首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Etendeka Formation volcanics consist of a bimodal association of basalts and quartz latites. Forty three new whole rock oxygen isotope analyses are reported for all the major magma types. All the rocks except a minor suite of dolerites have higher 18O values than normal mantle. The basic rocks (average of 29=8.8) have significantly different 18O to the acid rocks (average of 10=14.4) These data are apparently consistent with previously published petrogenetic models, which propose that the basalts were affected by crustal contamination and that the quartz latites are crustally derived. However, mineral oxygen data show that there is significant oxygen isotopic disequilibrium between phenocryst and whole rock, the latter being significantly higher in most cases. One of the basic magma types (the Tafelberg basalts) shows mutual positive correlations between 18O, SiO2 and Sr. If these correlations are due to crustal contamination, then as much as 45% contamination is required by material having a 18O value of 15 which is the maximum observed value in the Damaran basement rocks. In the absence of pyroxene phenocryst 18O data for the high Sr Tafelberg basalts (they are aphyric), it is not possible to confirm that contamination has taken place. An alternative explanation is that the correlation between Sr and SiO2 resulted from assimilation coupled with fractional crystallization (AFC) (before emplacement). Post-eruption alteration resulted in a correlation between SiO2 18O because the material with the most Si-O bonds was able to concentrate 18O more effectively. The limited mineral data for the quartz latites suggests that there is some source heterogeneity. A pyroxene 18O value of 10% for a southern Etendeka quartz latite is consistent with a crustal source.  相似文献   

2.
A systematic study of the auriferous quartz veins of the Val-dOr vein field, Abitibi, Quebec, Canada, demonstrates that the C, O, S isotope composition of silicate, carbonate, borate, oxide, tungstate and sulphide minerals have a range in composition comparable to that previously determined for the whole Superior Province. The oxygen isotope composition of quartz from early quartz–carbonate auriferous veins ranges from 9.4 to 14.4 whereas later quartz-tourmaline-carbonate veins have 18Oquartz values ranging from 9.2 to 13.8 . Quartz-carbonate veins have carbonate (18O: 6.9–12.5 ; 13C: –6.2– –1.9 ) and pyrite (34S: 1.2 and 1.9 ) isotope compositions comparable to those of quartz-tourmaline-carbonate veins (18O: 7.9–11.7 ; 13C: –8.0 – –2.4 ; 34S: 0.6–6.0 ). 18Oquartz values in quartz-tourmaline-carbonate veins have a variance comparable to analytical uncertainty at the scale of one locality, irrespective of the type of structure, the texture of the quartz or its position along strike, across strike or down-dip a vein. In contrast, the oxygen isotope composition of quartz in quartz-tourmaline-carbonate veins displays a regional distribution with higher 18O values in the south-central part of the vein field near the Cadillac Tectonic Zone, and which 18O values decrease regularly towards the north. Another zone of high 18O values in the northeast corner of the region and along the trace of the Senneville Fault is separated by a valley of lower 18O values from the higher values near the Cadillac Tectonic Zone. Oxygen isotope isopleths cut across lithological contacts and tectonic structures. This regional pattern in quartz-tourmaline-carbonate veins is interpreted to be a product of reaction with country rocks and mixing between (1) a deep-seated hydrothermal fluid of metamorphic origin with minimum 18O=8.5 , 13C=0.6 and 34S=–0.4 , and (2) a supracrustal fluid, most likely Archean seawater with a long history of water-rock exchange and with maximum 18O=3.9 , 13 C=–5.6 and 34S=5.0 .  相似文献   

3.
The 620 M.y.-old in Hihaou (In Zize) magmatic complex located at the north-western boundary of the Archaean In Ouzzal block (western Ahaggar), is composed of massive alkaline rhyo-ignimbrites and rhyolitic domes, which are intruded by a granophyric and granitic body. The whole is preserved in a cauldron structure. Extrusive rocks are strongly 18O-depleted, with -values as low as –1.5/SMOW, while granophyres are less depleted (minimum -18O value=+2.0/SMOW. The granite has values around + 6/SMOW. D/H compositions are rather low, with D–90 to –110/SMOW. Isotopic zoning of quartz phenocrysts, 18O/16O fractionation among coexisting phases, and heterogeneity of the whole-rock -18O values, suggest that the volcanic rocks have interacted with meteoric water after the eruption. Several mechanisms of isotopic alteration are discussed. The hydrothermal alteration does not seem to have been controlled by the granitic intrusion, but rather seems to have followed the deposition of thick pyroclastic deposits on permeable arkosic sandstones and fluvio-glacial conglomerates. Pervasive circulation of water through the cooling volcanic deposits could have produced the observed 18O depletion.  相似文献   

