首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of hand-picked vitrinite samples from the Lower Kittanning Seam, Pennsylvania have been examined using quantitative pyrolysis-gas chromatography. These vitrinites ranged in rank from 0.59 to 1.71% reflectance, a rank range from high volatile C bituminous to low volatile bituminous. High molecular weight pyrolysis products included alkyl aromatic and phenolic compounds. Attempts have been made to correlate the pyrolysis product composition to rank parameters including vitrinite reflectance, volatile matter yield, carbon content, atomic H/C ratio and Rock-Eval determined Tmax. Total yield of phenols was found to be strongly and inversely rank related. A clear relationship between C8 alkyl-benzene yield and rank was not found for the sample set.  相似文献   

2.
Immature vitrinite samples from a Miocene lignite seam of western Germany (H/C = 1.14, O/C = 0.41) and alginite concentrates from a Tasmanite deposit of Australia (H/C = 1.60, O/C = 0.10) were pyrolyzed in a stream of argon at heating rates of 0.1 and 2.0°C/min up to temperatures varying from 200 to 670°C. The solid maceral residues were subjected to elemental and microscopical analysis and studied by IR and 13C CP/MAS NMR spectroscopy with respect to structural modifications.The maximum pyrolytic weight loss amounts to 60% of the initial organic matter in the case of vitrinite and to 85% for alginite, the onset of degradation reactions being shifted to higher temperatures with increasing rate of heating. Both infrared and NMR spectra of the vitrinite samples indicate a rapid decomposition of the cellulose component upon heating whereas lignin related structures such as aromatic ether linkages remain remarkably stable. The main hydrocarbon release from vitrinite occurs at very early evolution stages (Tmax = 296°C, Rm = 0.20% at 0.1°C/min; Tmax = 337°C, Rm = 0.23 at 2.0°C/min). Hydrocarbon generation from alginite requires higher temperatures (Tmax = 388 and 438°C) and is completed within a distinctly narrower temperature range.The pronounced increase of vitrinite reflectance between 350 and 670°C seems to be associated with a rather time-consuming reorganization of the residual organic material. The concomitant growth of polyaromatic units is illustrated by the increasing intensity ratio of the aromatic ring stretching vibration bands at 1600 and 1500 cm−1. These reactions are moreover marked by increasing loss of phenolic oxygen and by increasing conversion of aliphatic carbon into fixed aromatic carbon.  相似文献   

3.
一种页岩含气性热演化规律研究的模拟实验方法   总被引:2,自引:1,他引:1  
目前针对页岩气赋存规律研究的热模拟实验主要是沿袭常规油气热模拟方法,以粉末态样品开展模拟,研究对象为岩石生成并排出的烃类气体,这种模拟方式未明确页岩气的实质为"滞留气",并且模拟后样品无法开展扫描电镜分析,不能确定岩石孔隙结构变化规律。本文通过石英玻璃管封装块状样开展页岩生烃热模拟实验,并结合一套数据处理方法,尝试建立了一种适合页岩气研究的热模拟实验方法,研究泥页岩在不同演化阶段(Ro范围为0.596%~2.143%)不同赋存状态气体的含量以及岩石微观孔隙特征的变化情况。结果表明,泥岩及油页岩样品的排出气及解析气含量在高成熟度阶段(400℃以后)有明显增加的趋势,结合扫描电镜微观结构分析显示这是由于有机质生气量以及无机孔隙均有增加。本方法可以研究页岩热演化过程中不同赋存状态气体含量及微观孔隙结构的变化,为页岩气勘探开发提供了一种可参考的方法。  相似文献   

4.
We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as “oil prone” and “gas prone” carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (∼30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ∼30 carbons, and of ∼20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters.  相似文献   

