted in the future while the Upper Niger was projected to be least impacted. Results of this study may guide policymakers to evolve strategies to facilitate vulnerability assessment and adaptive capacity of the basin in order to minimize the negative impacts of climate change. 相似文献
11.
Wildfires are common in Australia and can cause vegetation loss and affect hydrological processes such as interception, evapotranspiration, soil water storage and streamflow. This study investigates wildfire impacts on catchment mean annual streamflow for 14 Australian catchments that have been severely impacted by the 2009 Victoria wildfire, the second-worst wildfire disaster in Australia. A statistical approach based on sensitivity coefficients was used for quantifying the climate variability impacts on streamflow and the time trend analysis method was used to estimate the annual streamflow changes due to wildfire respectively. Our results show that wildfire has caused a noticeable increase in mean annual streamflow in the catchments with a burnt area above 70% for an immediate post-wildfire period (2009–2015) and the wildfire impact on streamflow is evidently larger than the climate change impact in the majority of burnt catchments. Furthermore, the wildfire impact on mean annual streamflow strongly increases with the burnt percentage area, indicated by R2 = 0.73 between the two. The results also illustrate that catchments with high burnt percentage areas can have more potential to gain increased streamflow due to wildfires compared with that due to climate variability and can have significant streamflow change after wildfires above the 70% threshold of burnt area. These results provide evidence for evaluating large-scale wildfire impact on streamflow at small to medium-sized catchments, and guidance for process-based hydrological models for simulating wildfire impacts on hydrological processes for the immediate period after the wildfire. 相似文献
12.
Jiongxin Xu 《水文科学杂志》2013,58(1):106-117
Abstract Water resources management should cover both blue water and green water. For green-water management at the river drainage basin scale, the green-water coefficient (C gw) is adopted, defined as the ratio of annual green water to annual precipitation. Based on data from the Middle Yellow River basin, China, for the period 1950 to 2007, we studied the temporal variation in C gw in response to some influencing factors. A decreasing trend in C gw was found. The influence of changes in land management on C gw, reflected by an increase in the area (A sw) of soil and water conservation measures, is emphasized. Using multiple regression analysis, the contributions of A sw and the 5-year moving averages of annual precipitation and air temperature were estimated as 51, 37 and 12%, respectively. The results may provide useful information for better management of water resources, including green and blue water flows in the Yellow River basin. Editor Z.W. Kundzewicz; Associate editor D. Gerten Citation Xu, J.-X., 2013. Effects of climate and land-use change on green-water variations in the Middle Yellow River, China. Hydrological Sciences Journal, 58 (1), 1–12. 相似文献
13.
Elga Apsīte Oļģerts Nikodemus Guntis Brūmelis Ainis Lagzdiņš Didzis Elferts Zigmārs Rendenieks 《水文科学杂志》2017,62(15):2558-2570
The aim of the study was to determine the effects of climate variability, agricultural land drainage and afforestation of agricultural land on river discharge. The study was conducted in the Vienziemīte stream basin (6 km2), where discharge was monitored on a daily basis during the time period of 1946–2010. In the stream basin, natural afforestation of agricultural land began in the 1950s, and in the mid-1970s artificial drainage systems were installed in all agricultural land (70% of the total basin area). Climate variability and artificial drainage were the main factors observed to be affecting stream discharge. The changes were most evident in annual and seasonal mean, minimum and maximum streamflow. There was no effect of afforestation of agriculture land on stream discharge. 相似文献
14.
Streamflow trends and climate linkages in the source region of the Yellow River,China 总被引:1,自引:0,他引:1
Much of the discussion on hydrological trends and variability in the source region of the Yellow River centres on the mean values of the mainstream flows. Changes in hydrological extremes in the mainstream as well as in the tributary flows are largely unexplored. Although decreasing water availability has been noted, the nature of those changes is less explored. This article investigates trends and variability in the hydrological regimes (both mean values and extreme events) and their links with the local climate in the source region of the Yellow River over the last 50 years (1959–2008). This large catchment is relatively undisturbed by anthropogenic influences such as abstraction and impoundments, enabling the characterization of widely natural, climate‐driven trends. A total of 27 hydrological variables were used as indicators for the analysis. Streamflow records from six major headwater catchments and climatic data from seven stations were studied. The trend results vary considerably from one river basin to another, and become more accentuated with longer time period. Overall, the source region of the Yellow River is characterized by an overall tendency towards decreasing water availability. Noteworthy are strong decreasing trends in the winter (dry season) monthly flows of January to March and September as well as in annual mean flow, annual 1‐, 3‐, 7‐, 30‐ and 90‐day maxima and minima flows for Maqu and Tangnag catchments over the period 1959–2008. The hydrological variables studied are closely related to precipitation in the wet season (June, July, August and September), indicating that the widespread decrease in wet season precipitation is expected to be associated with significant decrease in streamflow. To conclude, decreasing precipitation, particularly in the wet season, along with increasing temperature can be associated with pronounced decrease in water resources, posing a significant challenge to downstream water uses. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
15.
16.