4.
The 18O and D values in mud-volcanic waters of the Taman Peninsula and Kakhetia vary from +0.7 to +10.0 and from –37 to –13 , respectively. These values increase as the Greater Caucasus is approached. The increase in 18O and D also positively correlates with fluid generation temperatures based on hydrochemical geothermometers. This is accompanied by changes in the chemical composition of waters, in which contents of alkali metals, HCO 3 ion, and boron increase, while the content of halogen ions (Cl, Br, J) decreases. Changes in the isotopic composition of water are also accompanied by the increase of 13 in methane and decrease of 11 B in clays. Analysis of formal models of the evolution of isotopic composition of mud-volcanic waters showed that mud volcanoes are recharged by freshened water from the Maikop paleobasin with an inferred isotopic composition of D –40 and 18 O –6. Based on this assumption, the 18O and D values observed in mud-volcanic waters can be explained not only by processes of distillation and condensation in a closed system, but also by combined processes of isotopic reequilibration in the water-illite-methane system.Translated from Litologiya i Poleznye Iskopaemye, No. 2, 2005, pp. 143–158.Original Russian Text Copyright © 2005 by Lavrushin, Dubinina, Avdeenko.  相似文献   

5.
The Jurassic Notch Peak granitic stock, western Utah, discordantly intrudes Cambrian interbedded pure limestones and calcareous argillites. Contact metamorphosed argillite and limestone samples, collected along traverses away from the intrusion, were analyzed for 18O, 13C, and D. The 13C and 18O values for the limestones remain constant at about 0.5 (PDB) and 20 (SMOW), respectively, with increasing metamorphic grade. The whole rock 18O values of the argillites systematically decrease from 19 to as low as 8.1, and the 13C values of the carbonate fraction from 0.5 to –11.8. The change in 13C values can be explained by Rayleigh decarbonation during calcsilicate reactions, where calculated is about 4.5 permil for the high-grade samples and less for medium and low-grade samples suggesting a range in temperatures at which most decarbonation occurred. However, the amount of CO2 released was not anough to decrease the whole rock 18O to the values observed in the argillites. The low 18O values close to the intrusion suggest interaction with magmatic water that had a 18O value of 8.5. The extreme lowering of 13C by fractional devolatilization and the lowering of 18O in argillites close to the intrusion indicates oxgen-equivalent fluid/rock ratios in excess of 1.0 and X(CO2)F of the fluid less than 0.2. Mineral assemblages in conjunction with the isotopic data indicate a strong influence of water infiltration on the reaction relations in the argillites and separate fluid and thermal fronts moving thru the argillites. The different stable isotope relations in limestones and argillites attest to the importance of decarbonation in the enhancement of permeability. The flow of fluids was confined to the argillite beds (argillite aquifers) whereas the limestones prevented vertical fluid flow and convective cooling of the stock.  相似文献   

6.
Oxygen isotopic analyses of 95 metamorphic and igneous rocks and minerals from a Hercynian metamorphic sequence in the Trois Seigneurs Massif, Pyrenees, France, indicate that all lithologies at higher metamorphic grades than the andalusite in isograd have relatively homogeneous 18O values. The extent of homogenization is shown by the similarity of 18O values in metacarbonates, metapelites and granitic rocks (+11 to +13), and by the narrow range of oxygen isotopic composition shown by quartz from these lithologies. These values contrast with the 18O values of metapelites of lower metamorphic grade ( 18O about +15). Homogenization was caused by a pervasive influx of hydrous fluid. Mass-balance calculations imply that the fluid influx was so large that its source was probably high-level groundwaters or connate formation water. Hydrogen isotopic analyses of muscovite from various lithologies are uniform and exceptionally heavy at D=–25 to –30, suggesting a seawater origin. Many lines of petrological evidence from the area independently suggest that metamorphism and anatexis of pelitic metasediment occurred at depths of 6–12 km in the presence of this water-rich fluid, the composition of which was externally buffered. Deep penetration of surface waters in such environments has been hitherto unrecognized, and may be a key factor in promoting major anatexis of the continental crust at shallow depth. Three types of granitoid are exposed in the area. The leucogranites and the biotite granite-quartz diorite are both mainly derived from fusion of local Paleozoic pelitic metasediment, because all these rocks have similar whole-rock 18O values (+11 to +13). The post-metamorphic biotite granodiorite has a distinctly different 18O (+9.5 to +10.0) and was probably derived from a deeper level in the crust. Rare mafic xenoliths within the deeper parts of the biotite granite-quartz diorite also have different 18O (+8.0 to +8.5) and possibly represent input of mantle derived magma, which may have provided a heat source for the metamorphism.Contribution No. 4192, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