5.
《Applied Geochemistry》1988,3(5):441-453
Green River shale (Type I kerogen), Yaamba shale (Type II kerogen) and Sarufutsu coal (Type III kerogen) were heated to various temperatures using Rock-Eval. The amount of hydrocarbons generated and weight loss by pyrolysis were measured to obtain a better understanding of petroleum generation. After the pyrolysis experiments, elemental analysis (C, H), vitrinite reflectance (%Ro) measurement, maceral observation, infrared spectroscopy (IR) and13C-NMR spectroscopy were carried out on the coal samples. Changes in H/C atomic ratio, IR and NMR spectra indicate that experiments by Rock-Eval resemble those of the natural evolution of kerogen. However, the petrographic changes of the coal show more similarity to coal liquefaction and coking than to natural coalification. Changes in the amount of generated hydrocarbons with increasing maturation show that Type II kerogen produces more hydrocarbons than does Type I when Ro does not exceed 1.1%. Petroleum generation curves for the three samples were concordant with trends in natural systems, and a conceptual model of petroleum generation curve classified into three types is proposed, namely (1) curve of total amount enerated, (2) curve of generation rate, and (3) curve of fluid composition. Changes of IR and NMR spectra after pyrolysis imply that generated hydrocarbons are derived from aliphatic C structures of kerogen macromolecules. Moreover, the difference in genetic potential between Type I and Type III reflects different amounts of aliphatic structures. Type I is assumed to have a simple assemblage (mainly polymethylene carbons), and Type III is assumed to have a more complex variety of structures that are responsible for the difference in generation rates between the two kerogen Types. A quantitative analysis of C species of various bond structure by13C-NMR confirms that petroleum generation is the process of bond cleavage of kerogen macromolecules; lower-energy bonds decrease at an earlier stage of reaction, while aromatic carbons with higher bond energies survive to form graphitic structure at postmature stages. Emphasis is placed on the idea that the most important and direct factor in petroleum generation is a change in the molecular structure of kerogen with increasing maturation. NMR and other methods providing information about molecular structures of kerogen will become strong tools for evaluating source rocks and sedimentary basins in the future.  相似文献   

6.
A worldwide data set of 1,085 samples containing organic matter of the type II/III kerogen from Carboniferous to Cenozoic was used to analyse the evolution of the hydrogen index (HI), quality index (QI), and bitumen index (BI) with increasing thermal maturity. The HImax, QImax and BImax lines were defined, based on statistical analysis and cross-plots of HI, QI and BI versus the vitrinite reflectance (%Ro) and T max (°C). The constructed HI, QI and BI bands were broad at low maturities and gradually narrowed with increasing thermal maturity. The petroleum generation potential is completely exhausted at a vitrinite reflectance of 2.0–2.2 % and T max of 510–520 °C. An increase in HI and QI suggests extra petroleum potential related to changes in the structure of the organic material. A decline in BI signifies the start of the oil window and occurs within the vitrinite reflectance range 0.75–1.05 % and T max of 440–455 °C. Furthermore, petroleum potential can be divided into four different parts based on the cross-plot of HI versus %Ro. The area with the highest petroleum potential is located in “Samples and methods” with %Ro = 0.6–1.0 %, and HI > 100. Oil generation potential is rapidly exhausted at “Results and discussion” with %Ro > 1.0 %. This result is in accordance with the regression curve of HI and QI with %Ro based on 80 samples with %Ro = 1.02–3.43 %. The exponential equation of regression can thus be achieved: HI = 994.81e?1.69Ro and QI = 1,646.2e?2.003Ro (R 2 = 0.72). The worldwide organic material data set defines two range of oil window represented by the upper and lower limits of the BI band: %Ro 0.75–1.95 %, T max 440–525 °C, and %Ro 1.05–1.25 %, T max 455–465 °C, respectively.  相似文献   

7.
The orientation of the optical indicating surface of vitrinite in reflected light has been determined following deformation at 350 and 500°C, confining pressures of 500 and 800 MPa and a strain rate of 10−5 s−1. High temperature and large strain have facilitated reorientation of the indicating surface, increase in anisotropy (bireflectance) and an increase in maximum vitrinite reflectance. In a specimen deformed at 500°C and 23% axial strain the maximum vitrinite reflectance has been reoriented more than 70° from close to parallel to σ1 in the undeformed state to perpendicular to σ1 following deformation. Orientation of the optical indicating surface of some of the deformed specimens suggests the orientation of the maximum reflectance is a composite product of the original orientation of the indicating surface and an orientation produced during deformation.  相似文献   

