首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Globally, agriculture and related land use change contributed about 17% of the world’s anthropogenic GHG emissions in 2010 (8.4 GtCO2e yr?1), making GHG mitigation in the agriculture sector critical to meeting the Paris Agreement’s 2°C goal. This article proposes a range of country-level targets for mitigation of agricultural emissions by allocating a global target according to five approaches to effort-sharing for climate change mitigation: responsibility, capability, equality, responsibility-capability-need and equal cumulative per capita emissions. Allocating mitigation targets according to responsibility for total historical emissions or capability to mitigate assigned large targets for agricultural emission reductions to North America, Europe and China. Targets based on responsibility for historical agricultural emissions resulted in a relatively even distribution of targets among countries and regions. Meanwhile, targets based on equal future agricultural emissions per capita or equal per capita cumulative emissions assigned very large mitigation targets to countries with large agricultural economies, while allowing some densely populated countries to increase agricultural emissions. There is no single ‘correct’ framework for allocating a global mitigation goal. Instead, using these approaches as a set provides a transparent, scientific basis for countries to inform and help assess the significance of their commitments to reducing emissions from the agriculture sector.

Key policy insights
  • Meeting the Paris Agreement 2°C goal will require global mitigation of agricultural non-CO2 emissions of approximately 1 GtCO2e yr?1 by 2030.

  • Allocating this 1 GtCO2e yr?1 according to various effort-sharing approaches, it is found that countries will need to mitigate agricultural business-as-usual emissions in 2030 by a median of 10%. Targets vary widely with criteria used for allocation.

  • The targets calculated here are in line with the ambition of the few countries (primarily in Africa) that included mitigation targets for the agriculture sector in their (Intended) Nationally Determined Contributions.

  • For agriculture to contribute to meeting the 2°C or 1.5°C targets, countries will need to be ambitious in pursuing emission reductions. Technology development and transfer will be particularly important.

  相似文献   

2.
Drastic reductions of greenhouse-gas (GHG) emissions are required to meet the goal of the 2015 Paris climate accord to limit global warming to 1.5–2.0 °C over pre-industrial levels. We introduce the material stock-flow framework as a novel way to develop scenarios for future GHG emissions using methods from social metabolism research. The basic assumption behind our exploratory scenario approach is that nearly all final energy is required to either expand and maintain stocks of buildings, infrastructures and machinery or to provide services by using them. Distinguishing three country groups, we develop GDP- and population-driven scenarios for the development of these material stocks and the corresponding energy requirements based on historically calibrated model parameters. We analyze the results assuming different future pathways of CO2 emissions per unit of primary energy. The resulting cumulative carbon emissions from 2018 to 2050 range from 361 Gt C in the lower GDP-driven to 568 GtC in the higher population-driven scenario. The findings from the population-driven scenarios point towards the huge implications of a hypothetical convergence of per-capita levels of material stocks assuming current trajectories of technological improvements. Results indicate that providing essential services with a considerably lower level of material stocks could contribute to large reductions in global resource demand and GHG emissions. A comparison of different stock levels in 2050 demonstrates that complying with ambitious climate targets requires much faster declines of CO2 emissions per unit of primary energy if growth of material stocks is not limited.  相似文献   

3.
Material stocks in infrastructure, buildings and machinery shape current and future resource use and emissions. Analyses of specific countries and selected materials suggest that material stocks might saturate, which would be important for a more sustainable social metabolism. However, it is unclear to what extent the evidence holds for a wider range of stocks and flows, as well as for world regions or globally.We present an inflow-driven dynamic stock-flow model for 14 bulk materials, end-of-life outflows, recycling, and waste flows for nine world regions from 1900 to 2015, extended with trend scenarios until 2035. Material stocks are growing in all regions and show little signs of saturation yet. In 2015, China used half of global stock-building materials, overtook everyone in stock size around 2012 and grows its stock at ∼8%/year. The Industrialized regions, including the Former Soviet Union, are slowly expanding their high stock levels at ∼1%/year. Stocks in all other regions, inhabited by 60% of the world population, grow at ∼3–5%/year. Inequalities in per capita stocks between regions are large. Trend scenarios suggest potential absolute or per capita stock saturations in some of the industrialized regions, while all other regions are expected to continue high stock growth.Accumulated stocks drive future end-of-life materials and substantial maintenance and replacement requirements. Growing material stocks hamper a potential stabilization or reduction of resource use. Low stock levels in most world regions suggest a crucial window of opportunity for avoiding resource-intensive stock development. In the industrialized regions and especially China, stabilising and reducing resource use requires halting net stock expansion and transforming existing stocks. More materials- and energy-efficient and long-lived stocks which deliver high quality services, and improved reuse, repair and recycling of increasing end-of-life materials to close loops and actually replace virgin resources, are crucial for a more sustainable social metabolism.  相似文献   

