首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Rifting of the Qiongdongnan Basin was initiated in the Cenozoic above a pre-Cenozoic basement, which was overprinted by extensional tectonics and soon after the basin became part of the rifted passive continental margin of the South China Sea. We have integrated available grids of sedimentary horizons, wells, seismic reflection data, and the observed gravity field into the first crust-scale structural model of the Qiongdongnan Basin. Many characteristics of this model reflect the tectonostratigraphic history of the basin. The structure and isopach maps of the basin allow us to reconstruct the history of the basin comprising: (a) The sediments of central depression are about 10 km thicker than on the northern and southern sides; (b) The sediments in the western part of the basin are about 6 km thicker than that in the eastern part; (c) a dominant structural trend of gradually shifting depocentres from the Paleogene sequence (45–23.3 Ma) to the Neogene to Quaternary sequence (23.3 Ma–present) towards the west or southwest. The present-day configuration of the basin reveals that the Cenozoic sediments are thinner towards the east. By integrating several reflection seismic profiles, interval velocity and performing gravity modeling, we model the sub-sedimentary basement of the Qiongdongnan Basin. There are about 2–4 km thick high-velocity bodies horizontal extended for a about 40–70 km in the lower crust (v > 7.0 km/s) and most probably these are underplated to the lower stretched continental crust during the final rifting and early spreading phase. The crystalline continental crust spans from the weakly stretched domains (about 25 km thick) near the continental shelf to the extremely thinned domains (<2.8 km) in the central depression, representing the continental margin rifting process in the Qiongdongnan Basin. Our crust-scale structural model shows that the thinnest crystalline crust (<3 km) is found in the Changchang Sag located in the east of the basin, and the relatively thinner crystalline crust (<3.5 km) is in the Ledong Lingshui Sag in the west of the basin. The distribution of crustal extension factor β show that β in central depression is higher (>7.0), while that on northern and southern sides is lower (<3.0). This model can illuminate future numerical simulations, including the reconstruction of the evolutionary processes from the rifted basin to the passive margin and the evolution of the thermal field of the basin.  相似文献   

2.
运用近年来采集的高分辨率地震资料和多波束测深数据,在珠江海谷及西北次海盆深海平原区发现大规模发育的第四纪重力流沉积体系,该沉积体系沿珠江海谷以北西-南南东方向贯穿整个北部陆坡,进入西北次海盆后呈扇形展开,形成珠江海谷-西北次海盆大型深水浊积扇系统。据沉积体系空间展布特征差异,将珠江海谷划分为北、中、南三段,北段为过路侵蚀和水道下切,中段以水道充填和天然堤沉积为主,南段以水道-天然堤和朵叶体沉积共存为特征,揭示出北部陆坡珠江海谷是珠江口外陆缘物质输送海盆深海平原的主要通道;海盆区总体以朵叶体发育为特色,呈扇形展布。深水扇系统可分为三期次沉积体,其区域结构记录了重力流沉积物从侵蚀、卸载到南海海盆作为限制性盆地接收陆源沉积物的全过程,为“源-渠-汇”的研究构建了一个完美的范例。本文以珠江海谷-西北次海盆第四纪深水浊积扇沉积体系为例,完整地揭示了水道-扇体的组构和特征,清晰呈现了陆坡-海盆砂体展布的规律,可为建立南海北部新近纪早期深水扇形成模式提供参考,有助于指导南海深水油气勘探工作。  相似文献   