8.
《Applied Geochemistry》2002,17(3):225-243
Altered wallrocks of vein-type Pb–Zn–Sb mineralization, Siegerland district, Rheinisches Schiefergebirge, have been investigated by a combination of inorganic and organic geochemical methods, including major and trace element analysis, vitrinite reflectance measurements, C isotope and elemental analysis of kerogen. Alteration features of the siliciclastic pelitic-psammitic Lower Devonian wallrocks are increased K/Na ratios, significant desilicification and relative immobility of a number of elements, notably Al, Ti, Zr, Cr, V. Wallrock kerogens display elevated vitrinite reflectance values, decrease in H/C atomic ratios coupled with increase in S/C atomic ratios and heavier C isotope compositions, compared to the unaltered precursor sedimentary rocks. Interaction processes between the hydrothermal fluids and the respective wallrocks, related to injection of high-temperature silica-undersaturated solutions, are dominated by quartz dissolution coupled with sericitization reactions. Heat transfer due to fluid infiltration/convection and wallrock reactions caused fluid cooling, which promoted the sequential deposition of quartz and stibnite/sulphosalts within the vein systems. Hydrocarbons, detected in ore assemblages of Pb–Zn and Sb mineralization, were most probably derived from the Lower Devonian very low-grade (meta)sedimentary rocks. High maturity levels and pronounced, typical organic alteration patterns indicate that thermochemical SO2−4 reduction (TSR) played an important role in precipitation of metal sulphides. The present study demonstrates that a combination of inorganic and organic investigations on fluid–rock interaction processes is particularly useful for deciphering precipitation mechanisms of base metal sulphides.  相似文献   

9.
Surma Group is the most important geological unit of Bengal basin, Bangladesh, because petroleum resources occur within this group. It is mainly composed of alternation of shale and sandstone and the shale fraction has long been considered as source rocks and the sandstone fraction as reservoir. These source and reservoir rocks have been studied by different authors by different approach but none of them adopted organic geochemistry and organic petrology as a means of study of source rock and their possible depositional environment. A total of thirty shale core samples have been collected from eight different gas fields to fulfill the short coming. The collected samples have been subjected to Source Rock Analysis (SRA) and/or Rock-Eval (RE) followed by pyrolysis gas chromatography (PyGC), gas chromatography mass spectrometry (GCMS), elemental analysis (EA) and organic petrological study such as vitrinite reflectance measurement and maceral analysis. The analyzed organic matter extracted from the shales of Surma Group consists mainly of Type III along with some Type II kerogen. The studied shales are mostly organically lean (TOC ±1%) and the extracted organic matter is fair to moderate. Based on these results, the analyzed shales have been ranked as poor (mostly) to fair quality source rock. The organic matter of the analyzed shale samples is thermally immature to early mature for hydrocarbon generation considering their Tmax and measured mean vitrinite reflectance values. The hopane 22S/(22S + 22R), moretane/hopane ratio and sterane parameters are also in good agreement with these thermal maturity assessments. The predominance of odd carbons over even carbons (most common) and/or even carbons over odd carbon numbered n-alkanes, moderate Pr/Ph ratio, low to high Tm/Ts ratio, comparative abundance of sterane C29 (i.e., C29 >C27>C28), Pr/nC17 — Ph/nC18 values, C/S ratio and dominance of vitrinite macerals group with the presence of liptinite macerals demonstrate that the organic matter has derived mainly from terrestrial inputs with an insignificant contribution from the marine sources. The condition of deposition alternates from oxic to anoxic.  相似文献   

10.
This study presents data on the composition of organic matter from the Late Silurian sediments of the Chernov uplift. These sediments are characterized by low Corg contents, which may reach 1–3% in individual layers. A relatively high thermal maturity of organic matter is confirmed by polycyclic biomarker distributions and Rock-Eval pyrolyisis data. Despite its higher thermal maturity level (T max = 456°C), kerogen in carbonaceous shales from the Padymeityvis River exhibits good preservation of long-chain n-alkyl structures, which are readily identified in the 13C NMR spectra and by the molecular analysis of the kerogen pyrolysis products.  相似文献   