4.
The contribution that no-lose target schemes for non-Annex I (NAI) countries could make to achieve the 2°C target is explored by accounting for the incentives of 18 NAI countries’ participation in no-lose target schemes. Using various scenarios, it is shown that implementing uniform no-lose targets as part of the burden-sharing will not lead to global emissions levels compatible with the 2°C target, because uniform no-lose targets will only be beneficial to a few NAI countries. Employing more lenient uniform no-lose targets or individual no-lose targets for large emitters could increase participation by NAI countries and decrease global emissions, global compliance costs, rents by NAI countries, and compliance costs for Annex I (AI) countries. However, the resulting global emissions levels will not be compatible with attaining the 2°C target. Achieving this target will require more stringent emissions targets for AI countries and more lenient no-lose targets for NAI countries. As such, no-lose targets should account for 20% to 47% of global emissions reductions, while due to emissions trading around two-thirds of global emissions reductions should be realized in NAI countries. Indeed, an effective solution may only require no-lose targets for five to seven of the largest NAI countries.

Policy relevance

No-lose targets are one of a number of instruments discussed under the United Nations Framework Convention on Climate Change New Market Mechanism to integrate NAI countries in global emissions reduction efforts. In contrast to binding reduction targets, which apply penalties if a target is not met, no-lose targets provide incentives for meeting a target, e.g. in the form of excess emissions certificates that can be sold on the global carbon market. The presented simulations show that no-lose targets can result in contributions from NAI countries to global emissions reduction efforts. However, the simulations also show that the necessary incentives for no-lose targets need to be adjusted. AI countries require more ambitious targets and NAI countries require less ambitious no-lose targets than proposed by the Intergovernmental Panel on Climate Change report. Effective no-lose targets may only be required for five to seven of the largest NAI countries.  相似文献   

5.
利用IPCC发布的5个全球气候模式在高(SRES A2)、低(SRES B1)两种不同排放情景下的预报集成结果,对21世纪大尺度环境进行分析,进而对西北太平洋夏季热带气旋(TC)的频数进行预估。结果表明:两种情景下热带西北太平洋均呈现500 hPa位势高度偏高、太平洋东部海表温度偏高、低层菲律宾以东为异常反气旋性环流控制的特征。这种大尺度环境不利于TC生成,在高排放情景下或21世纪中叶后该环境特征更显著。未来TC频数总体呈减少的趋势,低排放情景下的TC频数变化趋势比高排放情境下平缓,TC频数存在年代际和年际变化。  相似文献   

6.
In this paper, we present four model-based scenarios exploring the potential for resource efficiency for energy, land and phosphorus use, and implications for resource depletion, climate change and biodiversity. The scenarios explored include technological improvements as well as structural changes in production systems and lifestyle changes. Many of such changes have long lead times, requiring up front and timely investments in infrastructure, innovative incentive structures and education. For simulating the scenarios we applied the IMAGE modelling framework, with a time horizon until 2050.Our findings confirm a large potential for more efficient resource use: our (no new policies) baseline scenario shows a global increase, between 2010 and 2050, by 80% of primary energy use, 4% of arable land and 40% of phosphorus fertilisers. These numbers are reduced to +25% (primary energy), −9% (arable land) and +9% (phosphorus) in the global resource efficiency scenario. Baseline developments and resource efficiency opportunities vary strikingly among regions, resources and sectors. Phosphorus use, for example, is expected to increase most on croplands in developing countries, whereas the largest potential for phosphorus use efficiency lies in the livestock sector and urban sewage treatment in industrialised countries. Consequently, while resource efficiency resonates well as a general notion in policy thinking, concrete policies need to be region-specific, resource-specific and sector-specific.Efficiency efforts on one resource tend to contribute to efficient use of other resources and to benefit the environment. There are also trade-offs, however, and the synergies analysed do not make problem-specific policies redundant: in 2050, the global resource efficiency scenario presents higher phosphorus use and higher use of fossil fuels than in 2010; greenhouse gas emission targets are met by half; and biodiversity loss slows down but is not halted. Moreover, part of the efficiency gains in land and phosphorus use is sacrificed when this scenario is combined with ambitious climate policy, due to the substantial resource requirements for the deployment of bio-energy—albeit much less than in a scenario without more efficient resource use.  相似文献   