7.
Impure limestones with interstratified metachert layers were contact metamorphosed and metasomatized by the Bufa del Diente alkali syenite. Massive marbles exhibit mineralogical and stable isotope evidence for limited fluid infiltration, confined to a 17 m wide zone at the contact. Influx of magmatic brines along most metacherts produced up to 4 cm thick wollastonite rims, according to calcite (Cc)+quartz (Qz)= wollastonite (Wo)+CO2, and were observed at distances of up to 400 m from the contact. The produced CO2 exsolved as an immiscible low density CO2-rich fluid. Chert protolith isotope compositions were 18O (Qz)=27–30%. and 18O (Cc)=24–27%.. Many wollastonites in infiltrated metacherts have low 18O ranging from 11–17 and confirm that decarbonation occurred in presence of a magmatic-signatured fluid. Large gradients in 18O (Wo) across the rims may reach 6 The 18O of remaining quartz is often lowered to 15–20 whereas caleites largely retained their original compositions. The isotopic reversals of up to 10 between quartz and calcite along with reaction textures demonstrate non-equilibrium between infiltrating fluid in the aquifer and the assemblage calcite+quartz+wollastonite. This is compatible with the assumption of a down-temperature flow of magmatic fluids that occurred exclusively in the remaining quarzite layer. The 13C (Cc) and 18O (Cc) of marble calcites measured perpendicular to two metachert bands reveal significant isotopic alterations along distances of 4.5 cm and 7.5 cm from the wollastonite-marble boundary only into the hanging wall marble, suggesting an advection process caused by a fluid phase which movel upwards. Covariation trends of 13C (Cc) and 18O (Cc) across the alteration front indicate that this fluid was CO2-rich. Mass balance calculations show that all CO2-rich fluid produced by the decarbonation reaction was lost into overlying marble. The metachert aquifers did not leak with respect to water-rich fluids.  相似文献   

8.
Carbon and oxygen isotopic covariations in hydrothermal calcites   总被引:5,自引:0,他引:5  
Isotopic covariations of carbon and oxygen in hydrothermal calcites are quantitatively modeled in terms of the following three mixing processes: (1) mixing between two different fluids which leads to the precipitation of calcite; (2) mixing between fluid and rock: (a) calcite precipitation due to fluid/rock interaction, (b) secondary alteration of primary calcite by interaction with a subsequent fluid. The models are derived from mass balance equations. A distinction among the three mixing processes can be made on a 13C vs 18O diagram, which places important constraints on the genesis of hydrothermal mineralization. The variables which control the ultimate isotopic composition of hydrothermal calcites include the composition of the initial fluid and the wallrock, temperature, and dissolved carbon species. Owing to significant temperature-dependent fractionation effects during equilibrium precipitation of calcite from a hydrothermal fluid, the mixing processes may be distinguished by telltale patterns of isotopic data in 13C vs 18O space. In particular, caution must be exercised in postulating the fluid mixing as the cause for mineral deposition. This is demonstrated for hydrothermal Pb-Zn deposits in the western Harz Mountains, Germany. A positive correlation between 13C and 18O values is observed for calcites from the Bad Grund deposit in the Upper Harz. Two sample profiles through calcite veins show similar correlations with the lowest -values at the center of the veins and the highest -values at the vein margins. Because the correlation array has a greater slope than for calcite precipitation at equilibrium in a closed system and because fluid mixing may not proceed perpendicular to the vein strike, it is assumed that a fluid/rock interaction is responsible for the observed correlation and thus for the precipitation of calcite. A deep-seated fluid is inferred with a 13C value of — 7% and a 18O value of +10%., as well as H2CO3 as the dominant dissolved carbon species; precipitation temperatures of the calcites are estimated to be about 280 170°C. Quite different isotopic distributions are observed for calcites from the St. Andreasberg deposit in the Middle Harz. An alteration model is suggested based mainly on the isotopic distribution through a calcite vein. In addition to a primary fluid which has the same isotopic composition as that in the Bad Grund deposit and thus seems to be responsible for the precipitation of calcite associated with sulfides, an evolved, HCO 3 - -dominant subsurface fluid with 13C about -20 — 15% and 18O 0% is deduced to alter the primary calcite at low temperatures of 70 40°C.  相似文献   