3.
Seismic imaging of gas hydrates in the northernmost South China sea   总被引:1,自引:1,他引:0  
Horizon velocity analysis and pre-stack depth migration of seismic profiles collected by R/V Maurice Ewing in 1995 across the accretionary prism off SW Taiwan and along the continental slope of the northernmost South China Sea were implemented for identifying gas hydrates. Similarly, a survey of 32 ocean-bottom seismometers (OBS), with a spacing of about 500 m, was conducted for exploring gas hydrates on the accretionary prism off SW Taiwan in April 2006. Travel times of head wave, refraction, reflection and converted shear wave identified from the hydrophone, vertical and horizontal components of these OBS data were applied for imaging P-wave velocity and Poisson’s ratio of hydrate-bearing sediments. In the accretionary prism off SW Taiwan, we found hydrate-bearing sediment, with a thickness of about 100–200 m, a relatively high P-wave velocity of 1.87–2.04 km/s and a relatively low Poisson’s ratio of 0.445–0.455, below anticlinal ridges near imbricate emergent thrusts in the drainage system of the Penghu and Kaoping Canyons. Free-gas layer, with a thickness of about 30–120 m, a relatively low P-wave velocity of 1.4–1.8 km/s and a relatively high Poisson’s ratio (0.47–0.48), was also observed below most of the bottom-simulating reflectors (BSR). Subsequently, based on rock physics of the three-phase effective medium, we evaluated the hydrate saturation of about 12–30% and the free-gas saturation of about 1–4%. The highest saturation (30% and 4%) of gas hydrates is found below anticlines due to N–S trending thrust-bounded folds and NE-SW thrusting and strike-slip ramps in the lower slope of the accretionary prism. We suggest that fluid may have migrated through the relay-fault array due to decollement folding and gas hydrates have been trapped in anticlines formed by the basement rises along the thrust faults. In contrast, in the rifted continental margin of the northernmost South China Sea, P-wave velocities of 1.9–2.2 km/s and 1.3–1.6 km/s, and thicknesses of about 50–200 m and 100–200 m, respectively, for a hydrate layer and a free-gas layer were imaged below the remnant and erosional ridges in the upper continental slope. High P-wave velocity of hydrate-bearing sediment below erosional ridges may also indicate high saturation of hydrates there. Normal faults due to rifting in the South China continental crust may have provided conduits for gas migration below the erosional ridges where P-wave velocity of hydrate-bearing sediment in the passive continental margin of the northernmost South China Sea is greater than that in the active accretionary prism off SW Taiwan.  相似文献   

4.
Very large subaqueous sand dunes were discovered on the upper continental slope of the northern South China Sea. The dunes were observed along a single 40 km long transect southeast of 21.93°N, 117.53°E on the upper continental slope in water depths of 160 m to 600 m. The sand dunes are composed of fine to medium sand, with amplitudes exceeding 16 m and crest-to-crest wavelengths exceeding 350 m. The dunes' apparent formation mechanism is the world's largest observed internal solitary waves which generate from tidal forcing on the Luzon Ridge on the east side of the South China Sea, propagate west across the deep basin with amplitudes regularly exceeding 100 m, and dissipate extremely large amounts of energy via turbulent interaction with the continental slope, suspending and redistributing the bottom sediment. While subaqueous dunes are found in many locations throughout the world's oceans and coastal zones, these particular dunes appear to be unique for two principal reasons: their location on the upper continental slope (away from the influence of shallow-water tidal forcing, deep basin bottom currents and topographically-amplified canyon flows), and their distinctive formation mechanism (approximately 60 episodic, extremely energetic, large amplitude events each lunar cycle).  相似文献   

5.
Based on the archived data of the ocean color scanner MODIS-Aqua for 2003–2011, we constructed the long-term monthly mean distributions of the reflectance Rrs of the Black Sea for April, May, June, and September in order to visualize the contributions of seasonal factors to the long-term variability of the basin’s images. In April, the Rim Current’s branch west of 34° E is visualized by higher Rrs in different regions of the visible spectrum due to the transport of suspended matter caused by intensification of the Rim Current during the winter-spring period. During the June coccolithophore “blooms,” the long-term Rrs level is 2–3 times higher when compared to the previous and subsequent months. This excess is particularly considerable outside the shelf and coastal areas. The open sea Rrs distribution in June features horizontal inhomogeneity. The seasonal trend of the Rrs spectra on the Black Sea NW shelf is explicitly related to the annual cycle of the continental runoff effects.  相似文献   

6.
The northern East China Sea Shelf Basin consists of three depressions (the Domi, Jeju, and Socotra Depressions), separated by basement highs or rises. Reconstruction of depth-converted seismic reflection profiles from these depressions reveals that the northern East China Sea Shelf Basin experienced two phases of rifting, followed by regional subsidence. Initial rifting in the Late Cretaceous was driven by the NW?CSE crustal stretching of the Eurasian plate, caused by the subduction of the Pacific plate beneath the plate margin. Major extension (~15 km) took place during the early phase of basin formation. The initial rifting was terminated by regional uplift in the Late Eocene-Early Oligocene, which was probably due to reorganization of plate boundaries. Rifting resumed in the Early Oligocene; the magnitude of extension was mild (<1 km) during this period. A second phase of uplift in the Early Miocene terminated the rifting, marking the transition to the postrift phase of regional subsidence. Up to 2,600 m of sediments and basement rock were removed by erosion during and after the second phase of uplift. An inversion in the Late Miocene interrupted the postrift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. Subsequent erosion removed about 900 m of sediments. The regional subsidence has dominated the area since the Late Miocene.  相似文献   

