共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural Hazards - Analyses of historical records of landslides and climate variables are useful tools to search for correlations between damaging landslide events and their triggers. In this work,... 相似文献
3.
我国是一个滑坡灾害频发的国家,众多事实表明:降雨是影响边坡稳定性,导致边坡失稳的最主要和最普遍的环境因素,是浅层滑坡的触发因素。为了更好地对降雨诱发浅层滑坡进行研究,采用非饱和土VG模型与改进的Green-Ampt入渗模型对Mein-Larson降雨入渗模型进行改进,并结合无限边坡提出了一个降雨诱发浅层滑坡的简化计算模型。与以往提出的简化计算模型相比,该模型既考虑了坡面倾斜的影响,又考虑了非饱和土的特性,并可用于两种降雨形式下的边坡浅层稳定性估算,具有更广的应用范围。通过与有限元得到的结果进行比较可得:在不同降雨条件下,该计算模型得到的各项结果与数值解是接近的,安全系数计算结果是偏于安全的,因此,可将该计算模型用于降雨诱发浅层滑坡的近似估算;该计算模型公式简单,便于计算,计算效率较高。 相似文献
4.
为分析降雨诱发浅层滑坡的演变过程。本文以湖南湘西古丈滑坡为例,基于Green-Ampt入渗模型,进行了降雨诱发浅层滑坡渐进破坏分析。研究结果表明:在强降雨作用下,滑坡的失稳破坏主要是由于前缘土体以及中前部土体的局部破坏,而逐渐发展为整体破坏。并且,受滑坡地形影响,地形平缓的区域虽然湿润锋下渗较快,土体抗剪强度较低,但由于土体饱和带的渗流作用较小,而重力提供垂直于滑面的分力较大,该部分稳定性较为良好,故湿润锋对于滑坡稳定性的影响还应该根据不同地形条件加以分析。渐进式滑坡破坏分析方法对滑坡的监测和防治具有重要的指导意义。 相似文献
5.
A combination of empirical and physically based hydrological models has been used to analyze historical data on rainfall and debris-flow occurrence in western Campania, to examine the correlation between rainfall and debris-flow events. Rainfall data from major storms recorded in recent decades in western Campania were compiled, including daily series from several rain gauges located inside landslide areas, supplemented by hourly rainfall data from some of the principal storms. A two-phase approach is proposed. During phase 1, soil moisture levels have been modelled as the hydrological balance between precipitation and evapotranspiration, on a daily scale, using the method of Thornthwaite [Geograph. Rev. 38 (1948) 55]. Phase 2 is related to the accumulation of surplus moisture from intense rainfall, leading to the development of positive pore pressures. These interactions take place on an hourly time scale by the “leaky barrel” (LB) model described by Wilson and Wiezoreck [Env. Eng. Geoscience, 1 (1995) 11]. In combination with hourly rainfall records, the LB model has been used to compare hydrological effects of different storms. The critical level of retained rain water has been fixed by the timing of debris-flow activity, related to recorded storm events. New rainfall intensity–duration thresholds for debris-flow initiation in western Campania are proposed. These thresholds are related to individual rain gauge and assume a previously satisfied field capacity condition. The new thresholds are somewhat higher than those plotted by previous authors, but are thought to be more accurate and thus need less conservatism. 相似文献
6.
由于具有类似的工程地质和水文地质条件,在高度相关的降雨作用下,同一个区域中的降雨诱发浅层斜坡失稳灾害常成群出现.在区域尺度预测浅层斜坡失稳灾害对滑坡灾害的防灾减灾工作具有重要的意义.为此,提出了一种基于力学原理的降雨诱发浅层斜坡失稳灾害预测新模型RARIL.该模型采用修正Green-Ampt模型进行降雨入渗分析,采用无... 相似文献
7.
Landslide susceptibility mapping is a vital tool for disaster management and planning development activities in mountainous terrains of tropical and subtropical environments. In this paper, the weights-of-evidence modelling was applied, within a geographical information system (GIS), to derive landslide susceptibility map of two small catchments of Shikoku, Japan. The objective of this paper is to evaluate the importance of weights-of-evidence modelling in the generation of landslide susceptibility maps in relatively small catchments having an area less than 4 sq km. For the study area in Moriyuki and Monnyu catchments, northeast Shikoku Island in west Japan, a data set was generated at scale 1:5,000. Relevant thematic maps representing various factors (e.g. slope, aspect, relief, flow accumulation, soil depth, soil type, land use and distance to road) that are related to landslide activity were generated using field data and GIS techniques. Both catchments have homogeneous geology and only consist of Cretaceous granitic rock. Thus, bedrock geology was not considered in data layering during GIS analysis. Success rates were also estimated to evaluate the accuracy of landslide susceptibility maps and the weights-of-evidence modelling was found useful in landslide susceptibility mapping of small catchments. 相似文献
8.
