首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Closed basins such as the Caspian Sea rapidly respond to variations in atmospheric and geological events. This study has been conducted to deduce the role of natural and anthropogenic influences on the Caspian Sea mean water level fluctuations for the period of 1998–2005. It is recognized that climate is the primary mechanism of the Caspian Sea mean water level variations based on the relatively small differences of the Caspian Sea hydrologic budget residuals and the Caspian Sea mean water level fluctuations. This is further supported by the similarity in water-level variations of the Caspian Sea with those of Lake Van and Lake Urmia. On the other hand, the Caspian Sea needed to lose some of its water to attain water balance equilibrium in 2000 and 2001. The year 2000 showed anomalous seismic activity particularly in the southwestern part of the Caspian Sea. Two significant earthquakes with magnitudes of 6.8 and 6.5 Mw occurred on November 25, 2000. The focal mechanisms of these earthquakes and numerous aftershocks indicated normal faulting and, therefore, caused the Caspian Sea lake level to decline in 2000. The contribution of submarine mud volcano eruptions to the Caspian Sea lake level could be insignificant based on the comparison of water budget residuals and the mean water level variations. Neither crustal deformation (based on the GPS measurements) nor the offshore oil and natural gas production activities in the Caspian Sea are responsible for noticeable changes to the level of the Caspian Sea.  相似文献   

2.
Many geophysical characteristics of the Caspian and Black Seas' deep basins are similar, having: suboceanic type of the crust, low average seismic velocity, absence of earthquakes and relatively small variation of magnetic anomalies. However, the sediments in the Caspian Sea deep basin are folded whereas in the Black Sea they are approximately horizontal. The Caspian Sea also has a far greater thickness of sediment accumulation.

The deep basins of the Caspian, Black and Mediterranean seas represent a sequence having similar crustal structures but with a decreasing thickness of sediments and consolidated layer, in that order. It is possible that the intensive sinking and accumulation of sediments began earliest in the Caspian Sea and spreaded continuously to the Black Sea and then the Mediterranean Sea. The Caspian and Black Sea deep basins have existed for long time (perhaps from Paleozoic time or even earlier) as areas with a specific and related type of evolution.  相似文献   


3.
Carboniferous and Lower Permian Carbonate and terrigenous rocks with the total thickness of >4000 m serve as the productive units in the Paleozoic subsalt complex at the eastern flank of the basin surrounding the northern area of the present-day Caspian Sea (hereafter, Caspian Basin in the broad sense). In recent years, several large oil and gas-condensate fields were discovered in these rocks. The complexity of geological evolution of this region, which is situated at the junction between the East European Platform and the Ural orogen, as well as multiple changes of sedimentation conditions during the Middle and Late Paleozoic, are reflected in the diversity of types of terrigenous and carbonate sediments and their facies alterations. Reconstruction of these environments makes it possible to elucidate specific features of the location of reservoir rocks in vertical and horizontal sections, as well as regularities of variations in their filtration-capacitive properties.  相似文献   

4.
Study of the element composition of ten samples of modern terrigenous and carbonate sediments from the northern part of the Caspian Sea by the ICP-MS method showed that these sediments were enriched in sulfur, nonferrous metals, and some related minor elements including Se, Te, Re, and others in comparison with the average composition of sedimentary rocks. It is assumed that local hydrothermal seeps similar to those known on the Cheleken Peninsula and which may be formed in other areas of this tectonically active zone are the sources of these elements. In addition, such a composition of sediments may indicate the sporadic contamination of bottom water with hydrogen sulfide, which has been observed in areas of the South and Middle Caspian by many researchers.  相似文献   