7.
The seafloor morphology and the subsurface of the continental slope of the Olbia intraslope basin located along the eastern, passive Sardinian margin (Tyrrhenian Sea) has been mapped through the interpretation of high-resolution multibeam bathymetric data, coupled with air-gun and sparker seismic profiles. Two areas, corresponding to different physiographic domains, have been recognized along the Olbia continental slope. The upper slope domain, extending from 500 to 850 m water depth, exhibits a series of conical depressions, interpreted as pockmarks that are particularly frequent in seafloor sectors coincident with buried slope channels. In one case, they are aligned along a linear gully most likely reflecting the course of one of the abandoned channels. The location of the pockmarks thus highlights the importance of the distribution of lithologies within different sedimentary bodies in the subsurface in controlling fluid migration plumbing systems. A linear train of pockmarks is, however, present also away from the buried channels being related to a basement step, linked to a blind fault. Two bathymetric highs, interpreted as possible carbonate mounds, are found in connection with some of the pockmark fields. Although the genetic linkage of the carbonate mounds with seafloor fluid venting cannot be definitively substantiated by the lack of in situ measurements, the possibility of a close relationship is here proposed. The lower slope domain, from 850 m down to the base of the slope at 1,200 m water depth is characterized by a sudden gradient increase (from 2° to 6°) that is driven by the presence of the basin master fault that separates the continental slope from the basin plain. Here, a series of km-wide headwall scars due to mass wasting processes are evident. The landslides are characterized by rotated, relatively undeformed seismic strata, which sometimes evolve upslope into shallow-seated (less than 10 m), smaller scale failures and into headless chutes. Slope gradient may act as a major controlling factor on the seafloor instability along the Olbia continental slope; however, the association of landslides with pockmarks has been recognized in several continental slopes worldwide, thus the role of over-pressured fluids in triggering sediment failure in the Olbia slope can not be discarded. In the absence of direct ground truthing, the geological processes linked to subsurface structures and their seafloor expressions have been inferred through the comparison with similar settings where the interpretation of seafloor features from multibeam data has been substantiated with seafloor sampling and geochemical data.  相似文献   

8.
During New Euxinian time when sea level dropped below the sill connecting the Black and Marmara seas, the Black Sea became isolated and freshwater sediments were deposited. Now it is a semieuxinic basin with the oxic/anoxic boundary at 100–150 m. The seasonal changes in sedimentation are preserved in the form of laminated sequences. The counting of varves in southeastern Black Sea cores show the chronology of the O2/H2S interface. The age of the Holocene sapropel along the eastern margin ranges from 4000 to 1000 yr BP in deep water and 2500—1000 yr BP in shallower water. Sapropel formation started at 3650 yr BP at a water depth of 2200 m.  相似文献   

9.
This paper presents the first study of mapping of the Curie point depth (CPD) from magnetic data for the Black Sea and a comparison with a classical thermal modeling from heat flow data. The provided relationship between radially averaged power spectrum of the magnetic anomalies and the depths to the magnetic sources of the Black Sea vary from 22 to 36 km. Deepening of CPDs observed in the western and eastern Black Sea basins correspond with the thickest sediment areas, whereas the shallow CPDs are related to the Mid-Black Sea Ridge and thin sediment areas at the costal side of the Black Sea. For comparison, the temperature field was also modeled from heat flow data from the Black Sea along three approximately north–south directed profiles corresponding to known DSS soundings. The Curie isotherm along the profiles occurs at depths of 22–35 km. A comparison of the results of the two independent methods reveals only 8–10 % discrepancy. This discrepancy is equal to an accuracy of temperature determination from heat flow data.  相似文献   