11.
A worldwide data set of more than 500 humic coals from the major coal-forming geological periods has been used to analyse the evolution in the remaining (Hydrogen Index, HI) and total (Quality Index, QI) generation potentials with increasing thermal maturity and the ‘effective oil window’ (‘oil expulsion window’). All samples describe HI and QI bands that are broad at low maturities and that gradually narrow with increasing maturity. The oil generation potential is completely exhausted at a vitrinite reflectance of 2.0–2.2%Ro or Tmax of 500–510 °C. The initial large variation in the generation potential is related to the original depositional conditions, particularly the degree of marine influence and the formation of hydrogen-enriched vitrinite, as suggested by increased sulphur and hydrogen contents. During initial thermal maturation the HI increases to a maximum value, HImax. Similarly, QI increases to a maximum value, QImax. This increase in HI and QI is related to the formation of an additional generation potential in the coal structure. The decline in QI with further maturation is indicating onset of initial oil expulsion, which precedes efficient expulsion. Liquid petroleum generation from humic coals is thus a complex, three-phase process: (i) onset of petroleum generation, (ii) petroleum build-up in the coal, and (iii) initial oil expulsion followed by efficient oil expulsion (corresponding to the effective oil window). Efficient oil expulsion is indicated by a decline in the Bitumen Index (BI) when plotted against vitrinite reflectance or Tmax. This means that in humic coals the vitrinite reflectance or Tmax values at which onset of petroleum generation occurs cannot be used to establish the start of the effective oil window. The start of the effective oil window occurs within the vitrinite reflectance range 0.85–1.05%Ro or Tmax range 440–455 °C and the oil window extends to 1.5–2.0%Ro or 470–510 °C. For general use, an effective oil window is proposed to occur from 0.85 to 1.7%Ro or from 440 to 490 °C. Specific ranges for HImax and the effective oil window can be defined for Cenozoic, Jurassic, Permian, and Carboniferous coals. Cenozoic coals reach the highest HImax values (220–370 mg HC/g TOC), and for the most oil-prone Cenozoic coals the effective oil window may possibly range from 0.65 to 2.0%Ro or 430 to 510 °C. In contrast, the most oil-prone Jurassic, Permian and Carboniferous coals reach the expulsion threshold at a vitrinite reflectance of 0.85–0.9%Ro or Tmax of 440–445 °C.  相似文献   

12.
《International Geology Review》2012,54(13):1508-1521
Twenty Cretaceous shale samples from two wells in the Orange Basin of South Africa were evaluated for their source rock potential. They were sampled from within a 1400 m-thick sequence in boreholes drilled through Lower to Upper Cretaceous sediments. The samples exhibit total organic carbon (TOC) content of 1.06–2.17%; Rock-Eval S2 values of 0.08–2.27 mg HC/g; and petroleum source potential (SP), which is the sum of S1 and S2, of 0.10–2.61 mg HC/g, all indicating the presence of poor to fair hydrocarbon generative potential. Hydrogen index (HI) values vary from 7 to 128 mg HC/g organic carbon and oxygen index (OI) ranges from 37 to 195 mg CO2/g organic carbon, indicating predominantly Type III kerogen with perhaps minor amounts of Type IV kerogen. The maturity of the samples, as indicated by T max values of 428–446°C, ranges from immature to thermally mature with respect to oil generation. Measured vitrinite reflectance values (%Ro) of representative samples indicate that these samples vary from immature to mature, consistent with the thermal alteration index (TAI) (spore colour) and fluorescence data for these samples. Organic petrographic analysis also shows that amorphous organic matter is dominant in these samples. Framboidal pyrite is abundant and may be indicative of a marine influence during deposition. Although our Rock-Eval pyrolysis data indicate that gas-prone source rocks are prevalent in this part of the Orange Basin, the geochemical characteristics of samples from an Aptian unit at 3318 m in one of the wells suggest that better quality source rocks may exist deeper, in more distal depositional parts of the basin.  相似文献   