5.
The South Caspian sedimentary basin is a unique area with thick Mesozoic-Cenozoic sediments (up to 30–32 km) characterized by an extremely high fluid generation potential. The large amount of active mud volcanoes and the volumes of their gas emissions prove the vast scale of fluid generation. Onshore and offshore mud volcanoes annually erupt more than 109 cubic meters of gases consisting of CH4 (79–98%), and a small admixture of C2H6, C3H8, C4H10, C5H12, CO2, N, H2S, Ar, He. Mud volcanism is closely connected to the processes occurring in the South Caspian depression, its seismicity, fluctuations of the Caspian Sea level, solar activity and hydrocarbon generation.The large accumulations of gas hydrates are confined to the bottom sediments of the Caspian Sea, mud volcanoes crater fields (interval 0–0.4 m, sea depth 480 m) and to the volcanoes body at the depth of 480–800 from the sea bottom. Resources of HC gases in hydrates saturated sediments up to a depth of 100 m and are estimated at 0.2×1015–8×1015 m3. The amount of HC gases concentrated in them is 1011–1012 m3.The Caspian Sea, being an inland closed basin is very sensitive to climatic and tectonic events expressed in sea level fluctuations. During regressive stages as a result of sea level fall and the reducing of hydrostatic pressure the decomposition of gas hydrates and the releasing of a great volume of HC gases consisting mainly of methane are observed.From the data of deep drilling, seismoacoustics, and deep seismic mud volcanic activity in the South Caspian Basin started in the Lower Miocene. Activity reached its highest intensity at the boundary between the Miocene and Pliocene and was associated with dramatic Caspian Sea level fall in the Lower Pliocene of up to 600 m, which led to the isolation of the PaleoCaspian from the Eastern ParaTethys. Catastrophic reduction of PaleoCaspian size combined with the increasing scale of mud volcanic activity caused the oversaturation and intoxication of water by methane and led to the mass extinction of mollusks, fishes and other groups of sea inhabitants. In the Upper Pliocene and Quaternary mud volcanism occurred under the conditions of a semi-closed sea periodically connected with the Pontian and Mediterranean Basins. Those stages of Caspian Sea history are characterized by the revival of the Caspian organic world.Monitoring of mud volcanoes onshore of the South Caspian demonstrated that any eruption is predicted by seismic activation in the region (South-Eastern Caucasus) and intensive fluid dynamics on the volcanoes.  相似文献   

6.
The dependence of magnetic susceptibility () of bottom sediments from the Caspian Sea on the composition of magnetoactive minerals contained in the heavy subfraction of fine-grained sand (0.125–0.100 mm) was established. Changes in the curve shape and value reflect a pulsating pattern of the input different (in magnetic properties) magmatic and metamorphic clastic minerals into sediments, as well as different intensities of the formation of authigenic magnetoactive iron sulfides under conditions of the multiple alternation of transgressive and regressive phases in marine basins. Values of and shapes of curves for the studied sedimentary sequences show that sediments in the South and Middle Caspian basins are characterized by different specific features.  相似文献   

7.
The Caspian Sea, the largest isolated lake in the world, witnessed drastic lake-level variations during the Quaternary. This restricted basin appears very sensitive to lake-level variations, due to important variations in regional evaporation, precipitation and runoff. The amplitude, frequency and drivers of these lake-level changes are still poorly documented and understood. Studying geological records of the Caspian Sea might be the key to better comprehend the complexity of these oscillations. The Hajigabul section documents sediment deposited on the northern margin of the Kura Basin, a former embayment of the Caspian Sea. The 2035 m thick, well-exposed section was previously dated by magneto-biostratigraphic techniques and provides an excellent record of Early Pleistocene environmental, lake-level and climate changes. Within this succession, the 1050 m thick Apsheronian regional stage, between ca 2·1 Ma and 0·85 Ma, represents a particular time interval with 20 regressive sequences documented by sedimentary and palaeontological changes. Sequences are regressing from offshore to coastal, lagoonal or terrestrial settings and are bounded by abrupt flooding events. Sediment reveals a low energy, wave-dominated, reflective beach system. Wave baselines delimiting each facies association appear to be located at shallower bathymetries compared to the open ocean. Water depth estimations of the wave baselines allow reconstruction of a lake-level curve, recording oscillations of ca 40 m amplitude. Cyclostratigraphic analyses display lake-level frequency close to 41 kyr, pointing to allogenic forcing, dominated by obliquity cycles and suggesting a direct or indirect link with high-latitude climates and environments. This study provides a detailed lake-level curve for the Early Pleistocene Caspian Sea and constitutes a first step towards a better comprehension of the magnitude, occurrence and forcing mechanisms of Caspian Sea lake-level changes. Facies models developed in this study regarding sedimentary architectures of palaeocoastlines affected by repeated lake-level fluctuations may form good analogues for other (semi-)isolated basins worldwide.  相似文献   

8.
This paper analyzes the composition and distribution of coastal phytoplankton in the western portion of the Middle Caspian in the context of changes in the hydrological and hydrochemical regime under the conditions of the rising level of the Caspian Sea. It has been demonstrated that the changes in the water regime led to an increase in the taxonomic diversity, the quantitative characteristics of phytoplankton, and the succession of the size groups.  相似文献   

9.
The results of comparison of a number of main parameters of the chondrite-normalized REE distribution spectra in modern bottom, mainly pelitic, sediments of various sedimentary subsystems of the Caspian Sea and marginal filters of the Volga and Ural rivers with those characteristic of the pelitic fraction of modern bottom sediments of different river deltas worldwide are discussed. According to the features of the REE distribution spectra, as well as the εNd(0) values, it has been established that most samples of the Caspian bottom sediments are similar to those of large rivers and rivers, draining watersheds composed of sedimentary formations.  相似文献   