The state of knowledge and resources available to issue alerts of precipitation-induced landslides vary across the USA. Federal and state agencies currently issue warnings of the potential for shallow, rapidly moving landslides and debris flows in a few areas along the Pacific coast and for areas affected by Atlantic hurricanes. However, these agencies generally lack resources needed to provide continuous support or to expand services to other areas. Precipitation thresholds that form the basis of landslide warning systems now exist for a few areas of the USA, but the threshold rainfall amounts and durations vary over three orders of magnitude nationwide and over an order of magnitude across small geographic areas such as a county. Antecedent moisture conditions also have a significant effect, particularly in areas that have distinct wet and dry seasons. Early warnings of shallow landslides that include specific information about affected areas, probability of landslide occurrence, and expected timing are technically feasible as illustrated by a case study from the Seattle, WA area. The four-level warning scheme (Null, Outlook, Watch, Warning) defined for Seattle is based on observed or predicted exceedance of a cumulative precipitation threshold and a rainfall intensity–duration threshold combined with real-time monitoring of soil moisture. Based on analysis of historical data, threshold performance varies according to precipitation characteristics, and threshold exceedance corresponds to a given probability of landslide occurrence. Experience in Seattle during December 2004 and January 2005 illustrates some of the challenges of providing landslide early warning on the USA West Coast. 相似文献
9.
The area under investigation for the past two decades is in the vicinity of the Gailtal lineament, which is the most dominant tectonic feature of the eastern Alps of southern Austria. An area of about 8 km 2 is in a state of constant instability, as documented by movement of road tracks of several centimetres per year. Geotechnical and surveying techniques have been used to measure these movements in the past but without solving the problem of the mechanism of these failure processes. Geophysical methods (seismic refraction, geoelectrics, and electromagnetics) were applied in order to determine the validity of one of the discussed movement models. In-situ velocity measurements were used to identify different lithologies beneath surficial talus deposits. The thickness of these talus deposits, of about 4–30 m, found by seismic refraction clearly demonstrates that huge ‘blocks’ (i.e. more or less undisturbed lithologic units) within the talus/debris are in close contact with the basement. This basement, which shows lower seismic velocities in different parts combined with low electric resistivities, is obviously strongly disturbed by different failure surfaces. The different gliding velocity of the blocks and the talus/debris deposits leads to a geological model in which huge rock blocks move slowly in relation to the disintegrating basement, whereas the talus/debris deposits move over the surface of these blocks at a higher velocity. The interpretation of these landslide studies is not a straightforward analysis. It is a complex problem with a complex solution, including all information from geotechnical, geophysical, and surveying investigations. 相似文献
10.
本文以贾峪东沟为研究对象,介绍了泥石流流速,堆积模式与降雨量关系模拟实验目的,方法、装置和物料。并提出最大堆积长度、宽度和厚度与降雨量的关系,降雨量与泥石流扇状地危险范围的关系,堆积形态比与降雨量的关系及流速与降雨量的关系。 相似文献
11.
新疆天山山脉海拔落差大,受气候及地形条件的影响其垂直分带性显著。天山山脉独特的地理位置及地质构造特征决定了山脉植被特征及垂直带谱发育的复杂性,也是影响坡积土分布与发育的重要条件。本文通过总结新疆天山山脉整体空间地理格局、地质造山过程和特殊地质地貌发育特征,进而明确了坡积土的风化成生过程及演化机制,并分析了天山山脉垂直分带划分界限及各分带内坡积土表层植被和地质灾害分布特征。研究表明:(1)新疆天山山脉横贯新疆中部,山脉发育主要受到古生代陆缘增生-碰撞造山、新生代晚期陆内造山及持续的冰川侵蚀等作用演化而成,其独特气候环境条件的差异性及规律性造就了天山山脉地貌发育具有水平过渡完整、垂直分带特性显著等特点;(2)天山山脉坡积土风化成生过程经历了原位风化、运移沉积及有机质积聚三环节,各环节依次进行又同时发生,具有循环递进特点;(3)依据海拔梯度与水热条件可将坡积土类型进行垂直分带划分,主要表现在:以博格达峰为代表的天山山脉北坡坡积土类型沿海拔由高到低依次为高山原始土、高山-亚高山草甸土、山地黑钙土、栗钙土、灰褐土、荒漠灰棕漠土;以托木尔峰为代表的天山山脉南坡坡积土类型沿海拔由高到低依次为:高山原始土、高山-亚高山草甸土、淡栗钙土、棕钙土、棕漠土;(4)天山山脉坡积土地质灾害受不同海拔处地貌条件及气候环境因素影响而产生了垂直分带特性,可以划分为冰川动力作用型、冰水侵蚀作用型、降水补给作用型。研究为明晰不同海拔内坡积土垂直分带及地质灾害特征提供基础指导价值。 相似文献
12.