9.
Late Carboniferous (Hercynian) tectonism in the Pyrenees generated extremely steep thermal gradients at 8–14 km depth in the continental crust, producing andalusite- and sillimanite-grade metamorphism and partial melting of Lower Paleozoic metasediments under water-rich conditions. At the same time, amphibolite- and granulitefacies basal gneisses were equilibrated under dryer conditions at pressures of 4 to 7 kbar (14–25 km depth), beneath these higher-level rocks. We present 95 new oxygen isotopic analyses of samples from the Agly, St. Barthelemy, Castillon and Trois Seigneurs Massifs, highlighting contrasting 18O/16O systematics at different structural levels in the Hercynian crust, here termed Zones 1, 2, and 3. The unmetamorphosed, fossiliferous, Paleozoic shales and carbonates of Zone 1 have typical sedimentary 18O values, mostly in the range +14 to +16 for the pelitic rocks and +20 to +25 for the carbonates. The metamorphosed equivalents of these rocks in Zone 2 all have strikingly uniform and much lower 18O values; the metapelites mostly have 18O=+10 to +12, and interlayered metacarbonates from the Trois Seigneurs Massif have 18O of about +12 to +14. Typically, the Zone 3 basal gneisses are isotopically heterogeneous with variable 18O values ranging from +6 in mafic lithologies to +22 in carbonate-rich lithologies. Steep gradients in 18O (as much as 10 per mil over a few cm) are preserved at the margins of some metacarbonate layers. These data indicate that the Zone 3 gneisses were infiltrated by much smaller volumes of metamorphic pore fluids than were the overlying Zone 2 rocks, and that circulation of surface-derived H2O (either seawater or formation waters, as evidenced by high D values) was mainly confined to the Paleozoic supracrustal sedimentary pile. This is compatible with an overall reduction of interconnected porosity with increasing depth, but perhaps even more important, the extensive partial melting at the base of Zone 2 may have produced a ductile, impermeable barrier to downward fluid penetration.Contribution No. 4287, Publication of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

10.
Stable isotope data have been determined for 13 Mesozoic and Tertiary plutons in eastern Nevada and nearby Utah. In the southern Snake Range of eastern Nevada, where relations are best exposed and have been most intensively studied, D, 18O, and apparent K-Ar ages depend on proximity to the Snake Range decollement. Where stresses resulting from late movement on the decollement have caused cataclasis of Oligocene (37 Ma) granitoid rock, 18O, D, and K-Ar age values as low as –2.5, –155, and 18 Ma, respectively, have been determined. Where there has been no cataclasis, 18O values of Jurassic, Cretaceous, and Oligocene granitoid rocks are apparently unaffected, but both D values and K-Ar ages have been modified for distances of tens of meters below the decollement.Results similar to those in the southern Snake Range have been observed in other eastern Nevada granitoid rocks spatially related to regional thrust faults, as in the Kern Mountains, the Toana Range, and the northern Egan Range. In each of these areas cataclasis or deformation of granitoid rocks has resulted in lowered 18O, D, and K-Ar age values. Where there has been no cataclasis or deformation, 18O values are unaffected, but both D and K-Ar age values have been lowered by stresses resulting from postcrystallization movement along overlying thrust faults.Many of the plutons discussed have not been deeply eroded, and spatially related thrust faults crop out. Where thrust faults are not in evidence and the granitoid rocks give D values lower than about –130 along with spuriously low K-Ar age results, modification of the D and K-Ar age values may have been caused by stresses related to late movement along an overlying (now eroded) thrust fault.  相似文献   

11.
Carbon isotope fractionation between coexisting calcite and grpahite ( 13Ccc-gr) has been determined in metamorphosed limestones and calc-silicate rocks from the Ryoke metamorphic belt in the northern Kiso district. In this district, the Ryoke metamorphic rocks, ranging from the lower greenschist facies to the upper amphibolite facies, are widely distributed. The fractionation of 13C/12C between calcite and graphite decreases regularly with increasing metamorphic grade and is independent of absolute 13C values of calcite. This evidence suggests that carbon isotopic exchange equilibrium has been attained during metamorphism even in the greenschist facies and isotopic modification, possibly caused by retrogressive metamorphism, is not distinguished. For T=270–650° C, the fractionation is expressed by the following equation: 13Ccc-gr=8.9×106T–2–7.1 (T in °K).This equation has a slope steeper than the current results on the 13Ccc-gr versus 106T–2 diagram. It can be used as a potential geothermometer for almost the entire temperature range of metamorphism. 13C values of carbonaceous matter in unmetamorphosed limestones in this district are approximately –22, due to its biogenic origin. Graphite from metamorphosed limestones is also considered to be of biogenic origin but shows enrichment of 13C due to isotopic exchange with calcite. 13C values of graphite as well as 13Ccc-gr confirm that zone II represents the lowest grade zone of Ryoke metamorphism. The maximum equilibrium fractionation of 13C between calcite and graphite is considered to be approximately 23%, which corresponds to 270° C. Below this temperature, it seems that carbon isotopic exchange between the minerals does not occur.Calcite in marble from the higher grade zones has relatively lower 13C and 18O values. The depletion of heavy isotopes is considered to be caused by the loss of 13C and 18O enriched carbon dioxide during decarbonation reactions. For oxygen, it is considered that isotopic exchange with metamorphic fluids plays an important role in lowering the 18O value of calcite in some higher grade marbles.  相似文献   