10.
Based on primary information from the Caspian Sea oceanographic database, the centennial salinity regime was analyzed. The regularities of the salinity spatial dynamics and vertical distribution were found for the characteristic periods of the sea level changes. Significant changes in the hydrological regime and the structure of the water mass for the centennial period were shown.  相似文献   

11.
Isotopic compositions of organic (δ13C-Corg) and carbonate (δ13C-Ccarb) carbon were analyzed in the particulate matter (hereafter, particulates) and sediments from the North and Middle Caspian basins. Isotopic composition of Corg was used for assessing proportions of the allochthonous and autochthonous organic matter in the particulates. Difference between the δ13C-Corg values in surface sediments and particulates is explained by the aerobic and anaerobic diagenetic transformations. Isotopic composition of Corg in sediments may be used as a tool for reconstructing the Quaternary transgressive-regressive history of the Caspian Sea.  相似文献   

12.
The demand for accurate predictions of sea level fluctuations in coastal management and ship navigation activities is increasing. To meet such demand, accessible high-quality data and proper modeling process are critically required. This study focuses on developing and validating a neural methodology applicable to the short-term forecast of the Caspian Sea level. The input and output data sets used contain two time series obtained from Topex/Poseidon and Jason-1 satellite altimetry missions from 1993 to 2008. The forecast is performed by multilayer perceptron network, radial basis function, and generalized regression neural networks. Several tests of different artificial neural network (ANN) architectures and learning algorithms are carried out as alternative methods to the conventional models to assess their applicability for estimating Caspian Sea level anomalies. The results derived from the ANN are compared with observed sea level values and with the forecasts calculated by a routine autoregressive moving average (ARMA) model. Different ANNs satisfactorily provide reliable results for the short-term prediction of Caspian Sea level anomalies. The root mean square errors of the differences between observations and predictions from artificial intelligence approaches can be significantly reduced by about 50 % compared with ARMA techniques.  相似文献   

13.
The water level of the Caspian Sea fluctuated significantly during recent history, without consensus for the cause. The varied chemistry of the Caspian, Kara Bogaz and sediment a interstitial waters provides a further insight. Element concentrations and 87Sr/86Sr ratios of the interstitial waters were compared to those of Caspian and Kara Bogaz open waters, and of acid-leached extractable components. The 87Sr/86Sr ratios of the interstitial waters are explained by addition of subterranean waters similar to nearby spring waters. These subterranean waters yield chemical characteristics such as a Cl/SO4, 87Sr/86Sr, Ca/Sr and K/Rb ratios of respectively 80, 0.7086, 250 and 1,800. However, their addition does not explain the large difference in the K/Rb ratio of the Caspian and Kara Bogaz waters, respectively at 7,630 and 17,550, which implies also a leaching of salt deposits by the upward migrating subterranean waters. The sediments of the southern Caspian basin, with low Na, Cl and SO4 in their interstitial waters, deposited apparently in an anoxic environment. The related chemical changes in the waters are also indicative of a recent change in the hydrologic regime, possibly induced by a changing morphology of the drainage basin.  相似文献   

14.
This paper considers characteristic features of the composition and distribution of chemical elements in aerosols over the Northern Caspian, which can be used for a more reliable prediction of possible negative consequences of atmospheric pollution related to the beginning of the large-scale exploitation of oil and gas deposits in the shelf zone of the Caspian Sea. It was shown that the contents of aerosols, their grain-size composition, and major-element composition change under the influence of (1) transboundary transport of terrigenous dust by air masses, (2) variations in the intensity of turbulent and convective mixing in the near-surface atmosphere, and (3) variations in air humidity.  相似文献   

15.
Pollen, spores and dinoflagellate cysts have been analysed on three sediment cores (1.8–1.4 m-long) taken from the south and middle basins of the Caspian Sea. A chronology available for one of the cores is based on calibrated radiocarbon dates (ca 5.5–0.8 cal. ka BP). The pollen and spores assemblages indicate fluctuations between steppe and desert. In addition there are some outstanding zones with a bias introduced by strong river inflow. The dinocyst assemblages change between slightly brackish (abundance of Pyxidinopsis psilata and Spiniferites cruciformis) and more brackish (dominance of Impagidinium caspienense) conditions. During the second part of the Holocene, important flow modifications of the Uzboy River and the Volga River as well as salinity changes of the Caspian Sea, causing sea-level fluctuations, have been reconstructed. A major change is suggested at ca 4 cal. ka BP with the end of a high level phase in the south basin. Amongst other hypotheses, this could be caused by the end of a late and abundant flow of the Uzboy River (now defunct), carrying to the Caspian Sea either meltwater from higher latitudes or water from the Amu-Daria. A similar, later clear phase of water inflow has also been observed from 2.1 to 1.7 cal. ka BP in the south basin and probably also in the north of the middle basin.  相似文献   