7.
Carried out are numerical experiments with the IAP RAS global climate model (IAP RAS CM) under new RCP scenarios of anthropogenic impact for the 18th–21st centuries taking account of the response of the methane emission from the soil to the atmosphere and effects of chemical processes in the atmosphere on the climate changes. The model generally simulates the preindustrial and present-day characteristics of the methane cycle. Methane emissions from the soil to the atmosphere (within the range of 150–160 Mt CH4/year for the present-day period) reach 170–230 Mt CH4/year by the late 21st century depending on the scenario of anthropogenic impact. The methane concentration under the most aggressive RCP 8.5 anthropogenic scenario increases up to 3900 ppb by the late 21st century. Under more moderate RCP 4.5 and 6.0 anthropogenic scenarios, it reaches 1850–1980 ppb in the second half of the 21st century and decreases afterwards. Under RCP 2.6 scenario, the methane concentration maximum of 1730 ppb in the atmosphere is reached in the second decade of the 21st century. The taking account of the interaction between the processes in the soils and the climate leads to the additional increase in the methane content in the atmosphere by 10–25% in the 21st century depending on the scenario of anthropogenic impact. The taking account of the methane oxidation in the atmosphere in the case of warming reduces the increase in its concentration by 5–40%. The associated changes in the surface air temperature turn out to be small (less than 0.1 K globally or 4% of the warming expected by the late 21st century).  相似文献   

8.
Emissions from the production of iron and steel could constitute a significant share of a 2°C global emissions budget (around 19% under the IEA 2DS scenario). They need to be reduced, and this could be difficult under nationally based climate policy approaches. We compare a new set of nationally based modelling (the Deep Decarbonization Pathways Project) with best practice and technical limit benchmarks for iron and steel and cement emissions. We find that 2050 emissions from iron and steel and cement production represent an average 0.28?tCO2 per capita in nationally based modelling results, very close to the technical limit benchmark of 0.21?tCO2 per capita, and over 2.5 times lower than the best practice benchmark of 0.72?tCO2 per capita. This suggests that national projections may be overly optimistic about achievable emissions reductions in the absence of global carbon pricing and an international research and development effort to develop low emissions technologies for emissions-intensive products. We also find that equal per capita emissions targets, often the basis of proposals for how global emissions budgets should be allocated, would be inadequate without global emissions trading. These results show that a nationally based global climate policy framework, as has been confirmed in the Paris Agreement, could lead to risks of overshooting global emissions targets for some countries and carbon leakage. Tailored approaches such as border taxes, sectoral emissions trading or carbon taxes, and consumption-based carbon pricing can help, but each faces difficulties. Ultimately, global efforts are needed to improve technology and material efficiency in emissions-intensive commodities manufacturing and use. Those efforts could be supported by technology standards and a globally coordinated R&D effort, and strengthened by the adoption of global emissions budgets for emissions-intensive traded goods.

Policy relevance

This article presents new empirical findings on global iron and steel and cement production in a low-carbon world economy, demonstrates the risks associated with a nationally based global climate policy framework as has been confirmed in the Paris Agreement, and analyses policy options to deal with those risks.  相似文献   

9.
Exploring the dynamic changes of steel from the ships is critical for developing sustainable strategies for waste management of shipping industry. However, the information of stocks and flows of ships and related steel is currently unavailable, hindering the sustainable development of shipping industry. By collecting dispersed information on production, use, material composition, and end-of-life management of five types ships, we first estimated the historical steel stocks and flows respect to global ships from 1980 to 2019, and further projected the amount of steel scraps from shipbreaking by 2050. The steel stocks of ships increased by 2.6 times from 208.4 Mt in 1980 to 542.9 Mt in 2019. The top 2 regional contributors, Asia and Latin America & the Caribbean, were together responsible for about half of the total increase. A transition from oil tankers to container ships and bulk carriers reduced the in-use steel stock due to the lower steel intensity of the latter. The rapid increase of ship stocks after year 1980 led to significant increase of steel scrap in the 2010 s, reaching 10.1 Mt/year in 2019. Our projections showed that the steel from scrapped ships worldwide will increase by around 4-fold to 40.4–47.3 Mt/year by 2050, which imposed a great challenge on coordination of recycling ship-related steel and require long-term planning on ship recycling facility development. By identifying the stocks and flows of ships and related steel, this study provides insights for the steel waste and recycling management of end-of-life ships worldwide.  相似文献   