12.
Mo mineralization within the Galway Granite at Mace Head and Murvey, Connemara, western Ireland, has many features of classic porphyry Mo deposits including a chemically evolved I-type granite host, associated K- and Si-rich alteration, quartz vein(Mace Head) and granite-hosted (Murvey) molybdenite, chalcopyrite, pyrite and magnetite mineralization and a gangue assemblage which includes quartz, muscovite and K-feldspar. Most fluid inclusions in quartz veins homogenize in the range 100–350°C and have a salinity of 1–13 eq. wt.% NaCl. They display Th-salinity covariation consistent with a hypothesis of dilution of magmatic water by influx of meteoric water. CO2-bearing inclusions in an intensely mineralized vein at Mace Head provide an estimated minimum trapping temperature and pressure for the mineralizing fluid of 355°C and 1.2 kb and are interpreted to represent a H2O-CO2 fluid, weakly enriched in Mo, produced in a magma chamber by decompression-activated unmixing from a dense Mo-bearing NaCl-H2O-CO2 fluid. 34S values of most sulphides range from c. 0 at Murvey to 3–4 at Mace Head and are consistent with a magmatic origin. Most quartz vein samples have 18O of 9–10.3 and were precipitated from a hydrothermal fluid with 18O of 4.6–6.7. Some have 18O of 6–7 and reflect introduction of meteoric water along vein margins. Quartz-muscovite oxygen isotope geothermometry combined with fluid inclusion data indicate precipitation of mineralized veins in the temperature range 360–450°C and between 1 and 2 kb. Whole rock granite samples display a clear 18O-D trend towards the composition of Connemara meteoric waters. The mineralization is interpreted as having been produced by highlyfractionated granite magma; meteoric water interaction postdates the main mineralizing event. The differences between the Mace Head and Murvey mineralizations reflect trapping of migrating mineralizing fluid in structural traps at Mace Head and precipitation of mineralization in the granite itself at Murvey.  相似文献   

13.
O18/O16 ratios have been measured for 29 quartz samples, 6 whole-rocks, 3 muscovites, and 1 K-feldspar from two adjacent granitic plutons of vastly different age (about 1660 m.y, and 70 m.y.) intruded into the same type of country rock, the Precambrian Pinal schist. Sample traverses were made across 3 different contact zones of these intrusive bodies. Except for 2 quartz veins with O18=+11.0 and + 12.3, all quartz samples collected more than 15 cm from the margin of the Early Tertiary Texas Canyon pluton are isotopically exceedingly uniform with O18=9.47±0.11. Four quartz samples collected more than 10 m from the margin of the Precambrian Johnny Lyon pluton have O18=10.43±0.08. Compared with previous studies of this type, only relatively minor O18-enrichments have occurred in the border zones of the plutons. This is in part because the original O18 differences between the metasedimentary rocks and the intrusives are relatively small (only 3 to 6), but is mainly due to the lack of H2O in the contact zones during intrusion as a result of the general impermeability and prior dehydration of the schist. There is no isotopic evidence for significant influx of external H2O into either of the plutons during their crystallization and cooling. However, in roof-zones where metasedimentary rocks overlie the plutons there is a strong O18 lowering in the contact metamorphic aureoles, indicating upward expulsion of low-O18 magmatic H2O into these rocks.Contribution No. 2015 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.  相似文献   