Debris flows are more frequent in central Taiwan, because of its mountainous geography. For example, many debris flows were
induced by Typhoon Herb in 1996. The Chi-Chi earthquake with a magnitude of 7.3, which took place in 1999 in central Taiwan,
induced many landslides in this region. Some landslides turned into debris flows when Typhoon Toraji struck Taiwan in 2001.
This study investigates the characteristics of the gullies where debris flows have occurred for a comparison. Aerial photos
of these regions dated in 1997 (before the earthquake) and 2001 (after the earthquake) are used to identify the occurrence
of gully-type debris flows. A Geographic Information System (GIS) is applied to acquire hydrological and geomorphic characteristics:
stream gradient, stream length, catchment gradient, catchment area, form factor, and geology unit of these gullies. These
characteristics in different study regions are presented in a statistical approach. The study of how strong ground motion
affects the debris flows occurrence is conducted. The characteristics of the debris flow gullies triggered by typhoons before
and after the Chi-Chi earthquake are quantitatively compared. The analysis results show that a significant transformation
in the characteristics was induced by the Chi-Chi earthquake. In general, the transformation points out a lower hydrological
and geomorphic threshold to trigger debris flows after the Chi-Chi earthquake. The susceptibility of rock units to strong
ground motion is also examined. The analysis of debris flow density and accumulated rainfall in regions of different ground
motion also reveal that the rainfall threshold decreases after the Chi-Chi earthquake. 相似文献
13.
The state of knowledge and resources available to issue alerts of precipitation-induced landslides vary across the USA. Federal
and state agencies currently issue warnings of the potential for shallow, rapidly moving landslides and debris flows in a
few areas along the Pacific coast and for areas affected by Atlantic hurricanes. However, these agencies generally lack resources
needed to provide continuous support or to expand services to other areas. Precipitation thresholds that form the basis of
landslide warning systems now exist for a few areas of the USA, but the threshold rainfall amounts and durations vary over
three orders of magnitude nationwide and over an order of magnitude across small geographic areas such as a county. Antecedent
moisture conditions also have a significant effect, particularly in areas that have distinct wet and dry seasons. Early warnings
of shallow landslides that include specific information about affected areas, probability of landslide occurrence, and expected
timing are technically feasible as illustrated by a case study from the Seattle, WA area. The four-level warning scheme (Null,
Outlook, Watch, Warning) defined for Seattle is based on observed or predicted exceedance of a cumulative precipitation threshold
and a rainfall intensity–duration threshold combined with real-time monitoring of soil moisture. Based on analysis of historical
data, threshold performance varies according to precipitation characteristics, and threshold exceedance corresponds to a given
probability of landslide occurrence. Experience in Seattle during December 2004 and January 2005 illustrates some of the challenges
of providing landslide early warning on the USA West Coast. 相似文献
14.
This study compares the performance of transient rainfall infiltration and grid-based regional slope stability (TRIGRS) model and time-variant slope stability (TiVaSS) model in the prediction of rainfall-induced shallow landslides. TRIGRS employs one-dimensional (1-D) subsurface flow to simulate the infiltration rate, whereas a three-dimensional (3-D) model is utilized in TiVaSS. The former has been widely used in landslide modeling, while the latter was developed only recently. Both programs are used for the spatiotemporal prediction of shallow landslides caused by rainfall. This study uses the July 2011 landslide event that occurred in Mt. Umyeon, Seoul, Korea, for validation. The performance of the two programs is evaluated by comparison with data of the actual landslides in both location and timing by using a landslide ratio for each factor of safety class ( \({\text{LR}}_{\text{class}}\) index), which was developed for addressing point-like landslide locations. Moreover, the influence of surface flow on landslide initiation is assessed. The results show that the shallow landslides predicted by the two models are highly consistent with those of the observed sliding sites, although the performance of TiVaSS is slightly better. Overland flow affects the buildup of the pressure head and reduces the slope stability, although this influence was not significant in this case. A slight increase in the predicted unstable area from 19.30 to 19.93% was recorded when the overland flow was considered. It is concluded that both models are suitable for application in the study area. However, although it is a well-established model requiring less input data and shorter run times, TRIGRS produces less accurate results. 相似文献
15.