10.
The areas of distribution, high pest damage, and mass reproduction of Italian locust are mainly limited by climatic factors. It is demonstrated that under conditions of the RCP4.5 moderate scenario of anthropogenic impact on the global climate system in Russia in the 21st century the climatic range of Italian locust will be expanded mainly northward and, to a smaller extent, eastward. The expansion of the range by the middle of the 21st century as compared with the end of the 20th century will be more significant that at the end of the 21st century versus its middle.  相似文献   

11.
交通部门在中长期具有很高的碳排放增长潜力,对我国低碳转型有重要影响。构建自下而上的能源系统模型PECE-LIU2017及其交通模块,设置未来交通发展的基准、NDC和低碳3个情景,深入分析交通需求背后的驱动因子及发展趋势,制定交通部门中长期低碳发展路径。结果显示,随着经济发展和人均收入水平提高,未来我国交通需求将持续增长。NDC情景下,交通部门有望在2038年左右达峰。在低碳情景下,我国交通部门2050年CO2排放将从基准情景30亿t降低为6亿t,并在2030年左右达峰,为我国中长期低碳发展目标贡献17.5%的累计减排量。2016—2050年低碳交通固定投资需求为15.7万亿元人民币,占我国中长期低碳投资总需求的53%。通过提高燃油经济性、推广新能源汽车以及发挥城市公共出行最大潜力,交通部门能够以技术可行的方式实现低碳转型,并对我国长期低碳发展战略做出重要贡献。  相似文献   

12.
Changes in methane emissions into the atmosphere from terrestrial ecosystems are assessed with models for the European and Asian parts of Russia using the model unit of a methane cycle and calculations with a regional climate model. The calculations were performed for the present-day base period (1991–2000), for the middle (2041–2050), and late (2091–2100) 21st century using the SRES A2 anthropogenic emission scenario. The average emissions for the base period were equal to 8 Mt CH4/year for the European part of Russia and 10 Mt CH4/year for the Asian part. By the middle of the 21st century, they increased up to 11 and 13 Mt CH4/year, and by the late 21st century, up to 14 and 17 Mt CH4/year. These tendencies are associated with the increased warm period of the soil and dependence of the integral methane production on temperature. It is predicted that the maximum depth of freezing will lessen in the southern regions of the European and Asian parts of Russia by the late 21st century.  相似文献   

13.
利用国家气候中心完成的RegCM4区域气候模式在RCP4.5和RCP8.5两种排放路径下的气候变化动力降尺度试验结果,在检验模式对基准期(1986—2005年)气温和降水模拟能力基础上,进行华北区域21世纪气候变化预估分析。结果表明:RegCM4对华北区域基准期气温和降水的模拟能力较好。未来21世纪,两种情景下华北区域气温、降水、持续干期(consecutive dry days, CDD)和强降水量(R95p)变化逐渐增大,但变化幅度在高排放的RCP8.5情景下更为显著,其中近期(2021—2035年)、中期(2046—2065年)、远期(2080—2098年)RCP8.5情景下年平均气温分别升高1.77、3.44、5.82℃,年平均降水分别增加8.1%、14%、19.3%,CDD分别减少3、3、12 d, R95p分别增加30.8%、41.9%、69.8%。空间上,未来21世纪华北区域内年、冬季、夏季平均气温将一致升高,夏季升温幅度最大;年、冬季、夏季平均降水整体以增加为主,冬季降水增加幅度最大;CDD以减少为主,但近期和中期在山西和京津冀有所增加,而R95p以增加为主,表明21世...  相似文献   

14.
A bioeconomic model of key fisheries of the Barents Sea is run with scenarios generated by an earth system model of intermediate complexity to assess how the Barents Sea fisheries of cod (Gadus morhua) and capelin (Mallotus villosus) are affected by changes in the Atlantic thermohaline circulation (THC) arising from anthropogenic climate change. Changes in hydrographic conditions have an impact on recruitment success and survival rates, which constitute a lasting effect on the stocks. The economic development of the fisheries is determined for the 21st century, considering a purely stock size based and a coupled stock size-hydrography based harvesting strategy. Results show that a substantial weakening of the THC leads to impaired cod stock development, causing the associated fishery to become unprofitable in the long run. Simultaneous improvements in capelin stock development help the capelin fishery, but are insufficient to offset the losses incurred by the cod fishery. A comparison of harvest strategies reveals that in times of high variability in stock development, coupled stock size-hydrography based management leads to more stable economic results of these fisheries than the stock size based fishing strategy.  相似文献   