10.
Two dimensional crustal models derived from four different ocean bottom seismographic (OBS) surveys have been compiled into a 1,580 km long transect across the North Atlantic, from the Norwegian Møre coast, across the extinct Aegir Ridge, the continental Jan Mayen Ridge, the presently active Kolbeinsey Ridge north of Iceland, into Scoresby Sund in East Greenland. Backstripping of the transect suggests that the continental break-up at ca. 55 Ma occurred along a west-dipping detachment localized near the western end of a ca. 300 km wide basin thinned to less than 20 km crustal thickness. It is likely that an east-dipping detachment near the present day Liverpool Land Escarpment was active during the late stages of continental rifting. A lower crustal high-velocity layer (7.2–7.4 km/s) interpreted as mafic intrusions/underplating, was present beneath the entire basin. The observations are consistent with the plume hypothesis, involving the Early Tertiary arrival of a mantle plume beneath central Greenland and focused decompression melting beneath the thinnest portions of the lithosphere. The mid-Eocene to Oligocene continental extension in East Greenland is interpreted as fairly symmetric and strongly concentrated in the lower crustal layer. Continental break-up which rifted off the Jan Mayen Ridge, occurred at ca. 25 Ma, when the Aegir Ridge became extinct. The first ca. 2 m.y. of oceanic accretion along the Kolbeinsey Ridge was characterized by thin magmatic crust (ca. 5.5 km), whereas the oceanic crustal formation since ca. 23 Ma documents ca. 8 km thick crust and high magma budget.  相似文献   

11.
The understanding of the morphology and the shallow geo-hazards of the seafloor is a major focus for both academic and private industry research. On November and December 2009 a geophysical pipeline survey was carried out by Fugro Oceansismica S.p.A. (FOSPA) and FUGRO France (FFSA) for DORIS Engineering on behalf of GRTgaz (Engineering centre, Transmission Pipe Department; www.grtgaz.com) which are currently investigating the possibility of laying a pipeline between Sardinia and Corsica as a spur line from the planned GALSI Project. The Project, ??Alimentation de la Corse en gaz naturel??, consists of a corridor 100 km long and 1.0 km wide along the Corsica-Sardinia shelf. The integration of the multibeam, sidescan sonar and sparker data provided a high resolution seafloor mapping for geo-hazard assessment. In this article the data acquired along a break of slope section (approximately 20 km × 1.5 km), in the eastern sector of the Strait of Bonifacio are described. The area was abandoned during the survey, because of its unsuitability. Indeed, in this area the continental shelf, approximately 100 m deep and deepening gently eastward, is characterized by an uneven morphology, with different seabed features such as Beach-rocks mainly NNW-SSE oriented. Also, the continuity of the continental margin, identified around ?110/?115 m, is interrupted by four canyon heads which incise the slope and are associated with glide deposits.  相似文献   

12.
Four uniformly spaced regional gravity traverses and the available seismic data across the western continental margin of India, starting from the western Indian shield extending into the deep oceanic areas of the eastern Arabian Sea, have been utilized to delineate the lithospheric structure. The seismically constrained gravity models along these four traverses suggest that the crustal structure below the northern part of the margin within the Deccan Volcanic Province (DVP) is significantly different from the margin outside the DVP. The lithosphere thickness, in general, varies from 110–120 km in the central and southern part of the margin to as much as 85–90 km below the Deccan Plateau and Cambay rift basin in the north. The Eastern basin is characterised by thinned rift stage continental crust which extends as far as Laxmi basin in the north and the Laccadive ridge in the south. At the ocean–continent transition (OCT), crustal density differences between the Laxmi ridge and the Laxmi basin are not sufficient to distinguish continental as against an oceanic crust through gravity modeling. However, 5-6 km thick oceanic crust below the Laxmi basin is a consistent gravity option. Significantly, the models indicate the presence of a high density layer of 3.0 g/cm3 in the lower crust in almost whole of the northern part of the region between the Laxmi ridge and the pericontinental northwest shield region in the DVP, and also below Laccadive ridge in the southern part. The Laxmi ridge is underlain by continental crust upto a depth of 11 km and a thick high density material (3.0 g/cm3) between 11–26 km. The Pratap ridge is indicated as a shallow basement high in the upper part of the crust formed during rifting. The 15 –17 km thick oceanic crust below Laccadive ridge is seen further thickened by high density underplated material down to Moho depths of 24–25 km which indicate formation of the ridge along Reunion hotspot trace.  相似文献   