14.
Oxygen and hydrogen isotope analyses have been made of mineral separates from eclogites, glaucophanites and glaucophane schists from the eastern Sesia zone (Italian Western Alps). Regularities in (1) hydrogen isotope compositions, (2) order of 18O enrichment among coexisting minerals, and (3) 18O (quartz-rutile) and 18O (quartz-phengite) imply attainment of a high degree of isotopic equilibrium. However, some scattering of 18O values of individual minerals indicates that the eclogitic assemblage did not form in the presence of a thoroughly pervasive fluid. Minerals from an eclogitic lens enclosed in marble have 18O values distinctly different from those measured in the other rocks. The 18O values are high in comparison with other type C eclogites of the world, and it is proposed that the fluid present during the high pressure metamorphism has to a large extent been inherited from the precursor rocks of amphibolite facies.An average formation temperature of 540 ° C is inferred from the oxygen isotope fractionations between quartz and rutile and between quartz and white mica. This temperature is in accordance with petrologic considerations and implies subduction of the precursor rocks into the upper mantle to achieve the high pressures required.  相似文献   

15.
Oxygen-isotope compositions have been measured for whole-rock and mineral samples of host and hydrothermally altered rocks from three massive sulfide deposits, Centennial (CL), Spruce Point (SP), and Anderson Lake (AL), in the Flin Flon — Snow Lake belt, Manitoba. Wholerock 18O values of felsic metavolcanic, host rocks (+8.5 to +16.1) are higher than those of altered rocks from the three deposits. The 18O values of altered rocks are lower in the chlorite zone and muscovite zone-I (CL=+ 5.3; SP=+5.4 to +8.3; AL= +3.7 to +5.9) than in the gradational zone (CL= +9.9 to +11.7; SP= +8.4 to +9.8; AL= + 6.6 to +7.7). Muscovite schist (Muscovite Zone-II) enveloping the Anderson Lake ore body has 18O values of +7.2 to +8.3. Quartz, biotite, muscovite, and chlorite separated from the altered rocks have lower 18O values compared to the same minerals separated from the host rocks. However, isotopic fractionation between mineral-pairs is generally similar in both host and altered rocks.It is interpreted that differences in the oxygen-isotope compositions of the altered and host rocks were produced prior to metamorphism, during hydrothermal alteration related to ore-deposition. Isotopic homogenization during metamorphism occurred on a grain-to-grain scale, over no more than a few meters. The whole-rock 18O values did not change significantly during metamorphism. The generally lower 18O values of altered rocks, the Cu-rich nature of the ore and the occurrence of the muscovite zone-II at Anderson Lake are consistent with the presence of higher temperature hydrothermal fluids at Anderson Lake than at the Centennial and Spruce Point deposits.  相似文献   

16.
Chemical and isotopic (Sr, O, H) variations have been examined in an iron-rich lava flow of the Kirkpatrick Basalt from the Mesa Range in north Victoria Land, Antarctica. The flow is homogeneous with respect to the less mobile elements, whereas variations observed in K, Na, Si, Fe, and Rb result largely from alteration of glassy matrix material. Whole-rock Rb–Sr isotope data fall along a poorly-defined 103 Ma array attributed to secondary mobilization of Rb during the mid-Cretaceous. Alteration at that time is suggested by paleomagnetic data and would also account for discordant K–Ar dates. Whole-rock 18O values vary from +5.8 to +8.2 and a plagioclase separate has a 18O value of +5.6, reflecting the original composition of the magma. The range of 18O values for the whole-rock samples results from low-temperature alteration occurring primarily in the Jurassic and/or mid-Cretaceous. Whole-rock D values (-201 to -243) are markedly depleted, approaching equilibrium with modern meteoric water. In light of these data, variable Sr and O isotopic ratios in the underlying sequence of flows, previously interpreted in terms of an assimilation-fractionation model, may largely reflect post-magmatic alteration.  相似文献   

17.
Carbon and oxygen isotope analyses were made of representative samples of calcite and quartz from the carbonate deposits in the Tolfa Mountains mining district. Measurements were also made of hydrogen isotope compositions, filling temperatures and salinities of fluid inclusions in these minerals. There are three stages of mineralization at Tolfa. In stage I, characterized by calc-silicate hornfels, the carbonates have relatively high 18O values of 14.5 to 21.6 suggesting a rather low water/rock ratio. 13C values of –0.3 to 2.1 indicate that appreciable decarbonation or introduction of deep-seated carbon did not occur. Stage II is marked by phanerocrystalline carbonates; 18O values of 13.1 to 20.0 and 13C values of 0.7 to 5.0 identify them as hydrothermal veins rather than marbles. D values of –56 to –50 for inclusion fluids suggest a possible magmatic component to the hydrothermal fluid. Filling temperatures of coarse-grained samples of Calcite II are 309° to 362° C with a salinity range of 5.3 to 7.1 weight percent NaCl. Calculated 18O values of 11–12 for these fluids are again indicative of low water/rock ratios. The sparry calcites of stage III have 18O and 13C values of 8.1 to 12.9 and –1.7 to 3.2, respectively. D values of inclusion fluids are –40 to –33, clearly heavier than in earlier stages and similar to values of modern local ground waters. A salinity measurement of <0.1 weight percent NaCl in a sample of Calcite III is compatible with a relatively unaltered ground water origin for this fluid. Precipitation of the sparry calcite took place at much lower temperatures, around 160° C. For quartz, 18O values of 9.3 to 12.4 and D values for inclusions of –53 to –28 are consistent with its late occurrence and paragenetic link with associated carbonates.  相似文献   