15.
Food security in China underlies the foundation of the livelihood and welfare for over one-fifth of the world's population. Soil degradation has an immense negative impact on the productive capacity of soils. We simulated the effect of soil degradation, which occurs in combination with increases in population size, urbanization rate, cropping intensity and decrease in cropland area, on long-term food security in China using a web-based land evaluation system. Our results predict that food crops may experience a 9% loss in productivity by 2030 if the soil continues to be degraded at the current rate (business-as-usual scenario, BAU). Productivity losses will increase to the unbearable level of 30% by 2050 should the soil be degraded at twice the present rate (double-degradation scenario, 2× SD). China's capacity for producing food from agricultural crops will be either adversely affected by the loss of cropland area (130, 113 and 107 million ha in 2005, 2030 and 2050, respectively) or favorably affected by agricultural intensification (in terms of the multi-cropping index at 120, 133 and 147% in 2005, 2030 and 2050, respectively). The loss of cropland is predicted to cause a 13–18% decrease in China's food production capacity by 2030–2050 relative to its 2005 level of 482 Mt, while agricultural intensification is predicted to cause an 11–23% increase. In total, China will be able to achieve a production level of 424 and 412 Mt by 2030 and 2050, respectively, under BAU, while this production will be only 386 and 339 Mt under 2× SD, respectively. In per capita terms, the relationship between food supply and demand will turn from an 18% surplus in 2005 to 3–5%, 14–18% and 22–32% deficits by 2030–2050 under the zero-degradation (0× SD), BAU and 2× SD scenarios, respectively. Our results show that the present-day production capacity will not sustain the long-term needs of a growing population under the current management level. Technical countermeasures and policy interventions need to be enacted today in order to avoid food insecurity tomorrow.  相似文献   

16.
At a national scale, the carbon (C) balance of numerous forest ecosystem C pools can be monitored using a stock change approach based on national forest inventory data. Given the potential influence of disturbance events and/or climate change processes, the statistical detection of changes in forest C stocks is paramount to maintaining the net sequestration status of these stocks. To inform the monitoring of forest C balances across large areas, a power analysis of a forest inventory of live/dead standing trees and downed dead wood C stocks (and components thereof) was performed in states of the Great Lakes region, U.S. Using data from the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service, it was found that a decrease in downed wood C stocks (?1.87 Mg/ha) was nearly offset by an increase in standing C stocks (1.77 Mg/ha) across the study region over a 5-year period. Carbon stock change estimates for downed dead wood and standing pools were statistically different from zero (α?=?0.10), while the net change in total woody C (?0.10 Mg/ha) was not statistically different from zero. To obtain a statistical power to detect change of 0.80 (α?=?0.10), standing live C stocks must change by at least 0.7 %. Similarly, standing dead C stocks would need to change by 3.8 %; while downed dead C stocks require a change of 6.9 %. While the U.S.’s current forest inventory design and sample intensity may not be able to statistically detect slight changes (<1 %) in forest woody C stocks at sub-national scales, large disturbance events (>3 % stock change) would almost surely be detected. Understanding these relationships among change detection thresholds, sampling effort, and Type I (α) error rates allows analysts to evaluate the efficacy of forest inventory data for C pool change detection at various spatial scales and levels of risk for drawing erroneous conclusions.  相似文献   

17.
Estimates of possible climate changes and cryolithozone dynamics in the 21st century over the Northern Hemisphere land are obtained using the IAP RAS global climate model under the RCP scenarios. Annual mean warming over the northern extratropical land during the 21st century amounts to 1.2–5.3°C depending on the scenario. The area of the snow cover in February amounting currently to 46 million km2 decreases to 33–42 million km2 in the late 21st century. According to model estimates, the near-surface permafrost in the late 21st century persists in northern regions of West Siberia, in Transbaikalia, and Tibet even under the most aggressive RCP 8.5 scenario; under more moderate scenarios (RCP 6.0, RCP 4.5, and RCP 2.6), it remains in East Siberia and in some high-latitude regions of North America. The total near-surface permafrost area in the Northern Hemisphere in the current century decreases by 5.3–12.8 million km2 depending on the scenario. The soil subsidence due to permafrost thawing in Central Siberia, Cisbaikalia, and North America can reach 0.5–0.8 m by the late 21st century.  相似文献   