13.
Berndt  C.  Mjelde  R.  Planke  S.  Shimamura  H.  Faleide  J.I. 《Marine Geophysical Researches》2001,22(3):133-152
Ocean bottom seismograph (OBS), multichannel seismic and potential field data reveal the structure of the Vøring Transform Margin (VTM). This transform margin is located at the landward extension of the Jan Mayen Fracture Zone along the southern edge of the Vøring Plateau. The margin consists of two distinctive segments. The northwestern segment is characterized by large amounts of volcanic material. The new OBS data reveal a 30–40 km wide and 17 km thick high-velocity body between underplated continental crust to the northeast and normal oceanic crust in the southwest. The southeastern segment of the mar is similar to transform margins elsewhere. It is characterized by a 20–30 km wide transform margin high and a narrow continent-ocean transition. The volcanic sequences along this margin segment are less than 1 km thick. We conclude from the spatial correspondence of decreased volcanism and the location of the fracture zone, that the amount of volcanism was influenced by the tectonic setting. We propose that (1) lateral heat transport from the oceanic lithosphere to the adjacent continental lithosphere decreased the ambient mantle temperature and melt production along the entire transform margin and (2) that right-stepping of the left-lateral shear zone at the northwestern margin segment caused lithospheric thinning and increased volcanism. The investigated data show no evidence that the breakup volcanism influenced the tectonic development of the southeastern VTM.  相似文献   

14.
The Southwest Subbasin (SWSB) is an abyssal subbasin in the South China Sea (SCS), with many debates on its neotectonic process and crustal structure. Using two-dimensional seismic tomography in the SWSB, we derived a detailed P-wave velocity model of the basin area and the northern margin. The entire profile is approximately 311-km-long and consists of twelve oceanic bottom seismometers (OBSs). The average thickness of the crust beneath the basin is 5.3 km, and the Moho interface is relatively flat (10–12 km). No high velocity bodies are observed, and only two thin high-velocity structures (~7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. By analyzing the P-wave velocity model, we believe that the crust of the basin is a typical oceanic crust. Combined with the high resolution multi-channel seismic profile (MCS), we conclude that the profile shows asymmetric structural characteristics in the basin area. The continental margin also shows asymmetric crust between the north and south sides, which may be related to the large scale detachment fault that has developed in the southern margin. The magma supply decreased as the expansion of the SWSB from the east to the west.  相似文献   

15.
The study of the Laptev Sea was a part of a comprehensive program for investigating Arctic seas during the cruise 63 of the R/V Akademik Mstislav Keldysh. On a transect along 130° E (September 8–14, 2015) from the estuary area of the Lena River on the traverse of the city of Tiksi to the continental slope (over 700 km), water samples were taken to study the hydrochemical structure of waters and the influence of the Lena River flow. From the obtained data, it was found that the effect of fresh water on the sea surface layer was very high and can be traced to a great distance from the river delta. An unconservative distribution of some hydrochemical parameters in the mixing zone was recorded. The concentration of nutrients in the surface layer, and a high turbidity can serve as limiting factors in the development of the phytoplankton community.  相似文献   

16.
南海北部陆缘张裂--岩石圈拆沉的地壳响应   总被引:4,自引:0,他引:4  
南海北部陆缘在中生代晚期曾形成宏伟的华夏陆缘造山带。火成岩岩石学、岩相古地理学和地球物理学证据显示,该造山带不仅具有巨厚(50~60 km)的陆壳,而且还有巨厚(160~180 km)的岩石圈根,在地势上曾出现过高3 500~4 000 m 的华夏山系。陆缘裂陷盆地的形成发育历史、地壳-岩石圈深部结构、火成岩地球化学特征及理论计算均表明,南海北部陆缘从晚白垩世以来发生的张裂作用起始于华夏陆缘造山带的拉伸塌陷,岩石圈拆沉是南海北部陆缘张裂的重要的引发机制。因此,南海北部陆缘张裂既不同于弧后扩张,也不受控于大西洋式的海底扩张,而是该区大陆构造演化和深部壳幔相互作用的结果。  相似文献   