13.
依据烃源岩地球化学实验手段和油气地化理论,对辽东湾地区辽中凹陷东营组东二下段(Ed2-1)和东三段(Ed3)地层进行了有机地化分析。在实验获取总有机碳(TOC)、生烃潜量(S1+S2)、氢指数(IH)、氢碳比(H/C)、氧碳比(O/C)、最大热解峰温(Tmax)、镜质体反射率(Ro)等有机地化参数的基础上,对有机质丰度、类型、成熟度等进行了系统分析,同时对东营组烃源岩进行了综合评价。研究表明,东二下段S1+S2集中在0~3 mg/g,TOC集中在0%~1.5%;东三段S1+S2集中分布在4~9 mg/g之间,TOC集中分布在1%~1.25%。东二下段有机质类型主要是III型,东三段有机质类型为II1、II2型。东二下段Ro0.5,东三段Ro0.5,并且随着深度的增加东三段烃源岩Ro相应的增加。Tmax随着深度的增加呈现出先增加后减少的异常现象,该种异常现象出现的原因与烃源岩有机质类型和有机质丰度之间存在很大关联。  相似文献   

14.
The ratio of the abundance of the C19:1 isoprenoids 1-pristene and 2-pristene to the abundance of (nC17:1 + nC17:0) is significantly lower in pyrolysates of kerogens from highly anoxic depositional environments than in pyrolysates of kerogen if similar types and levels of catagenesis from more oxic organic facies. 13C-NMR analysis shows that the occurrence of lower relative concentrations of isoprenoid precursors also correlates with the occurrence of low proportions of oxygen-bonded carbon and high proportion of aliphatic carbon in kerogens. The ratio of 1-pristene to (n-C17:1 + nC17:0) can be correlated laterally and statigraphically within a basin. There is no clearly discernible dependence of relative isoprenoid concentration of kerogen type for oil-generative kerogens, although immature lignites have high 1-pristene/(nC17:1 + nC17:0) ratios.The 1-pristene/(nC17:1 + nC17:0) ratios in kerogens pyrolysates from the same organic facies decrease logarithmically with increasing catagenesis and can be correlated directly with measured vitrinite reflectance values. Geologic and experimental data imply that 1-pristene precursors are lost from kerogen more rapidly than the precursors of the C18 isoprenoid.The lower relative isoprenoid concentrations observed in anoxically deposited kerogens appear to be the result of the enhanced preservation of normal alkyl groups and the enhanced formation of free isophrenoids early in the sequence of kerogen alteration. These results are significant to the use of isoprenoids as geochemical marker oils, bitumens, and kerogens and to the determination of the structure and diagenesis of isoprenoid precursors.  相似文献   

15.
Based on the tested data of pressure and vitrinite reflectance of some wells in sedimentary basins, abnormal high pressure is regarded as not the only factor to retard the increase of vitrinite reflectance (R o). Apart from the types of the organic matter, the physical environment (temperature and pressure) and chemical environment (fluid composition and inorganic elements) will result in the abnormal vitrinite reflectance values in the sedimentary basins. This paper tested trace elements and vitrinite reflectance data from the the abnormal high pressure and normal pressure strata profiles, respectively, and found that the acidic and lower salinity starta are favorable for the increase of R o. By discussing the corresponding relationship between the contents of some trace elements in the mudstone and the vitrinite reflectance values, the typical trace elements were found to suppress and/or catalyze the vitrinite reflectance of organic matter, while the elements of Ca, Mn, Sr, B, Ba and P may result in the retardation of R o. However, elements of Fe, Co, Zn, Ni and Rb may catalyze the organic matter maturation. This study is conductive to the organic maturation correction, oil and gas assessment and thermal history reconstruction by the paleothermometry. Translated from Acta Geologica Sinica, 2006, 80(11): 1760–1769 [译自: 地质学报]  相似文献   