18.
Both supply and demand side changes are necessary to achieve a sustainable food system. However, the weight accorded to these depends on one’s view of what the priority goals are for the food system and the extent to which production systems versus consumption patterns are open to change. Some stakeholders see the problem as one of ‘not enough food’ and focus on the need to sustainably increase supply, while others consider the resource demanding and ‘greedy’ consumption patterns of the Western world as the main problem and emphasize the need to shift diets. In this study global land use and greenhouse gas emissions are estimated for a set of scenarios, building on four ‘livestock futures’ reflecting these different perspectives. These scenarios are: further intensification of livestock systems; a transition to plant-based eating; a move towards artificial meat and dairy; and a future in which livestock production is restricted to the use of ‘ecological leftovers’ i.e. grass from pastures, food waste and food and agricultural byproducts. Two dietary variants for each scenario are modelled: 1) a projected diet following current trends and 2) a healthy diet with more fruits and vegetables and fewer animal products, vegetable oils and sugar. Livestock production in all scenarios (except the baseline scenario) was assumed to intensify to current levels of intensive production in North-Western Europe. For each scenario, several variant assumptions about yield increases and waste reductions were modelled. Results show that without improvements in crop productivity or reductions on today’s waste levels available cropland will only suffice if production of all protein currently supplied by animal foods is replaced by (hypothetical) artificial variants not requiring any land. With livestock intensities corresponding to current ones in North-Western Europe and with yield gaps closed by 50% and waste reduced by 50%, available cropland will suffice for all scenarios that include a reduction of animal products and/or a transition to poultry or aquaculture. However, in the scenario based on an extrapolation of current consumption patterns (animal product amounts and types consumed in proportions corresponding to the current average consumption in different world regions) and with livestock production based on feed from cropland, available cropland will not be enough. The scenario that makes use of pastures for ruminant production and food waste for pigs, uses considerably less cropland and could provide 40–56 kg per capita per year of red meat. However, such a livestock future would not reduce GHG emissions from agriculture on current levels. This study confirms previous research that to achieve a sustainable food future, action is needed on all fronts; improved supply and reduced demand and waste.  相似文献   

19.
The RCP2.6 emission and concentration pathway is representative of the literature on mitigation scenarios aiming to limit the increase of global mean temperature to 2°C. These scenarios form the low end of the scenario literature in terms of emissions and radiative forcing. They often show negative emissions from energy use in the second half of the 21st century. The RCP2.6 scenario is shown to be technically feasible in the IMAGE integrated assessment modeling framework from a medium emission baseline scenario, assuming full participation of all countries. Cumulative emissions of greenhouse gases from 2010 to 2100 need to be reduced by 70% compared to a baseline scenario, requiring substantial changes in energy use and emissions of non-CO2 gases. These measures (specifically the use of bio-energy and reforestation measures) also have clear consequences for global land use. Based on the RCP2.6 scenario, recommendations for further research on low emission scenarios have been formulated. These include the response of the climate system to a radiative forcing peak, the ability of society to achieve the required emission reduction rates given political and social inertia and the possibilities to further reduce emissions of non-CO2 gases.  相似文献   

20.
利用耦合模式比较计划第5阶段(CMIP5)中5个全球气候模式3种典型浓度路径(RCPs)预估结果,基于植被净初级生产力模型,估算安徽省21世纪近期(2018—2030年)、中期(2031—2050年)和远期(2051—2099年)植被净初级生产力及其对气候变化的响应。结果表明:对不同模式在安徽省模拟能力的评估可知,气温以多模式集合模拟效果优于单个模式,MIROC-ESM-CHEM对降水的模拟能力较好。未来安徽省将持续变暖,北部变暖幅度高于南部,其中RCP8.5情景下变暖趋势更显著;全省降水量将增加,南部增加多于北部。随着气候趋于暖湿化,植被净初级生产力总体增加;与基准年相比,21世纪近期增加不明显,中后期显著增加,空间上南部增加总体高于北部。从气候变化响应来看,安徽省植被净初级生产力与降水量和平均气温均显著相关,并且对降水量的响应程度更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号