18.
Summary Pervasive hydrothermal alteration zones in quartz-feldspar porphyry domes underly all massive sulfide lenses in the D-68 Zone Cu-Zn deposit, Noranda. Alteration pipes are mineralogically zoned and contain chloritic cores consisting of stringer sulfides, enveloped by sericitic haloes. Silicified rocks are found locally.Alteration took place at nearly constant volume. Na depletion, and K enrichment relative to the least altered rocks, are found in all alteration zones. Fe and Mg have been added to the chloritic zone and subtracted in the sericitic and silicic zones. Ca and Si are enriched mainly in the silicic zone. Al, Ti and Zr were the least mobile of the elements studied.Whole-rock 18O values vary from +5.6 to +6.2 per mil in chloritized rocks, +5.8 to + 7.3 per mil in sericitized rocks and + 7.2 to + 8.3 per mil in silicified rocks. D values for two chloritized samples are – 63 and – 70 per mil whereas in two sericitized samples they are close to –62 per mil. Quartz from the chlorite alteration zone is isotopically heavier (18O = 8.6 per mil) than that from the sericite alteration zone (18O = 6.4 per mil), suggesting equilibration with different hydrothermal fluid or different temperature of alteration. Assuming an alteration temperature of 300° + 50°C the fluid in equilibrium with quartz and chlorite had 18O and D values of about 1.5 ± 2.0 per mil and –23 ± 5 per mil, respectively. The fluid in equilibrium with quartz and sericite had 18O and D values of about –0.5 ± 2 per mil and –30 ± 5 per mil, respectively. On the basis of isotopic data, seawater was probably the major constituent of the hydrothermal fluids.
Hydrothermale Umwandlung und Sauerstoff-Wasserstoff-Isotopengeochemie der Zone D-68 Cu-Zn Derberz Sulfidlagerstätte, Noranda District, Quebec, Canada
Zusammenfassung Hydrothermale Umwandlungszonen in porphyrischen Quarz-Feldspat Gesteinskörpern liegen unterhalb von Derberz Sulfidlinsen in der D-68 Zone Cu-Zn Lagerstätte, Noranda. Umgewandelte pipes sind mineralogisch zoniert; sie enthalten aus Sulfiden bestehende chloritische Kerne, die von sericitischen Höfen umhüllt werden. Lokal treten silicifizierte Gesteine auf.Die Umwandlung ging bei annähernd konstantem Volumen vor sich. Na-Verarmung und K-Anreicherung, bezogen auf die am wenigsten umgewandelten Gesteine, liegen in allen Umwandlungszonen vor. Fe und Mg wurden der Chloritzone zugeführt, in den Sericit- und Si-Zonen abgeführt. Ca und Si sind vor allem in der Si-Zone angereichert. Al, Ti und Zr waren von den untersuchten Elementen am wenigsten mobil.Gesamtgesteins-18O Werte variieren von +5,6 bis +6,2 in den chloritisierten Gesteinen, von +5,8 bis 7,3 in sericitisierten Gesteinen und von +7,2 bis +8,3 in den silicifizierten Gesteinen. Die D Werte für zwei chloritisierte Proben betragen –63 und –70, in zwei sericitisierten Proben liegen sie hingegen nahe bei –62. Quarz von der Chlorit-Umwandlungszone ist isotopisch schwerer (18O = 8,6) als von der Sericit-Umwandlungszone (18O = 6.4), was eine Gleichgewichtseinstellung mit verschiedenen hydrothermalen Lösungen oder eine verschiedene Umwandlungstemperatur nahelegt. Bei einer angenommenen Umwandlungstemperatur von 300 ± 50°C, hatte die im Gleichgewicht mit Quarz und Chlorit stehende Lösung 18O und D Werte von etwa 1,5 ± 2 bzw. –23 + 5. Die im Gleichgewicht mit Quarz und Sericit befindliche Lösung hatte 18O und D Werte von etwa –0,5 ± 2%o bzw. –30 ± 5. Aufgrund der Isotopendaten war wahrscheinlich Meerwasser der Hauptbestandteil der hydrothermalen Lösungen.