16.
The results of the study of optical properties of 13 anthracites from different parts of the world are presented in this paper. Measurements of reflectance values were made on non-oriented vitrinite grains for a minimum of 300 points per sample. The reconstruction of Reflectance Indicating Surfaces (RIS) were made by Kilby's method [Kilby, W.E., 1988. Recognition of vitrinite with non-uniaxial negative reflectance characteristics. Int. J. Coal Geol. 9, 267–285; Kilby, W.E., 1991. Vitrinite reflectance measurement — some technique enhancements and relationships. Int. J. Coal Geol. 19, 201–218]. It was found that the use of Kilby's method for strongly anisotropic materials like anthracites did not give unambiguous results. Some improvement in Kilby's method, consisting of the division of the cumulative cross-plot into several elemental components, is suggested. Each elemental cross-plot corresponds to a textural class of anthracite, which is characterized by the values of RIS main axes RMAX(k), RINT(k) and RMIN(k) (k=1,2,…n; n — number of classes). The global texture of anthracite is characterized as a RIS with main axes calculated as the weighted means of , and for each class of this anthracite.The division of cumulative Kilby's cross-plot on elemental components makes possible the calculation of new coefficients Ht and H10 characterizing the heterogeneity of the structure and texture of anthracites. The results of our study show that all anthracites have biaxial negative textures, but their heterogeneity varies in a wide range of Ht and H10 coefficients depending upon the individual coal basin.  相似文献   

17.
Thermally altered pods of coal of very high rank have been observed in a high-volatile-bituminous coal seam in the eastern side of Eagle Mountain, Elk Valley Coalfield, British Columbia. Rank changes have been measured over a strike distance of 7.5 m from 1.24% to 7.1% Ro max, corresponding to a rank gradient of 0.78% Rom−1.Petrologically, unaltered to extremely altered vitrinite showing nongranular (basic) anisotropy, mosaic-textured liptinite and pyrolytic carbon are the most abundant components. The limited presence of mosaic on vitrinite is an indication that the coal seam may have been weathered prior to being heat-affected.Evidence points to localized temperatures as high as 1,000°C, which could have been caused by a lightning strike. The eastern side of Eagle Mountain has experienced higher temperatures than the western side, and it appears that the heat ‘front’ and zone of alteration have an irregular pattern, pointing to saturation of parts of the coal seam by water.Four types of pyrolytic carbon having distinct morphology, anisotrophy and optical path with increasing temperature were observed. Reflectance of pyrolytic carbon falls within the zone of heat-affected coals, whereas the optical path of heat-affected Seam 15 samples is different from that of fresh coal with increasing rank.Finally, the reflectance of vitrinite in heat-affected coal is higher than the reflectance of vitrinite in carbonaceous shale in the Seam 15 section.  相似文献   

18.
Abstract

Small- and medium-sized basins are widely distributed, and some contain commercial gas reservoirs demonstrating their gas-generation potential. The Xuanhua Basin, which is a small-sized coal-bearing basin in north China, includes a promising target for shale-gas exploration in the Xiahuayuan Formation. In this study, we used this basin as a case study to assess the critical geochemical features for small or medium-sized basins to form commercial gas reservoirs. Total organic carbon (TOC) analysis, Rock-Eval pyrolysis, microscopic observation of macerals, vitrinite reflectance measurement and kerogen stable carbon isotope analysis were performed to characterise the organic geochemistry of the Xiahuayuan shales. The original total organic carbon (TOCo) content and hydrocarbon-generative potential (S2o) were reconstructed to further evaluate the gas-generation potential of these shales. In addition, geochemical data of shales from other similar-sized basins with gas discoveries were compared. The results showed that the kerogen from the Xiahuayuan Formation is Type III (gas-prone), and macerals are dominated by vitrinite. TOC values showed a strong heterogeneity in the vertical profiles, with most higher than 1.5?wt%. The measured Ro values ranged from 1.4 to 2.0%. However, thermal maturity was not correlated with the present-day burial depth with higher maturity in the wells closest to the diabase intrusion centre. The remaining generation potential (S2) averaged 0.91?mg HC/g rock, equal to 1.4?cm3 CH4/g rock, and the average amount of hydrocarbon generated was 4.33?cm3 CH4/g rock. In small and medium-sized basins, the TOC content of commercially developed gas shales ranged from 0.5 to 2.5?wt%, organic matter was mainly humic (gas-prone), and the burial depth was generally shallow. Biogenic gas reservoirs for commercial exploitation tend to have larger shale thicknesses (120–800?m) than thermogenic gas reservoirs (60–90?m).
  1. The Xiahuayuan Formation is a good gas-source rock with gas-prone kerogen type, relatively high TOC values and moderate thermal maturity.