Landslide risk of the Campanian carbonate slopes covered by pyroclastic deposits is mainly connected with the occurrence of
high-velocity debris avalanches and debris flows. Analyses show that flows initiate as small translational slides in the pyroclastics.
The failure process is controlled by the interaction of both natural and human-induced factors. Geomorphological settings
play a decisive role in locating the source failures. Therefore, the crucial aspects in landslide hazard and risk assessment
are: (a) recognise the geomorphological control factors, (b) determine parameters defining landslide intensity (velocity,
volume, depth of deposit) and (c) predict landslide runout distance. An approach combining geomorphology and numerical analysis
has been adopted in the work reported here. Potential future landslide intensity scenarios are simulated predicting the runout
behaviour of potential instabilities by using a dynamic model previously calibrated by back-analysing observed events of similar
scale and type. The selected area is a sector of the Avella Mountains having the same geomorphological environment as the
1998 Sarno landslides (Campania, Southern Italy). 相似文献
16.
In central Italy Mesozoic carbonates represent the principal reservoir of freshwater of the region. The hydrogeological setting is linked to the geological evolution of the Apennine chain and is generally characterised by a lower aquifer and one or more shallower aquifers separated by thin aquicludes. In these systems, groundwater composition is the result of a complex array of regional and local geochemical processes. The main geochemical processes are the dissolution of calcite, the influx of deeply derived CO 2 related to a regional process of mantle degassing, dedolomitization and mixing with deep saline fluids. The occurrence of saline fluids, characterised by a Na–Cl(HCO 3) composition, is related to the presence of a deep regional aquifer at the base of Mesozoic carbonates. The extremely high pCO 2 values computed for the saline waters suggest that the deep aquifer is also a structural trap for the mantle derived CO 2 during its ascent towards the surface. In central Italy, geological and geophysical data highlight the presence of two different crustal sectors: the eastern sector, where the geometry of the Apennine thrust belt is still preserved, and the western sector, where the compressive structures are dislocated by important extensional deformations. In the western sector, the normal faults disrupting the compressive structures allow the mixing of the deep Na–Cl(HCO 3) fluids with the shallow groundwater causing a salinity increase and the natural deterioration of groundwater quality. 相似文献
17.
Landslides triggered by rainfall can be foreseen by modeling the relationship between the time occurrence of landslides and rainfall. This paper deals with the argument by adopting a hydrological model called Forecasting of Landslides Induced by Rainfall (FLaIR). The model is applicable for forecasting recurrent landslides and it is based on the identification of a mobility function Y(.) that links the occurrence of a slope movement to the antecedent rainfall. Once the mobility function is defined, it is possible to define its critical values, the exceeding of which indicates that new mobilizations could occur. The FLaIR model has been used to study some phenomena that happened in Lanzo Valleys, a Western Alps sector of the Piedmont region (Northern Italy) where slope debris flows are the predominant landslide type. The study has led to the development of an early warning system, called MoniFLaIR, for real-time monitoring and forecasting of slope hazard. This article describes some details of the system and its performance. 相似文献
19.
A GIS-based decision support system, which incorporates local topographic and rainfall effects on debris flow vulnerability
is developed. Rainfall at a scale compatible with the digital elevation model resolution is obtained using a neural network
with a wind-induced topographic effect and rainfall derived from satellite rain estimates and an adaptive inverse distance
weight method (WTNN). The technique is tested using data collected during the passage of typhoon Tori-Ji on July 2001 over
central Taiwan. Numerous debris flows triggered by the typhoon were used as control for the study. Our results show that the
WTNN technique outperforms other interpolation techniques including adaptive inversed distance weight (AIDW), simple kriging
(SK), co-kriging, and multiple linear regression using gauge, and topographic parameters. Multiple remotely-sensed, fuzzy-based
debris-flow susceptibility parameters are used to describe the characteristics of watersheds. Non-linear, multi-variant regressions
using the WTNN derived rainfall and topography factors are derived using self-organizing maps (SOM) for the debris flow vulnerability
assessment. An index of vulnerability representing the degrees of hazard is implemented in a GIS-based decision support system
by which a decision maker can assess debris flow vulnerability. 相似文献
20.
降雨引发的兰州黄土滑坡时空规律分析和临界降雨量预测 相似文献
|