16.
In the present investigation down core variations of heavy metals such as; Zn, Ni, Co, Mn, Fe and Al in a sediment core from Bay of Gorgan adjacent to the Caspian Sea was studied. Inter-relationship amongst various parameters was brought out through correlation coefficients and cluster analysis. The results of present study reveals that Zn, Ni, Co and Mn possess both lithogenous and non-lithogenous sources. The increasing trend of Al towards top of sediment core is indicative higher erosion in the recent years. Interestingly, concentration of all studied metals increases toward core top (except for Fe) that might be indicative of influence of man’s activities residing in catchment area of Gorgan Bay and also oil exploration in the Caspian Sea. Further, 210Pb and 137Cs techniques were used to find out rate of sedimentation. The result of dating is indicative of sedimentation rate between 1.4 to 2.45 mm/yr. based on 210Pb and 137Cs activities respectively.  相似文献   

17.
A study of two classes of hydrocarbons (HCs)—aliphatic and polycyclic aromatic—in suspended matter of the surface waters and bottom sediments of the Northern and Middle Caspian Sea (R/V Nikifor Shurekov, October 2015) is described. It has been determined that oil pollution transported by river runoff and fluid streams flowing from sedimentary formations in the northeastern part are the main sources of hydrocarbons in the river–sea boundaries of the Volga, Terek, and Sulak rivers.  相似文献   

18.
In this study, we successfully present the analysis and forecasting of Caspian Sea level pattern anomalies based on about 15 years of Topex/Poseidon and Jason-1 altimetry data covering 1993–2008, which are originally developed and optimized for open oceans but have the considerable capability to monitor inland water level changes. Since these altimetric measurements comprise of a large datasets and then are complicated to be used for our purposes, principal component analysis is adopted to reduce the complexity of large time series data analysis. Furthermore, autoregressive integrated moving average (ARIMA) model is applied for further analyzing and forecasting the time series. The ARIMA model is herein applied to the 1993–2006 time series of first principal component scores (sPC1). Subsequently, the remaining data acquired from sPC1 is used for verification of the model prediction results. According to our analysis, ARIMA (1,1,0)(0,1,1) model has been found as optimal representative model capable of predicting pattern of Caspian Sea level anomalies reasonably. The analysis of the time series derived by sPC1 reveals the evolution of Caspian Sea level pattern can be subdivided into five different phases with dissimilar rates of rise and fall for a 15-year time span.  相似文献   

19.
Comprehensive analysis of the data of high-precision seismoacoustic profiling, drilling and sampling of deposits using seabed corers, biostratigraphic studies, and radiocarbon age data was performed for the first time for Mangyshlak sediments in several bottom sites of the North Caspian. It was found that the Mangyshlak sediments comprise numerous linearly stretched depressions of 5–10 m in depth (morphologically similar to modern substeppe ilmen areas in the Volga River delta), which are covered by the Novocaspian sedimentary cover, and river incisions (among them the largest Volga River valley). In addition, the Mangyshlak sediments comprise the deltaic alluvial fans of different sizes along the shelf zone of the North Caspian. Analysis of mollusks and biogenic remains indicates that accumulation of the Mangyshlak sediments occurred in freshwater and slightly salty water environments under various hydrodynamic and hydrochemical conditions. According to radiocarbon dating of organic matter, the Mangyshlak sediments formed during sea regression in the range of 10-8 ka (isotopic age) or 11.5-8.5 ka (calendar age). Several types of sediments are distinguished: clayey-carbonate sediments, enriched with organic matter up to the formation of sapropel and peat, accumulated at the lowest sea level; weakly calcareous silty-clayey silts, formed during the subsequent intense filling of paleodepressions with terrigenous material. The features of the mineral composition of sediments are as follows: polymineral composition of clayey material with a high proportion of hydromica and disordered mixed-layered formations, a high content of minerals of the epidote group, amphiboles, and other accessory minerals. All of this indicates a genetic relationship between the Mangyshlak sediments and the Volga terrigenous material.  相似文献   

20.
Based on the study of geophysical log diagrams and outcrops of the Lower Pliocene productive series at the western flank of the South Caspian Basin, paleofacies settings of their accumulation are interpreted. Twenty high-frequency cycles of sealevel fluctuation in the Paleocaspian Sea are identified within the major productive Kirmaki, Suprakirmaki sandy, Suprakirmaki clayey, Hiatus, and Balakhany formations. Such short-term fluctuations of the Caspian Sea level in the Early Pliocene played a crucial role in the variation of sedimentation conditions and the formation of structures of productive series (PS) reservoirs.__________Translated from Litologiya i Poleznye Iskopaemye, No. 3, 2005, pp. 307–320.Original Russian Text Copyright © 2005 by Aliyeva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号