With 7 Figures  相似文献   

19.
Isotopic compositions were determined for quartz, sericite and bulk rock samples surrounding the Uwamuki no. 4 Kuroko ore body, Kosaka, Japan. 18O values of quartz from Siliceous Ore (S.O.), main body of Black Ore B.O.) and the upper layer of B.O. are fairly uniform, +8.7 to +10.5. Formation temperatures calculated from fractionation of 18O between sericite and quartz from B.O. and upper S.O. are 250° to 300° C. The ore-forming fluids had 18O values of +1 and D values of –10, from isotope compositions of quartz and sericite.Tertiary volcanic rocks surrounding the ore deposits at Kosaka have uniform 18O values, +8.1±1.0 (n=50), although their bulk chemical compositions are widely varied because of different degrees of alteration. White Rhyolite, which is an intensely altered rhyolite occurring in close association with the Kuroko ore bodies, has also uniform 18O values, +7.9±0.9 (n=19). Temperatures of alteration are estimated to be around 300° C from the oxygen isotope fractionation between quartz and sericite. Paleozoic basement rocks phyllite and chert, have high 18O values, +18 and +19. The Sasahata formation of unknown age, which lies between Tertiary and Paleozoic formations, has highly variable 18O, +8 to +16 (n=4). High 18O values of the basement rocks and the sharp difference in 18O at their boundary suggest that the hydrothermal system causing Kuroko mineralization was mainly confined within permeable Tertiary rocks. D values of altered Tertiary volcanic rocks are highly variable ranging from –34 to –64% (n=12). The variation of D does not correlate with change of chemical composition, 18O values, nor distance from the ore deposits. The relatively high D values of the altered rocks indicate that the major constituent of the hydrothermal fluid was sea water. However, another fluid having lower D must have also participated. The fluid could be evolved sea water modified by interaction with rocks and the admixture of magmatic fluid. The variation in D may suggest that sea water mixed dispersively with the fluid.  相似文献   

20.
Oxygen isotope analyses of 101 samples from the Marcy Anorthosite Massif (61 from this study, 40 from Taylor 1969), indicate that two major and distinct processes of crustal contamination have affected the massif. Ninety percent of the 93 samples with over 65% plagioclase are enriched in 18O by 2.6 relative to normal anorthosites or gabbros: the average 18O for 83 enriched samples is 9.5 Depletions in 18O occur in 8% of the samples which have values ranging from 3.0 to 5.8 Only 2 of the samples fall within the normal magmatic range for anorthosites.Low 18O values of 3.0 to 5.8 in the anorthosite occur only near contacts, and a gradient in 18O occurs near the contact within the border zone of the massif. Low 18O values in both the anorthosite and adjacent wollastonite skarns (with 18O down to –1.3) were probably caused by isotopic exchange with heated meteoric water when the anorthosite intruded at shallow levels, prior to Grenvilleage ( 1.1 by) granulite facies metamorphism.The 18O-enrichment was ascribed to exchange between anorthosite and 18O-rich marble by means of a pervasive, H2O-CO2 fluid during the regional metamorphism by Taylor (1969). However, a number of lines of evidence argue against this hypothesis: 1) the preservation of premetamorphic low 18O values in anorthosite from the border zone as well as preserved gradients in 18O from a number of localities, 2) mass balance calculations of the amount of marble necessary to produce the 18O enrichment 3) metamorphic phase equilibria which buffer and to low values, and, 4) recent oxygen isotope analyses show homogeneity which indicates that magmatic oxygen isotope compositions have been preserved. We evaluated the importance of magmatic assimilation of country rock at the present level of intrusion as an alternative cause of the 18Oenrichment. Samples from 2 distinct lobes of the massif were analyzed: the NE lobe where xenoliths of metasedimentary country rock are common, and the NW lobe, where xenoliths are scarce and the country rock is dominantly granitic. The mean values of 18O for these two lobes are 9.6 in the NE and 9.3 in the NW. Thus, magmatic assimilation at the present level of exposure probably had only localized and relatively minor effects on the oxygen isotope composition of the massif. This conclusion is supported by Rb/Sr data: variations in Rb content and (87Sr/ 86Sr)i show that such crustal contamination is localized, generally occurring only in samples near the border zone. All of the available results suggest that the 18O-enrichment is a magmatic feature, acquired prior to intrusion at the present level of exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号