17.
Density, taxonomic composition at higher taxon level and vertical distribution of benthic macrofaunal communities and sediment characteristics (pore water, nitrogen, organic carbon, sulfur, C/N ratio, n-alcohol biomarkers) were examined at three deep sites on the Congo–Gabon continental margin. This study was part of the multidisciplinary BIOZAIRE project that aimed at studying the deep benthic ecosystems in the Gulf of Guinea. Sampling of macrofaunal communities and of sediment was conducted during three cruises (January 2001, December 2001 and December 2003) at two downslope sites (4000 m depth), one located near the Congo submarine channel (15 km in the south) and the other one far from the channel (150 km in the South). The third area located 8 km north of the Congo channel in the surroundings of a giant pockmark at 3160 m depth was sampled during one cruise in December 2003.At these three locations the macrofaunal communities presented relatively high densities (327–987 ind. 0.25 m−2) compared with macrofaunal communities at similar depths; that is due to high levels of food input related to the Congo river and submarine system activities that affect the whole study area. The communities were different from each other in terms of taxonomic composition at higher taxon level (phylum, class, order for all the groups except for the polychaetes classified into families). The polychaetes dominated the communities and were responsible for the increase in densities observed at both deep sites (4000 m) between January 2001 and December 2003 whereas the tanaidaceans, the isopods and the bivalves were the other most abundant taxa responsible for the spatial differences between these sites. The community at 3150 m differed from the two deep communities by higher abundances in bivalves, nemerteans and holothuroids. The composition of the polychaete community also differed among sites.In the vicinity of the Congo channel, the expected positive effect of the additional organic matter transported through the turbiditic currents on to the surrounding benthic communities was not observed, as the increase in densities during the study period was higher at the site located away from the Congo channel than near the channel (80% vs 30%). That may be due to the low food value of the organic matter of terrestrial origin carried through the turbidites, and/or to the disturbance caused by these turbidites. Conversely, far from the channel the macrofaunal communities benefit from organic matter of higher energetic value originating mainly from marine sources, but also from continental sources, carried by the Congo plume or by near-bed currents across or along the continental slope. Spatial and temporal variability in trophic and physical characteristics of the sediment habitat at both deep sites also affected the vertical distribution of the macrofaunal communities.The activities of the very active Congo system structure the deep macrofaunal communities on a large area in terms of densities, composition and vertical distribution. The food input is enhanced at regional scale as well as the heterogeneity of the sediment characteristics, mainly in terms of organic matter quality (marine vs terrigenous). In turn, the densities are enhanced as well as the regional diversity of the macrofaunal communities in terms of taxonomic composition and distribution.  相似文献   

18.
The Jane Arc and Basin system is located at the eastern offshore prolongation of the Antarctic Peninsula, along the southern margin of the South Orkney Microcontinent. Three magnetic anomaly profiles orthogonal to the main tectonic and bathymetric trends were recorded during the SCAN97 cruise by the Spanish R/V Hespérides. In our profiles, chron C6n (19.5 Ma) was identified as the youngest oceanic crust of the Northern Weddell Sea, whose northern spreading branch was totally subducted. The profiles from the Jane Basin allow us to date, for the first time, the age of the oceanic crust using linear sea floor magnetic anomalies. The spreading in the Jane Basin began around the age of the oldest magnetic anomaly at 17.6 Ma (chron C5Dn), and ended about 14.4 Ma (chron C5ADn). The distribution of the magnetic anomalies indicate that the mechanism responsible for the development of Jane Basin was the subduction of the Weddell Sea spreading centre below the SE margin of the South Orkney Microcontinent, suggesting a novel mechanism for an extreme case of backarc development.  相似文献   

19.
《Marine Geology》2006,225(1-4):265-278
The first seismic reflection data from the shallowest part of the submarine Lomonosov Ridge north of Arctic Canada and North Greenland comprise two parallel single channel lines (62 and 25 km long, offset 580 m) acquired from a 10 day camp on drifting sea ice. The top of southern Lomonosov Ridge is bevelled (550 m water depth) and only thin sediments (< 50 ms) cover acoustic basement. We suggest erosion of a former sediment drape over the ridge crest was either by a grounded marine ice sheet extending north from Ellesmere Island and/or deep draft icebergs. More than 1 km of sediments are present at the western entrance to the deep passage between southern Lomonosov Ridge and the Lincoln Sea continental margin. Here, the uppermost part (+ 0.3 s thick) of the section reflects increased sediment input during the Plio–Pleistocene. The underlying 0.7 s thick succession onlaps the slope of a subsiding Lomonosov Ridge. An unconformity at the base of the sedimentary section caps a series of NW–SE grabens and mark the end of tectonic extension and block faulting of an acoustic basement represented by older margin sediments possibly followed by minor block movements in a compressional regime. The unconformity may relate to termination of Late Cretaceous deformation between Lomonosov Ridge and Alpha Ridge or be equivalent to the Hauterivian break-up unconformity associated with the opening of the Amerasia Basin. A flexure in the stratigraphic succession above the unconformity is most likely related to differential compaction, although intraplate earthquakes do occur in the area.  相似文献   

20.
About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26–28 km under the Gunnerus Ridge, 12–17 km under the Astrid Ridge, and 9.5–10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22–M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号