  2. The average amount of hydrocarbon generated from the Xiahuayuan shales is about 4.33?cm3 CH4/g rock, indicating a potential to form a shale gas reservoir.

  3. Owing to the influence of diabase intrusions, the Xiahuayuan shales have entered the dry gas window at relatively shallow-buried depths.

  4. Small- and medium-sized basins have the potential to generate commercial gas reservoirs with the generated volume mainly a product of the thickness and maturity of black shales.

  相似文献   

19.
Marine, organic-rich rock units commonly contain little for vitrinite reflectance (VR0) measurement, the most commoly used method of assessing thermal maturity. This is true of the Lower Jurassic “Nordegg Member”, a type I/II, sulphur-rich source rock from the Western Canada Sedimentary Basin. This study examines the advantages and pitfalls associated with the use of Rock-Eval Tmax and solid bitumen reflectance (BR0) to determined maturity in the “Nordegg”. Vitrinite reflectance data from Cretaceous coals and known coalification gradients in the study area are used to extrapolate VR0 values for the “Nordegg”.Tmax increases non-linearly with respect to both BR0 and extrapolated VR0 values. A sharp increase in the reflectaance of both solid bitumen and vitrinite occurs between Tmax 440–450°C, and is coincident with a pronounced decrease in Hydrogen Index values and the loss of solid bitumen and telalginite fluorescence over the same narrow Tmax interval. This Tmax range is interpreted as the main zone of hydrocarbon generation in the “Nordegg”, and corresponds to extrapolated VR0 values of 0.55–0.85%. The moderate to high sulphur contents in the kerogen played a significant role in determining the boundaries of the “Nordegg” oil window.A linear relationship between BR0 and extrapolated VR0, as proposed elsewhere, is not true for the “Nordegg”. BR0 increases with respect to extrapolated VR0 according to Jacob's (1985) formula (VR0=0.618×(BR0)+0.40) up to VR0≈0.72% (BR0≈0.52%). Beyond this point, BR0 increases sharply relative to extrapolated VR0, according to the relatioship VR0 = 0.277 × (BR0) + 0.57 (R2 = 0.91). The break in the BR0−VR0 curve at 0.72%VR0 is thought to signifiy the peak of hydrocarbon generation and represents a previously unrecognized coalification jump in the solid bitumen analogous to the first coalification jump of liptinites.  相似文献   

20.
The objective of the study was to characterize changes of reflectance, reflectance anisotropy and reflectance indicating surface (RIS) shape of vitrinite, sporinite and semifusinite subjected to thermal treatment under inert conditions. Examination was performed on vitrinite, liptinite and inertinite concentrates prepared from channel samples of steam coal (Rr = 0.70%) and coking coal (Rr = 1.25%), collected from seam 405 of the Upper Silesian Coal Basin. The concentrates were heated at temperatures of 400–1200 °C for 1 h time in an argon atmosphere.All components examined in this study: vitrinite, sporinite and semifusinite as well as matrix of vitrinite and liptinite cokes, despite of rank of their parent coal, show, in general, the most important changes of reflectance value and optical anisotropy when heated at 500 °C, 800 °C (with the exception of bireflectance value of sporinite) and 1200 °C.After heating the steam coal at 1200 °C, the vitrinite and the semifusinite reveal similar reflectances, whereas the latter a slightly stronger anisotropy. Sporinite and matrix of liptinite coke have lower reflectances but anisotropy (Rbi and Ram values) similar to those observed for vitrinite and semifusinite. However, at 1000 °C sporinite and matrix of liptinite coke have the highest reflectivity of the studied components. The RIS at 1200 °C is the same for all components.The optical properties of the three macerals in the coking coal become similar after heating at 1000 °C. Coke obtained at 1200 °C did not contain distinguishable vitrinite grains. At 1200 °C semifusinite and vitrinite coke matrix have highest Rr values among the examined components. Maximum reflectance (Rmax) reach similar values for vitrinite and sporinite, slightly lower for semifusinite. Matrix of liptinite coke and matrix of vitrinite coke have considerably stronger anisotropy (Rbi and Ram values) than other components. RIS at 1200 °C is also similar for all components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号