Yanchun Zhou 《水文科学杂志》2015,60(7-8):1340-1360
AbstractThis paper quantifies the impacts of bushfire and climate variability on streamflow from three southeast Australian catchments where bushfires occurred in February 1983. Three hydrological models (AWRA-L, Xinanjiang and GR4J) were first calibrated against streamflow data from the pre-bushfire period and then used to simulate runoff for the post-bushfire period with the calibrated parameters. The difference in simulated streamflow between pre- and post-bushfire periods provides an estimate of the impact of climate variability on streamflow. The impact of bushfire on streamflow is quantified by removing the climate variability impact from the difference in mean annual observed streamflow between post- and pre-bushfire periods. For the first 15 years after the 1983 bushfires, the results from hydrological models for the three catchments indicate that there is a substantial increase in streamflow; this is attributed to initial decreases in evapotranspiration and soil infiltration rates resulting from the fires, followed by logging activity. After 15 years, streamflow dynamics are more heavily influenced by climate effects, although some impact from fire and logging regeneration may still occur. The results show that hydrological models provide reasonably consistent estimates of bushfire and climate impacts on streamflow for the three catchments. The models can be used to quantify relative contributions of forest disturbance (bushfire, logging and other forest management) and climate variability. The results presented can also help forest managers understand the relationship between bushfire and climate variability impacts on water yield in the context of climate variability. 相似文献
17.
18.
Response of streamflow to climate change and human activity in Xitiaoxi river basin in China 下载免费PDF全文
In recent years, the Xitiaoxi river basin in China has experienced intensified human activity, including city expansion and increased water demand. Climate change also has influenced streamflow. Assessing the impact of climate variability and human activity on hydrological processes is important for water resources planning and management and for the sustainable development of eco‐environmental systems. The non‐parametric Mann–Kendall test was employed to detect the trends of climatic and hydrological variables. The Mann–Kendall–Sneyers test and the moving t‐test were used to locate any abrupt change of annual streamflow. A runoff model, driven by precipitation and potential evapotranspiration, was employed to assess the impact of climate change on streamflow. A significant downward trend was detected for annual streamflow from 1975 to 2009, and an abrupt change occurred in 1999, which was consistent with the change detected by the double mass curve test between streamflow and precipitation. The annual precipitation decreased slightly, but upward trends of annual mean temperature and potential evapotranspiration were significant. The annual streamflow during the period 1999–2009 decreased by 26.19% compared with the reference stage, 1975–1998. Climate change was estimated to be responsible for 42.8% of the total reduction in annual streamflow, and human activity accounted for 57.2%. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
19.
Yongqin David Chen Qiang Zhang Xiaohong Chen Ping Wang 《Stochastic Environmental Research and Risk Assessment (SERRA)》2012,26(2):235-246
The Pearl River basin bears the heavy responsibility for the water supply for the neighboring cities such as Macau, Hong Kong
and others. Therefore, effective water resource management is crucial for sustainable use of water resource. However, good
knowledge of changing properties of streamflow changes is the first step into the effective water resource management. With
this in mind, stability and variability of streamflow changes in the Pearl River basin is thoroughly analyzed based on monthly
streamflow data covering last half century using Mann–Kendall trend test and scanning t- and F-test techniques. The results indicate: (1) significant increasing monthly streamflow is observed mainly in January–April,
June and October–December. Monthly streamflow during May–September is in not significant changes. Besides, stations characterized
by significant monthly streamflow changes are located in the middle and the lower Pearl River basin; (2) changing points of
monthly streamflow series are detected mainly during mid-1960s, early 1970s, mid-1970s, early 1980s and early 1990s and these
periods are roughly in good agreement with those of annual, winter and summer precipitation across the Pearl River basin,
implying tremendous influences of precipitation changes on streamflow variations; (3) abrupt behaviors tend to be ambiguous
from the upper to the lower Pearl River basin, which should be due to enhancing combined effects of abrupt changes of precipitation.
The streamflow comes to be lower stability in recent decades. However, high stability of streamflow changes are observed at
hydrological stations in the lower Pearl River basin. The results of this study will be of great scientific and practical
merits in terms of effective water resource management in the Pearl River basin under the influences of climate changes and
human activities. 相似文献
20.
Paul G.CLOSE 《国际泥沙研究》2011,(3):255-268
Extensive agricultural,industrial and urban development in the Yellow River,China,have modified the sediment-water balance,flow and inundation regimes,longitudinal connectivity,integrity of riparian vegetation,and water quality.Macroinvertebrate assemblages in the bed sediment of main channel and major reservoirs of the Yellow River are described in detail for the first time.A total of 74 taxa comprising 17 taxa of oligochaetes,48 taxa of aquatic insects,5 taxa of molluscs,and 4 taxa of other animals were recorded.A range of feeding guilds were represented,including, collector-gatherers(32 taxa),predators(17 taxa),scrapers(16 taxa),shredders(6 taxa)and collector-filterers(2 taxa).Both the mean density and biomass of macroinvertebrates were significantly higher in sites located in the artificial reservoirs compared with the main river channel. Assemblages varied spatially;Oligochaetes dominated assemblages in upper reaches,insects dominated in middle reaches and other animals(e.g.Crustacea)dominated in lower reaches. Collector-gatherers were dominant throughout the entire river.Classification analysis identified five site-groups on the basis of macroinvertebrate presence/absence:downstream of reservoirs;vegetated sites;reservoir sites;polluted sites,and;lower-reach sites.Lower macroinvertebrate richness,density and biomass,compared with other similar large rivers,were attributed to modification of the sediment-water balance and associated disturbance of benthic habitats.Pollution,stability of sediment and sediment concentration combined to influence the distribution of macroinvertebrates.This knowledge will substantially benefit the recent focus on the health and environmental water requirements of the Yellow River. 相似文献